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A GEOMETRIC THEORY
FOR PRECONDITIONED INVERSE ITERATION
APPLIED TO A SUBSPACE

KLAUS NEYMEYR

ABSTRACT. The aim of this paper is to provide a convergence analysis for a
preconditioned subspace iteration, which is designated to determine a modest
number of the smallest eigenvalues and its corresponding invariant subspace
of eigenvectors of a large, symmetric positive definite matrix. The algorithm
is built upon a subspace implementation of preconditioned inverse iteration,
i.e., the well-known inverse iteration procedure, where the associated system
of linear equations is solved approximately by using a preconditioner. This
step is followed by a Rayleigh—Ritz projection so that preconditioned inverse
iteration is always applied to the Ritz vectors of the actual subspace of approx-
imate eigenvectors. The given theory provides sharp convergence estimates for
the Ritz values and is mainly built on arguments exploiting the geometry un-
derlying preconditioned inverse iteration.

1. INTRODUCTION

Consider the problem to determine a modest number of the smallest eigenvalues
together with its invariant subspace of eigenvectors of a large, symmetric positive
definite matrix A. The eigenvalues of A € R™*™ may have arbitrary multiplicity
and are denoted in a way that 0 < A; < A < --- < A,. To be more precise, we
are interested in the first s eigenvalues and the corresponding eigenvectors. Hence,
we assume that A\; < As41 in order to make the corresponding invariant subspace
unique.

There are numerous techniques to solve the given problem (see [10]). In this
work we focus on a subspace implementation of the method of preconditioned in-
verse iteration. Hence our method is attractive for those operators which are mesh
analogs of differential operators with possibly multiple eigenvalues and for which
also reliable (multigrid) preconditioners are known. In the following we summarize
the idea of inverse iteration and show how to apply a preconditioner.

Inverse iteration [2, 11, 12, 17] maps a given vector z to z’ by

r_ %

EiN
where an additional nonzero constant & is introduced which is usually considered to
be equal to 1 (|| denotes the Euclidean norm). It is a well-known fact that inverse

(1.1) AZ = Kz, x
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iteration converges to an eigenvector z corresponding to the smallest eigenvalue if
the acute angle between the initial vector and z is unequal to § (see [17]). The new
iterate #’ in (1.1) does not depend on the choice of the scaling constant x provided
that x # 0. Thus we make the choice k = A\(z), where

(z, Az)

(z,z)
denotes the Rayleigh quotient of z and (-,) is the Euclidean inner product. This
choice of x has the effect that £ — z converges to the null vector if A(£) converges
to A1 and hence provides the basis for the application of a preconditioner to solve
approximately the system of linear equations (1.1).

A preconditioner B! for A is a matrix which approximates the inverse of 4 in a

way that the spectral radius of the error propagation matrix I — B~! A is bounded.
For our purposes we assume that there is a real constant v € [0, 1] so that

(1.3) 11— B Alla <,

where || - || 4 denotes the operator norm induced by A.

The determination of £ in (1.1) requires the solution of a system of linear equa-
tions in A. Approximate solution of this system by using a preconditioner B~ for
A leads to the error propagation equation (with x = A(z))

(1.4) F—MNz)A ™'z = (I - B 'A)(z — \z)A '),

where Z is an approximation for . We define for the rest of the paper A = A(z).
Hence, the new iterate Z is given by

(1.2) Az) =

(1.5) F=A"1l2+ (- B 'A)(z - A1)
or by its equivalent representation (containing no inverse of A)
(1.6) F=1x— B Az - \z).

Since the iterative scheme (1.5) directly derives from inverse iteration (INVIT),
it is referred to as preconditioned inverse iteration (PINVIT), while its second
representation (1.6) is usually associated with preconditioned gradient methods for
the eigenvalue problem. The latter naming relies on the fact that the gradient of the
Rayleigh quotient (1.2) is collinear to the residual Az — A\z. Thus the actual iterate
z in (1.6) is corrected in the direction of the negative preconditioned gradient of
the Rayleigh quotient. Preconditioned gradient methods for the eigenvalue problem
were first studied by Samokish [19] and later by Petryshyn [18]. Estimates on the
convergence rate were given by Godunov et. al. [9] and D’yakonov et. al. [4, 8]. See
Knyazev for a recent survey on preconditioned eigensolvers [13].

The viewpoint of preconditioned gradient methods for the convergence analysis
of PINVIT seems to be less than optimal, since the convergence estimates are not
sharp and some assumptions on the Rayleigh quotient of the initial vector have to
be made [4, §].

The exploitation of the structure of equation (1.5), which represents Z as the
result of (scaled) inverse iteration plus a perturbation by the product of the er-
ror propagation matrix and the vector x — MA™ !z, results in sharp convergence
estimates for the Rayleigh quotients of the iterates and in a clear description of
the geometry of preconditioned inverse iteration [15, 16]. Moreover, it becomes
to apparent that PINVIT essentially behaves like inverse iteration. This means
that the convergence estimates for PINVIT take their extremal values in the same
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vectors as those of INVIT and that convergence of both methods is shown under
similar assumptions on the initial vectors. The theory in [15, 16] is mainly based
on an analysis of extremal properties of certain quantities defining the geomety of
PINVIT.

We come now to the question of how to generalize the vector iterations of INVIT
and PINVIT to subspace algorithms. One generalization of INVIT is the so-called
subspace iteration (also known as block inverse power method) with Rayleigh-Ritz
projections (see for instance Section 1.4 in Parlett [17]). We next describe this
algorithm and then discuss its modification in order to apply preconditioning.

Therefore, let V = span{vy, ... ,vs} be a given s-dimensional subspace of the R™
spanned by the vectors v;, ¢ = 1,... s, which are assumed to be the Ritz vectors
of A. Hence, for V = [v1,...,vs] € R™** holds
(1.7) VT AV = © = diag(6s,...,0;) and VIV =1,

where I € R®%¢ is the identity matrix. The Ritz vectors are in an order that the
Ritz values 6; increase with 1.

Subspace iteration to determine an invariant subspace of A corresponding to
some of the smallest eigenvalues is a straightforward generalization of inverse iter-
ation. The new subspace V results from applying A~! to V, i.e., V= A1V, Using
the matrix notation, the column space of V, defined by

(1.8) AV =VD,

is equal to V, where D € R*® in (1.8) denotes a diagonal matrix with nonzero
diagonal elements which gives rise to a scaling of the columns of V. The column
space V= span(V) does not depend on D so that D is usually considered to be
equal to the identity matrix. Convergence of subspace iteration to the A-invariant
subspace spanned by the s eigenvectors to the eigenvalues A1, ..., A is guaranteed
[17] if the initial subspace is not orthogonal to any of the s eigenvectors of A to the
s smallest eigenvalues and As < As41 (to make the subspace unique).

Now we describe how to apply a preconditioner to solve the equation (1.8) ap-
proximately. First we make the choice D = © in (1.8), where © is the diagonal
matrix of the Ritz values, expecting that V — V converges to the null matrix if the
subspace algorithm converges to a subspace of eigenvectors of A. Thus in analogy
to (1.5) and (1.6) the subspace implementation of PINVIT is given by

(1.9) V=A"'WO+(I-BtA)(V-A"lVe).

For the preconditioner we assume (1.3) again. The simplified form of equation (1.9)
(containing no inverse of A) reads

(1.10) V=V-B YAV -V0O).

To determine the approximate eigenvectors and eigenvalues, we now apply the
Rayleigh-Ritz procedure. The Ritz vectors v}, ¢ = 1,...,s, of the column space
span(f/) define the columns of V’ and the corresponding Ritz values 8}, =1,... ,s,
are the diagonal elements of the matrix ©’. The preconditioned subspace algorithm
iterates the transformation V, © — V', ©’.

The preconditioned iterative scheme in the form (1.10) was recently analyzed by
Bramble et al. [1], where a survey on various attempts to analyze this and alternative
(simplified) preconditioned subspace schemes is also given. One such simplification
is that in equation (1.10): instead of the matrix ©, a constant diagonal matrix is
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considered in order to make the convergence analysis feasible (see [5, 6, 7]). Usually
the main difficulty for the convergence analysis of (1.10) is seen in the dependence
of the iteration operator (which acts in (1.10) on the columns of V') on the Ritz
values 6;. Here we do not consider these simplified schemes. We further note that
the subspace implementation of PINVIT can be understood as a modified version of
a block Davidson method [3], in a way that the dimension of the iteration subspace
is not modified in the course of the iteration.

In the analysis of Bramble et al. [1] very restrictive conditions on the initial
subspace are assumed to be satisfied, which are far from being fulfilled in prac-
tice. The analysis presented here is applicable to initial subspaces generated from
scratch. Moreover, our estimates for the convergence of the Ritz values are sharp
in a sense that an initial subspace and a preconditioner can be constructed so that
the convergence estimates are attained. The given analysis shows that the conver-
gence estimates for each Ritz value are the same as those which are derived for the
Rayleigh quotient of the iterates of PINVIT. Hence the subspace implementation
of PINVIT, in the following referred to as SPINVIT, essentially behaves like the
classical subspace iteration (block inverse power method).

The rest of this paper is organized as follows. In the next section we give a more
detailed description of PINVIT, state its central convergence theorem and prove a
monotonicity lemma. In Section 3 the convergence analysis of SPINVIT is given.
Lemma 3.1 proves that SPINVIT preserves the dimension of the subspace in the
course of the iteration. Theorem 3.2 provides an estimate from above for the largest
Ritz value. Finally, the central Theorem 3.3 contains sharp convergence estimates
for all Ritz values.

2. PRECONDITIONED INVERSE ITERATION (PINVIT)

In this section we recapitulate those facts and results from the convergence anal-
ysis of the preconditioned inverse iteration method (see (15, 16]), which are needed
here for the analysis of its subspace implementation. Furthermore, we prove some
monotonicity of the convergence estimates.

The iterative scheme of PINVIT has the two representations (1.5) and (1.6). The
first one points out the relation to the method of inverse iteration and turns out
as a valuable tool for the analysis. Obviously, Z is always computed by evaluation
of (1.6). In practice the new iterate Z is normed to 1, but theoretically the conver-
gence does not depend on the scaling of z, since preconditioned inverse iteration is
homogeneous with respect to scaling of z.

The convergence theory of PINVIT in [15, 16] is mainly based on an analysis of
the geometry of PINVIT with respect to the A-orthonormal basis of eigenvectors
of A. To introduce this basis, let X € R™*™ be the orthogonal matrix containing
in its columns the eigenvectors of A, so that XTAX = A = diag()\y,...,\,) and
XTX = I. Furthermore, let ¢ (¢) be the coefficient vectors of = (%) with respect
to this basis so that z = XA~'/?c and # = XA~'/2¢. Then for any iterate & (1.5)
there is a 4 (with 0 < 4 < v where v is determined by (1.3)) and a Householder
reflection H = I — 2vvT (with v € R™ and |v]? = vTv = 1), so that

(2.1) E=M(c)A e —FH(I — A (c)AY)e
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Ey(c)
AAC

FIGURE 1. The set E,(c) with the center AA~'c and the radius
M ~te —w.

(see Lemma 2.4 in [15]). Therein Aa(-) denotes the Rayleigh quotient within this
basis which for a nonzero d € R™ reads
(d,d)
2.2 An(d) = —1——.
(22) M) = 2
Then we have A = A(z) = A (c). For given ¢ and v the set of all iterates ¢ resulting
from (2.1) is a ball denoted by E.,(c)

(2.3) Ey(c) = {M lc+d; d € R", |d| < ~|(I — AMA~V)e|},

with the radius v|(I—AA~!)c| and the center AA~'¢; |-| denotes the Euclidean norm.
Equivalently, E.(c) results by applying PINVIT, as given by equation (1.6) for all
preconditioners B~! satisfying (1.3), to the vector z and subsequent transformation
of all iterates to the A-orthonormal basis of eigenvectors of A (see [15]).

Therefore, the problem of deriving convergence estimates for the Rayleigh quo-
tient of the iterates of PINVIT is reduced to the problem of analyzing the extremal
behavior of the Rayleigh quotient (2.2) on the ball E,(c) C R"™. Here, we are
particularly interested in suprema of the Rayleigh quotient on E.,(c) in order to
analyze the case of poorest convergence. In [15] it is shown that this supremum is
attained in a point w of the form

(2.4) w=Bla+A)""c,

and that w is an element of the boundary of E,(c). The real constants o > 0
and § in (2.4) are unique. Figure 1 illustrates the position of w in E,(c). It
is a somewhat surprising result that the point of a supremum on F.,(c) can be
represented in the form (2.4), i.e., by inverse iteration with a positive shift o if
applied to ¢. Furthermore, similiar properties hold for the infimum of the Rayleigh
quotient on E.,(c), which describes the best possible convergence of PINVIT.

The central convergence theorem for PINVIT reads as follows (see [16]).

Theorem 2.1. Let a vector ¢ € R™ with |c| = 1 and v € [0,1] be given. Let
A = Aa(c) be the Rayleigh quotient of c. Then the Rayleigh quotient A= M(@) of
the new iterate ¢ of PINVIT (2.1) can be estimated from above, in order to describe
the case of poorest convergence, in the following way:
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FIGURE 2. Convergence estimates ®;,y1(\,y) in the interval
[Ai; Aip1[ for ¢ = 1,...,5. The curves are shown for 11 values
of v = 0,0.1,...,1.0 against A\ € [2,17] for the example system
with the eigenvalues 2,5, 8,10, 13 and 17.

(a) If x = X, i = 1,...,n, then X takes its mazimum X = \; if ¢ is collinear
to the ith unit vector e;. (In this case PINVIT is stationary or equivalently
XA~12¢; is collinear to the ith eigenvector of A.)

(b) If \i < X < Aiy1, then the mazimal Rayleigh quotient on the set E,(c) takes
its mazimal value under variation of ¢, with Ap(c) = A and |c| = 1, in a vector
of the form

Ciitl = (0, .o ,0, Ciy Cit1, 0, e ,O)T,
with A(¢ii41) = A. Furthermore, we explicitly have A= Aiiv1 (A, ) with

(2.5)
A7) = A + A5 = N2/ (7205 = MDA = M)A + A = AF = AF)

— 29RO = 2Oy = DAy + (1= 72 (= Ay =)
A A5 = AN+ AN — A2 = —AD).

Proof. See Theorem 1.1 in [16]. O

It is not easy to see that A;;+1(X,7) < A. Lemma A.1 in Appendix A gives a
crude estimate from above:

A= 2)QAir1 =)

(2.6) N1t (07) <A = (1—7)? 3
i1
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Figure 2 illustrates the convergence estimates ®;;41(\,) (describing the relative
decrease to the nearest eigenvalue \; less than \)

Xiir1( A7) — A
A— X ’

for a matrix having the eigenvalues 2, 5, 8, 10, 13 and 17. In each interval [A;, \i41]
the estimate ®;;41(\,y) is shown for 11 values of v, i.e.,, v = 0,0.1,...,1.0. The
estimate for v = 0, which describes the poorest convergence of inverse iteration,
corresponds to the bold curves. To derive this estimate explicitly, we insert v =0
and j =7+ 1in (2.5) and obtain

(27) q)i,i+1(/\,’)’) =

(2.8) A1 0) = (T 4+ A, — Q4 hin — A T
Hence ®; ;41(),0) in the interval [X;, A;41[ reads
22
®;i41(A,0) = -

AZ+ (Mg = AN+ Xig1)’

which is a convergence estimate from above for inverse iteration if applied to a given
vector whose Rayleigh quotient is equal to A (see Section 1 in [16]). For A = A1
we have ®; ;41(Nit+1,7) = 1, which expresses the fact that PINVIT is stationary in
the eigenvectors of A. The curves in Figure 2 for v > 0 describe the case of poorest
convergence of PINVIT. In each interval [A;, A;41[ poorest convergence of INVIT
is attained in those vectors which are spanned by the eigenvectors corresponding
to \; and A;y1. In the same case the poorest convergence of PINVIT is attained if
additionally the preconditioner is chosen appropriately [15]. For a random initial
vector with a Rayleigh quotient A > Ao, it cannot be guaranteed that PINVIT (and
in the same way INVIT) converges to an eigenvector corresponding to the smallest
eigenvalue of A, since both methods may reach stationarity in the orthogonal com-
plement of the eigenvectors to the smallest eigenvalue. In practice this situation is
very unlikely due to rounding errors.

It is worth noting that PINVIT, depending on the eigenvector expansion of the
actual iterate and on the choice of the preconditioner, may converge much more
rapidly as suggested by the worst case estimate (2.5).

In preparation of our central convergence Theorem 3.3, the next lemma shows
that for fixed v the function \; ;(A, ) is strictly monotone increasing in A.

Lemma 2.2. Let ), A €A1, A with X < X be given for which indexes p and q can
be determined so that X € [Ap, Apy1| and X € [Ag, Agy1[. Then it holds that

Appt1 (A7) < Aggs1 (A7)
Proof. Adopting the notation of Theorem 2.1 we have

i i (A7) = sup{Aa(2); 2 € Ey(cij)}s

where the vector ¢; ; =: ¢ has exactly two nonzero components c; and c; whose
absolute values are uniquely determined by |c| = 1 and Aa(c) = A. Moreover, for
0 <y <7 <1 wehave E, (c) C E,,(c). Thus we conclude that the function
Xi; (A, y) is monotone increasing in «y. Inserting v = 1in (2.5) leads to A; j(A, 1) = A
and for v = 0, one obtains

S A0 = T+ = Q=07 T
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FIGURE 3. Two vectors
¢,é € span{ep,epi1}
with Aa(¢) < Aa(c) and
the result of inverse iter-
ation.

FIGURE 4. The angle ¢,
which is the largest angle
enclosed by any vector of
E,(c) and the axis ep.

We first treat the case A, < )\q so that p < ¢. Using the preceding arguments
we conclude

)\p,p+1(5\>’)’) < )‘p,p+1(;\, 1) = A< Ap+1 S Ag < Agg1(A, 0) < Agg+1(A, )

Next we treat A\, = Aq or p = ¢. Thus we have to show the monotonicity of
Appt1(A,y) in X for A € [Ap, Apt1[. This can be done by analyzing the geometry of
PINVIT within the plane, which is spanned by the unit vectors e, and e,y1. This
“mini—dimensional” analysis is justified by Theorem 1.1 in [16].

We first observe that for z € span{ep,epi1} the Rayleigh quotient A(z) is a
monotone increasing function in the acute angle ¢, enclosed by the axis e, and z.
Inserting 2z in (2.2) one obtains

27,2

_ 1+ 2/ 2541

=T -1 .22
Ao+ A r12a 2

A (2)

Differentiation with respect to tan(y,) = z‘;“ provides the required result.
P

Now let ¢, & € span{ep, ep11} with |¢] = |&] = 1 and A(&) = A < Ap(c) = A\. The
given situation is shown in Figure 4. Then for the acute angles enclosed by these
vectors and the axis e, holds that

Yz < Pe.

Furthermore, application of inverse iteration to ¢ and ¢ and subsequent evaluation
of the Rayleigh quotients leads to

Pir-1z < PAA-1c)

since by (2.8) the Rayleigh quotient A, ,11(}\,0) is monotone increasing in A (see
Figure 3). We conclude that ¢, and @js-1, are monotone increasing in A.
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FIGURE 5. The Rayleigh quotient A;;4+1(A\,7), ¢ = 1,...,3, as
given by (2.5) against A € [2,8] for the example system A =
diag(2,5,8). The 11 curves correspond to v = 0,0.1,...,1.0. The
dashed curve stands for v = 0. For v = 1 we have A = A, ;41(\, )
or stationarity of PINVIT.

Since

2.9 = A
(2.9) w = a,rgnglga)ic (ep, w)

maximizes the Rayleigh quotient on E.(c) we only have to show that the acute
angle enclosed by e, and w

= ey, w
Py wé‘}ga}g) (ep,w)

is a monotone increasing function of A\. Therefore let ¢, = Z(ep,c) and Yyp-1. =
Z(ep, AMM71c) so that ¢, — pap-1, for v =1 is the opening angle of the cone
Cy(e) = {¢d; d € Ey(e), ¢ >0},

of all positive multiples of the vectors in E,(c). The geometric setup is shown in
Figure 4.
Applying the orthogonal decomposition
le|2 4 e = A7 te2 = MY,
we have tan(p, — pap-1.) = R with R? = [AA~1c|2 — |c|%. Hence
_ . R _ . .
Py = Prp-1c T+ arcsin i) Par-1c +arcsin (ysin(pe — pan-1e)) -

Applylng Lemma A.2 from Appendix A for @ = ., & = @z 0 = @xp-1. and

ﬁ = Pia-1s completes the proof, since now ¢, ¢, and @ p-1, are all monotone
increasing in A so that A(w) (w by (2.9)) increases in A too. d
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Figure 5 illustrates the content of Lemma, 2.2 by using a subsystem of the example
shown in Figure 2, i.e., A = diag(2,5,8). For v = 0,0.1,...,1.0, the strictly
montone increasing function A; ;11(A,7) is plotted against A € [2,8]. The dashed
curve corresponds to v = 0.

3. SUBSPACE IMPLEMENTATION OF PINVIT (SPINVIT)

We start the presentation of the convergence theory of SPINVIT by proving a
certain A-orthogonal decomposition which immediately implies that the dimension
of the iteration subspace of SPINVIT is preserved, i.e., rank(V) = s. Then in
Theorem 3.2 an estimate for the largest Ritz value is established. Finally, Theorem
3.3 contains sharp convergence estimates for all Ritz values.

For the rest of the paper PINVIT and SPINVIT are represented with respect to
the initial basis, i.e., the A-orthogonal basis of eigenvectors of A, as used in Section
2, is not considered furthermore.

Lemma 3.1. Let V. € R™*% be the matriz of the Ritz vectors of A with s =
rank(V), i.e., the dimension of the linear space spanned by the columns of V', and
let © = VT AV be the diagonal matriz of the Ritz values. Then it holds that

(3.1) (a) VIAWV - A7'VO) =0 € R¥,
(3.2) (b) (A7've)TA(a~ve) =

VITAV +(V - A7'Ve)TA(V — A71Ve),
(3.3) (e) rank(V) = s, for V by (1.9).

Proof. Property (a) follows from the definition of the Ritz vectors and Ritz values
(see equation (1.7)). Furthermore, by applying (a) one obtains

VIAV + (V- AT'VO)TA(V — A7'VO)

=0 - (A"WWO)TA(V - A7've) = (A7'Ve)TA(A™Ve).

Finally, we show |[Vy|l4 > 0, V by (1.9), for all nonzero vectors y € R*:
IVylla = [A7'VOy+ (I -B AV - A"'VO)y|a

IA'VOylla = I(I = BT A)(V — A7'VO)ylla
1A' VOylla — |(V — A7'VO)ylla
[AVey|% — IV — A~ Vel
[A=1VOylla+[I(V — A=1VO)ylla

vyl o
A= VOylla+ (V- A=1VO)ylla
The last inequality holds, since by rank(V') = s we have [[Viy[|4 > 0 and by regu-
larity of A also ||[A71VOyl||4 > 0. Hence, rank(V) = s. O

2>
2>

Figure 6 illustrates the A-orthogonal decomposition within the R"*® as pre-
sented in Lemma 3.1.

The next theorem provides an estimate for the maximal Ritz value ¢, of A with
respect to V. The theorem simply says that the worst case estimate for the largest
Ritz value is the same as that of PINVIT, i.e., the estimate for the decrease of the
largest Ritz value coincides with that which results from Theorem 2.1 if PINVIT
is applied to an initial vector with the Rayleigh quotient §5. The estimate (3.4) in
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FIGURE 6. A-orthogonal decomposition in the R™**.

Theorem 3.2 is sharp (the proof is given later in Theorem 3.3) in a sense that an
initial subspace V and a preconditioner can be constructed so that the estimate is
attained.

Theorem 3.2. Let 0, be the largest Ritz value of A with respect to V and let p be
the indez so that 05 € [Ap, Apy1[. For the mazimal Ritz value 8 of A with respect to
the new subspace V' generated by SPINVIT, as defined by equation (1.9) or (1.10),

(3.4) 0; < Appti (0s,7)
holds. Therein the function A\, py1 15 given by (2.5).
Proof. We use the minmax characterization of the Ritz values (see [17]), which says

3.5 0. = AVy).
(3.5) s I;lgg(y)

From (1.9) for any y the vector Vy is given by
Vy=A"'VOy+ (I - B 1AV - A"'VO)y
=XN2)A" 2+ (I =B 'A)(Vy — M2)A™12),

where in the last equation z = A(VOy)~ 'V Oy is introduced for which we have
Az) = A(VOy).
To find an estimate from above for ¢, we define the set F,(y)
Ey(y) == {A=) A 2+ (I = B A)(Vy = A(2)A™'2); |1 = B™' Alla < 7},

of all obtainable iterates which result from application of all admissible precondi-
tioners satisfying (1.3). Since Vy € F,(y), we can apply the Rayleigh quotient
(1.2), so that A(Vy) is less or equal than the maximum on the set A\(F,(y)), i.e.,

AVy) < max A (Fﬂy)) .

The set’s maximum max A(F, (y)) depends on y. Taking a further maximum with
respect to y and applying (3.5) leads to

) _ A
. = < .
(3.7) 0, = max AVy) < max max A (Fv(y))

(3.6)

What we have analyzed so far is the convergence of PINVIT, as given by equation
(1.5), if applied to z

F=A2)A" 2+ (I - B71A) (2 — M2)A™2),
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whose iterates, for all admissible preconditioners, define the set F,(2)

F (2) = {\2)A 2+ (I - B 'A)(z = A(2)A™'2); ||I — B~ Alla <~}
Next we show that E,(y) C F,(z[y]), where z[y] = A\(VOy)"'VOy. Now let
w € F,(y). From Lemma 2.2 in [15] a preconditioner By with ||/ — By 'Afj4 < v in
the form
(3.8) Bil= A" 4y AT AT
can be constructed so that

w=A2)A"'24+ (I — B{*A)(Vy — M(2)A™12)

(H; is a Householder matrix and 0 < 7 < 7). To show w € F,(z[y]) we take a
second preconditioner By = A~ +~,A~Y/2H, A1/ having the same form as (3.8)
but with different Hy and 0 < 2 < -y, which has to satisfy

(3.9) (I — B*A)ty = (I — By A)t,
where t; = Vy — AM(2)A™'z and t2 = 2z — A\(2) A~ 2. From (3.9) we obtain
(3.10) ATV AN = gy ATY2H, AV

Multiplication with A'/2 and application of the Euclidean norm results in

1lltilla = 2lltalla

for the norm induced by A. For given ¢1, H; and 3 < 7y we can easily determine a
Householder matrix Hy so that the vectors H; AY/2t; and Hy A2ty are collinear.
Furthermore, we can also determine a constant vy, with 0 < 2 < =, so that (3.10)
is satisfied, since ||t2]|4 > ||t1]|4 as shown in the following.

By Cauchy’s inequality we have for any y € R®

(y,0%))* < (y,0y)(y, ©°y),

since the Ritz values 0;, i = 1,... , s are positive. Hence
(ya 62y)2 3
a@ + =¥ () S 2 7@ )
(y,©y) (1, 6%)? (y,©%y) < 2(y,Oy)
from which with ¥ = A(VOy) = Ezgzzg the estimate

(y, Oy) + 97 2(0y, VT AVOy) < 2(y, VTV Ey)
follows. With z = 971V Oy one obtains
(Vy, AVy) + (2, Az) < 2(Vy, \M(2) A7 2) 4,
or equivalently
IVyllh = 2(Vy, AM(2) A" 2)a < [l2]% — 2(2, A(2) A7 2) 4
From this we conclude
[Eal% = 1Vy = A=) A 2% < 1z = A=) A 2% = it
Hence we have ﬁl, (y) € Fy(2[y]) and thus for the maximal Rayleigh quotient

(3.11) max A <13'7(y)) < max A (F, (2[y])) .
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If one takes the maximum with respect to y on the right hand side of (3.11), then
on the left hand side this will lead to

(3.12) Iggécmax)\ (ﬁ‘y(y)) < r;ljécmaxA (Fy(2[y])) -

The monotonicity lemma (Lemma 2.2) says that the convergence estimate for any
VOy with y # 0, because of A\(VOy) < 6, is dominated by A, ,4+1(0s,7), i.e.,

(3.13) max Ao k+1(AVOY),7) < Appt1(0s,7)-

Therein, the index k depends on y in a way that A(VOy) € [Ag, Ag+1][- We combine
the estimates (3.7), (3.12), Theorem 2.1, and (3.13) to obtain

6, < maxmax A (Fy(2[y])) < max X 41 (AVO),7) < Ap ot (6s,7).
O

In the next theorem, which is the central convergence theorem for SPINVIT,
sharp estimates from above for each Ritz value are given. Theorem 3.3 says that
for any of the s Ritz values an estimate for the decrease of the Rayleigh quotient,
like inequality (3.4), holds (see Theorem 3.2). In other words, each Ritz value
behaves like the Rayleigh quotient in the preconditioned vector scheme PINVIT:
convergence of PINVIT to the smallest eigenvalue A; is only guaranteed if the
Rayleigh quotient of the initial vector is less than Ag; if the last condition is not
fulfilled, the very unlikely situation may occur that PINVIT converges to an eigen-
value larger or equal to Az so that the found eigenvector is located in the orthogonal
complement of the eigenspace corresponding to A;. But in practice, as a result of
rounding errors, PINVIT always converges from scratch to the smallest eigenvalue
and a corresponding eigenvector.

For SPINVIT we have a comparable situation. If the column space of V; € R™*#
describes a given initial space, then an exact arithmetic convergence of the smallest
Ritz value 6, to the eigenvalue A; can only be guaranteed if the Ritz value 6 (Vp)
with respect to Vj is less than \a; convergence of the second Ritz value to Ag is
guaranteed if 65(Vp) < A3 and so on. These assumptions seem to be very restrictive,
but similar assumptions have to be made to prove convergence of the subspace
implementation of INVIT. If the smallest Ritz value of Vj is equal or less than
Az, then the column space span(Vp) is possibly orthogonal to the eigenspace to
the smallest eigenvalue A;. Hence in exact arithmetic, inverse iteration does not
converge to the smallest eigenvalue and its invariant subspace of A. It is important
to note that it is well believed that in practice due to rounding errors the subspace
implementation of INVIT converges from scratch to the eigenspace associated with
the s smallest eigenvalues. In the same way SPINVIT will converge from scratch,
as already observed in [1].

Theorem 3.3. Let V = span{vy,...,vs} be a given s-dimensional subspace of the
R"™, let V € R™* be the matriz which contains in its columns the Ritz vectors
of A with respect to V, and let © be the diagonal matriz of the Ritz values (see
equation (1.7)). Let indexes k; be given in a way that 0; € [Ak,, Ak, 4+1[. Moreover,
let 0 < --- <@, be the Ritz values of V, which results from application of SPINVIT,
by (1.9) or (1.10), to V. Then fori=1,...,s,

(3.14) 0 < Mg ki+1(0:57)
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holds. If the subspace dimension s is less than n (otherwise the Ritz values coincide
with the eigenvalues), then the estimate (3.14) is sharp in a sense that for each
Ritz value 0; an initial space V. and a preconditioner B~! (depending on ;) can
be constructed so that (3.14) is attained. (The estimate is not always sharp for all
Ritz values at the same time.)

Proof. The proof is given by induction on s. For a one-dimensional subspace, or
s =1, SPINVIT is the same as PINVIT so that by Theorem 2.1

6),1 < )‘p,p+1(91,’)’)7
where 61 € [Ap, Apy1l-
For V = [v1,...,vs] € R™*, consisting of s Ritz vectors of A, by deleting its
last column we define
V(S_l) = [’Ul, - ,vs—l]-

The columns of V(=1 remain to be Ritz vectors of A. The corresponding diagonal
matrix containing the Ritz values reads ebt-1) = diag(fy,...,05-1).
Application of SPINVIT to V=1 and ©(¢~Y results in

=1 — y(s-1) _ g1 (AV(S—l) _ V(s—l)@(s—l)) '
For the Ritz values (V=1 of A with respect to V(*~1) by the induction hypoth-
esis,
i (VE1) < Ny ki1 (05,7), i=1,...,s—1,

holds.

Applying SPINVIT to V = [v1, ... ,v,] = [V, v,] we obtain

V= [Veh g,

since by equation (1.9) the last column ¥, has no influence on the previous columns.

Let f)(sil) the column space of V(=1 and V be the column space of the enlarged
matrix V. By the minmax characterization of the Ritz values the first s — 1 Ritz

values decrease while expanding V=1 to V. Hence for i =1,... ,5 — 1,
@;(VE=D)Y =  min ax A(z) > mi ax Az) = 04V),
i ) V;<Ps=1) mé&\{o} (z) 2 11}1;\1; a:ela\{O} (=) (V)

where the minimum is taken over all :-dimensional subspaces denoted by V;. For
the remaining Ritz value 6,, Theorem 3.2 provides the required result.

To show that the estimate (3.14) is sharp, let a particular 7, 1 < ¢ < s, with
0; € [Ap, Ap+1[ be given for which we now construct an initial matrix V' € R™**
and a preconditioner B so that

0; = Ap,p+1(03,7).
Let ;, j = 1,...,n, be the eigenvectors of A with |z;] = 1 and \; = (z;, Az;).
Let the first column v, of V' be given by

Api1 —0 09— X,

v = D

Tp+1-

/\p+1 - )\;D )‘p+1 - )‘;D

Then |v;| = 1 and A(v1) = 0. Since by Lemma B.1 in Appendix B, A\; < 0; <
Ait(n—s), We can fill up the remaining columns of V' with those s — 1 eigenvectors
of A, that are orthogonal to z, and zp41, in a way that we take exactly i -- 1 of
the eigenvectors of A to eigenvalues less or equal to A, and s — ¢ eigenvectors to
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eigenvalues larger or equal to A\p11. Then V is an orthogonal matrix and 6; is the
1th Ritz vector of A with respect to V.

Furthermore, for this choice of V' the residual matrix AV —V© is the zero matrix
with exception of the first column. The preconditioner B is taken in the form

Bl = A—l +’}/A_1/2HA—1/2,

where H = I —2z27 is a Householder matrix with z € R™. Then || —B 1A|4a =~
and a vector z € span{zp, Tp+1} can be determined so that the Rayleigh quotient

0 = 91A_11}1 + (I — B_lA)(’Ul — 9144—11}1)
takes its maximum

)\(61) = /\p,p-}—l(oa ’7)

with respect to any B! satisfying (1.3) (see Section 5 of [15]). It is also shown that
01 € span{zy, Tp41}, so that 9; is a Ritz vector of A with respect to V. Therefore
SPINVIT, if applied to V, collapses to the vector iteration of PINVIT, which is
applied to the single vector vp, since all other columns of V' are not modified.
Hence from A(91) = App+1(0,7) € [Ap, Ap+1] the ith Ritz value with respect to 14
is guaranteed to be equal to A(?;), since the other Ritz values remain stationary in
the eigenvalues of A. O

3.1. Convergence of the Ritz vectors. So far we have not given any estimates
on the convergence of the Ritz vectors generated by SPINVIT to the eigenvectors
of A. The reason for this lack is to be seen in the fact that the acute angle between
the 7th Ritz vector and the ith eigenvector is not necessarily a monotone decreasing
sequence (see Section 3.2 in [16] discussing the case s = 1, for which SPINVIT is
the same as PINVIT).

But what can be done to prove convergence of the Ritz vectors toward the
eigenvectors of A? From Corollary 3.1 in [16] we obtain

0 1/2
(315) ”A”Ul — 911)1||A—1 S ()\—1 — 1)
1

as an estimate from above for the residual associated with the Ritz vector v; and
their corresponding Ritz value 6;. The simplest way to derive error estimates for
Ritz vectors v;, i > 2, is to determine first the invariant subspace to the smallest
eigenvalue and then to switch over to the orthogonal complement. Now one can
apply the estimate (3.15) in the orthogonal complement and so on, moving toward
the interior of the spectrum. We further note that it is not possible to bound the
residual of the Ritz vectors v;, ¢ > 1, by the difference \; — ; without previous
knowledge of the convergence of the Ritz vectors v;, 7 < 1. It is easy to construct
appropriate counterexamples.

4. AN EXAMPLE

To demonstrate that the convergence rates for the Ritz values of SPINVIT are of
comparable magnitude with that of multigrid methods for boundary value problems,
we consider now the five-point finite difference discretization of the eigenproblem
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TABLE 1. Convergence rate estimates for the 6 Ritz values 6; in
the case of block inverse iteration, i.e., vy = 0, and for v = 0.2 and
v = 0.8. The 6 smallest (exact) eigenvalues of the finite difference
discretization with h = /50 are given by AP

Py 0;  ©ii11(6:,0) ©;11(6:,0.2) ©441(6:,0.8)

%

11199934 3.5 0.277 0.376 0.804
214.99441 5.5 0.436 0.530 0.868
3| 4.99441 6.5 0.563 0.642 0.905
41798948 7.2 0.680 0.740 0.931
51997305 10.3 0.619 0.688 0.917
6| 9.97305 11.0 0.688 0.747 0.934

for the Laplacian on the square [0, 7]? with homogeneous Dirichlet boundary con-
ditions. The eigenvalues of the continuous problem A ; and of the finite difference
discretization )\’,;,l, for the mesh size h, are given by

Aoy = k2 + 12, )\Z’l = % (sinz(];—h) + sinz(l—zlz)> .
For h = 7/50 the 10 smallest eigenvalues (with multiplicity) read explicitly
M. 10 = (2,5,5,8,10,10,13,13,17,17),
M 1o = (1.99934,4.99441,4.99441,7.98948, 9.97305,

[}

9.97305, 12.96812,12.96812, 16.91563, 16.91563).

Hence these eigenvalues \; and A} coincide within the 1 percent range. Figure 2
shows the convergence estimates ®; ;11(),) for the eigenvalues \;. Note that the
estimates are valid independently of the multiplicity of the eigenvalues.

To illustrate the convergence rates ©; ;4+1(A,7), which describe the convergence
of A to \; for some Ritz values of SPINVIT, we define

Osi+1(Ay) == max Pii41(A,7)
A <ALA

(refer to Figure 2 to see that ©;,4+1(\,7) only slightly differs from ®; ;41(A,7); for
the given example both quantities coincide). The Ritz values §; in the third column
of Table 1 are given in a way that, if m is the multiplicity of the eigenvalue AZ,
then m Ritz values are located in the interval between A" and the nearest larger
eigenvalue. In this situation SPINVIT is guaranteed to converge to the eigenvectors
corresponding to the 6 smallest eigenvalues. The convergence rate estimates for
these Ritz values are given in the last three columns of Table 1. The column v =0
describes the case of block inverse iteration while the columns v = 0.2 and v = 0.8
correspond to SPINVIT.

It is worth noting that the convergence rate estimates do not depend on the
mesh size h and hence on the number of the variables. To derive a crude estimate
from above we insert equation (2.6) in (2.7) and obtain

Ay A .

Since the right hand side is strictly monotone increasing in A € [\, Aiy1], it is also

an estimate for ©; ;41(A,7). Therein the first term T/L describes the behavior of

®;i11(M7) <1-(1-9)%(1— +v(2-7Q1-

Ait1 Ait1 Ait1
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inverse iteration, which converges to 1 for A — A;41 (this is also shown by the bold
curves in Figure 2). The further term of the order O(y) estimates the influence of
the preconditioner and thus describes the influence of PINVIT.

Hence, depending on the quality of the preconditioner, eigenvector/eigenvalue
computation can be done reliably with the SPINVIT algorithm. So SPINVIT can
be viewed as the eigenproblem counterpart of multigrid algorithms for the solution
of boundary value problems, for which preconditioners satisfying an estimate of the
form (1.3) are known and which have optimal convergence properties.

5. CONCLUSION

A new theoretical framework for the method of preconditioned inverse iteration
in a subspace (SPINVIT) has been presented. For the most part the convergence
analysis is built on an analysis of the geometry underlying preconditioned inverse
iteration. Sharp convergence estimates for each Ritz value, which are independent
of the number of unknowns, have been given. These estimates coincide with those
derived for the Rayleigh quotient in the vector iteration of PINVIT. Furthermore,
SPINVIT turns out to behave comparably to the subspace implementation of in-
verse iteration; for v = 0 the methods coincide. Hence, SPINVIT can be viewed
as a reliable method for determining some of the smallest eigenvalues and its cor-
responding eigenvectors of a large, symmetric positive definite matrix from scratch
(as already observed by Bramble et al. [1]).

SPINVIT can also be embedded in an adaptive multigrid algorithm to solve
eigenproblems for elliptic operators. Such a method and a posteriori error estima-
tion for SPINVIT is the topic of [14].

APPENDIX A. SOME AUXILIARY LEMMATA

The next lemma provides a crude estimate from above for the sharp convergence
estimate (2.5) of PINVIT (see [8]).

Lemma A.1. Let A €]\, \it1] and v € [0,1]. Then

2 (A=) (A1 — A) _

(A1) Aiit1 (A7) SA=(1—9) iy
141

Proof. Inserting (1.5) in (1.2) one obtains by direct computation (with r = Az — Az,
d=B7r and |z| = 1)

2 = [ld1%]ldlI5*IdI% + A(d, d)
]. - 2(%, d) + (d, d) ’

Estimating the nominator from below using (1.3) (|| - ||z is the norm induced by B)
2~ dl% Il 52l % + A(d,d) > (1 = )lldl|E + Md, d),
and the denominator from above for € > 0

1—2(z,d) + (d,d) < (1+¢)+ (1+e1)(d,d),

A—A@F) =

leads to

A
14+e?

(A=l + N2 L=
Il + A > min 3=l

A=A@) 2 (I+e)+(1+eb)d? =

}.
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The minimum takes its maximal value in € = 1—11 lld||%. Hence,

(A2) A= ME) 2 (1= )2l 2D

The term ||7]|4_, can be estimated from below by Temple’s inequality in the form
A
AA = A)(Aig1 = A)
Aidit1

provided that (z,z) = 1 and A(z) € [Ai, Aix1[. Inserting (A.3) in (A.2) and esti-
mating A(Z) > A;, one derives

(A.3) Il >

A= Ai)Aig1 — )
Ait1 '
We finally note that A; ;+1(),) is dominated by A(Z) so that (A.1) follows. O

A= A@) 2 (12

For the proof of Lemma 2.2 the next lemma is required, which proves the mono-
tonicity of some trigonometric function.

Lemma A.2. Let o,a, 3,3 € R with
(A.4) O<d<a<g, O<B<[3<g, B<a and B<a

be given. Furthermore, define ¢(a, ) := B + arcsin(ysin(a — B3)). Then for all
v €0,1]

$(a, B) > ¢(&, )
holds.

Proof. It suffices to show a%—d)(a, B) > 0 and %qﬁ(a,ﬁ) > 0 for «, 0 satisfying (A.4).
The first derivative reads

0 B v cos(a — f3)
5‘&¢(a,ﬁ) - (1 _ 72 sinz(a _ ﬁ))l/z

while the second derivative is given by

>0,

a 2 cos?(a — 12
ap 1 —~2sin’(a — )
Since 1 > 42, we obtain the required result. O

APPENDIX B. AN INTERLACE LEMMA ON RITZ VALUES

The next lemma, which generalizes Cauchy’s interlace theorem [17] to Ritz val-
ues, is required for the proof of Theorem 3.3.

Lemma B.1. Let A € R™*™ and orthogonal V € R™*® with VTV = I € R** be
given. Let the eigenvalues of A be given by A\ < --- < X\, and the Ritz values of A
with respect to V by 01 < --- < 0,. Then it holds that

)\,;S@,;S)\,;+(n_s), 1=1,...,s.
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Proof. By the minmax characterization of the eigenvalues and of the Ritz values
we have

A;= min max Az)<  min max Az) =6;,

V:<R™ zeV;\{0} V;<span(V) mevl\{o}
where V; denotes an arbitrary subspace of dimension . It remains to show §,_; <
An—j for 5 =0,...,s5— 1. Hence we have to show that the column space span(V)
of V has an s — j dlmensmnal subspace Vs_; so that
B.1 max  Az) < Ap_j.
(B.1) el o) () < An—j
Therefore let x,,—sy1,. .. ,Zn be the eigenvectors of A corresponding to the s eigen-
values Ap_sq1, ... , An. We define j vectors y*~H1) ¢ R 1 =1,...,7,

y" T = (01, @pi41)s - (Vs Bnis1)) T
There are s — j orthogonal vectors a(!),... ,a*=7) € R® which are orthogonal to
each of the vectors y("~+1) ¢ Rs [ =1,...,j. We now construct s — j orthogonal
vectors in span(V)

3% .= Va® € span(V), k=1,...,8—4.
These vectors are elements of span{z1,... ,zp—;}, sincefor l=n—j+1,... ,n we

have

"), z)) Za( ) (vi, 1) = (a®,yO) = 0.

With the choice V,_; = span{ﬁ(l), ..., 9=}, equation (B.1) is obviously satisfied.
O
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