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DIRECTIONAL NEWTON METHODS IN n VARIABLES

YURI LEVIN AND ADI BEN-ISRAEL

ABSTRACT. Directional Newton methods for functions f of n variables are
shown to converge, under standard assumptions, to a solution of f(x) = 0. The
rate of convergence is quadratic, for near-gradient directions, and directions
along components of the gradient of f with maximal modulus. These methods
are applied to solving systems of equations without inversion of the Jacobian
matrix.

1. INTRODUCTION
Consider a single equation in n unknowns,
(1) fx)=0, or f(z1,z2,...,2,)=0.

Given a point x° where f is differentiable and a direction vector d, we restrict f to
the line

L:={x+td:teR},
where it is a function of one variable
F(t):= f(x°+td) .

The Newton iteration for F' at t® = 0 gives the next point

4. _FO)
F(0)
and the corresponding iteration for f is
1. 4,0 / (XO)
(2) X =X Vix0) d d

since F(0) = f(x°) and F'(0) is the directional derivative
F'(0) = f'(x°,d) = Vf(x°)-d.
Continuing in this fashion we get the iterations
k
Rl ok Tk — 01
(3) X i=x Vf(xk)'dkd , k=0,1,...,
that we call a directional Newton method. If n = 1, (3) is the classical Newton

method.
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For directions d* sufficiently close to the gradients V f(x*), Theorems 1-2 estab-
lish quadratic convergence of the method (3) under standard assumptions, namely

o the gradient of f not “too small” (see (14) and (23b)), and
e the second derivative (Hessian matrix) of f not “too large” (see (8a)).

A special case is the gradient method (28) studied in Corollary 1.
Another choice of d* is the unit vector e™*) where m(k) is the index of a
component of V f(x*) of maximal modulus

@) VIAm) = _max [T
For this choice of d¥, the directional Newton method (3) becomes

k+1 ._ k f(xk) m(k) _

(5) X"t i=x _——_—__Vf(xk)[m(k)]e , k=0,1,..
a method whose quadratic convergence is established in Theorem 3. This method
is suitable for parallel implementations.

These results are applied in § 4 to general systems of m equations in n unknowns.

MAPLE programs for these and related methods can be downloaded from [6].

Notation: We use the Euclidean norm || x||, and the corresponding matrix norm
|| All, except in § 3 where the co-norm is used for vectors and matrices, denoted by
[ %]loo and || A||oo respectively.

The angle between two vectors u,v € R™ is denoted Z(u, v) and given by

(6) Z(u,v) = arccos (W) .

2. GRADIENT AND NEAR GRADIENT METHODS

)

In this section we study the convergence of the directional Newton method (3),
along gradient and near gradient directions. The proofs use standard arguments
(see, e.g., [8, Chapter 7).

Theorem 1. Let f: R™ — R be differentiable, let x0 be a point where

F)#£0, Vi) #0,
let d° € R™ be such that |d°||=1 and let

. f(x°) :
7 SR/ FOR
(7b) x! = x"+h°.

Consider the ball
Xo = {x:[lx—x| < 0|}
and assume that f € C?[Xo) and

(8a) sup If @) = M,
(8b) |VFx)-d° 2 > 2| f(x°)| M,

where f" is the Hessian matriz of f and || f | is its matriz norm corresponding to
the Euclidean norm.
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Consider the sequence {x*:i=1,2,...} defined recursively by

(9a) x* = x'+ht,
i f(x) i
(9b) where h* := Vi) @ d',

d® € R™ is such that ||d*||=1 and
(10) L@, V) < £(dL VD), i=0,1,... .

Then:

(a) Allx* lie in X,.
(b) The sequence {x"} converges, as i — 00, to a point x* € Xo that is a zero of

f-
(c) Moreover,t V f(x*) # 0 unless ||x* —x°|| = 2 ||h%]| .
(d) Further, fori=1,2,...,

M

11a UL | q————— 1< L
(11a) || I < g7 ! ||
(11b) [ x* — x| < —JVI——-—— | xt -2 .

2| Vf(x)-d* |
Remark. Since ||d*||= 1 for all 4, condition (10) is equivalent to

| Vi -dt ]| V) - d
VDI = IVEE)
These conditions state that the direction d* does not have to be precisely along

the gradient V f(x*) (the most common choice). Small perturbations in the angle
Z(d?, V f(x%)) are allowed, if they do not increase with 3.

(12) i=0,1,....

Proof.

Part 1. Proof that L 1 0
(13) IV = 5 IV
We rewrite condition (8b) as

(14) [Vf(x)-d°| > 2||b°|| M.
Each component of f~ (x)dx is an exact 1-form, and by [4, Theorem 6.1],
VG0 - V) = [ f (ax.

Therefore, by (8a),

(15) IVf(x) = V) < M [x-x"|

~ !The example n = 1, f(z) = &2 , zp = 1 illustrates the case | x* —x? | = 2 | h® ||
and Vf(x*) = 0.
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for all x € Xy. In particular, for x!,

IVF(x!) = Vi) M ||x! =x°|| = M %]

IN

< 5 IVI6O) ), by (14,

(16) < S IVi@o)l, since )= 1.

SIVAE 2 IV - 976 - VA

> VSO —5 VA, by (16),
= S IV76)] , proving (13)

Part 2. Proof that 1

(172) 6| < )

(1) Vi) -] = 2 nt | M,

(17e) and W' < 2 w0

First we prove that °

(18) fot) = [ = 20f (ax,

using integration by parts:

1

[ =0 =~ =) D) + £ - 1)
= b VIO + f(x!) - f(x7)
- AU (@ V) + ) - 1)
(Vf(x)-d%)
= f(x'), by (7a).
Next we prove (17a) by integrating (18) using a variable ¢ defined by x = x° + th?:
Lxtex=x'—x"—th®=h% —th® = (1 —t)h® |, dx =% .
Thus (18) becomes .
Fxb) = / (1— B0 £ (x° + thO)hO ds .
0

Since 1 —t > 0, it follows that

| F(x1) |

IN

1 0y[2 .
/()(1—1&)'—'5}%&-10 (x%+th®)d°dt,

Mf(x°)?
2[Vf(x)-doJ?

= % |h®||2 M , by (7a), proving (17a) .

IN

1d°]*, by (8a),
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For h! given by (9b) we have

= IV|f{>(:1{)l)-lil| = |é‘ll2:1|)|2.fjwll , by (17a) ,
)

< Tor v 0

(19) < I_%l%(% by (13).

||2gf|(|>?11)|||| = |v2;c\(4x|1|)h.l(!1| , since [|d" =1,

= |Vf(x1)2.]\§12 |”|}§J|c|zxo) wol by (19),
< ot T by ),
= %%,by (13),

_ 2M [|h°f| \* _
B (W) <1, by (14) , proving (17b) .

From (19) we also get

Il oL 2 [0 | M ) <

1
w1 < 2 \[vre0-a) <2

Part 3. Proof of claims (a) and (b).
It follows from (17c) that

, by (14), proving (17c) .

1
I =<' = (b [ < 5 [

showing that x? € Xo. Further, the ball
Xi = {elx— 2l < )

is contained in Xy. The inequality (17b) shows that the hypotheses of our theorem
remain true if we replace x° and h® by x! and h', respectively. The same argument
can be repeated for all x* and h* given by (9) i = 0,1,... . The following analogs
of (17) therefore hold for all :

(200) 6] < S INE
(20) ViG) -] > 2w M,
(200) and B < 2w,

showing that the nested balls
Xi = {x:|x = x| <[|b*|}

have radii converging to zero. Therefore there is a unique point x* contained in all
the balls X;, and x* — x* since each x* is the center of the ball X; ;.
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We prove now that x* is a zero of f(x).

P < 5 I M by (208),

IN

(%) IR |2 M , by (20¢) .
f(x*) = 0.

Part 4. Proof of claim (c).
We prove that V f(x*) # 0 except if x* is diametrically opposite to x°. For any
x € Xy we have, by (15),

IVF(x) = V)< M x—-x| < 2M || || .
If x is not diametrically opposite to x°, i.e. if ||x — x| < 2 ||h?||, then
IVFx) = V)< 2M |0°] < [V,
or
IVFE N > IVf(x%) = V)

showing that Vf(x) # O.
Part 5. Proof of claim (d).
The inequality (11a) is equivalent to

(21) | bt < %,izm,....
Indeed,
xb i—12
”hi ”= |f( )l < M ”h ” , by (203,) .

|V -adt| = 2| Vf(x)-d|
To prove (11b), we note
Ix* = x| < x™ =% = |0,

since x**1 is the center of the ball X; of radius || h?||, x* is on the boundary of X;
and x* is in X;. Then (11b) follows from (11a). O

Lemma 1. If f : R™ — R is differentiable for all x in a convex region Xo € R7,
and if there exists a constant M such that

(222) 19560 ~ VI < M lx -yl ¥y € Xo,
then
(2b) |60~ F(¥) - V) -3 | S 5 Ix -yl Vxy € Xo.

Proof. Follows from [10, Lemma 5.3.1]. O

Remark. The Lipschitz bound M in (22a) can be used in (8a) if f is twice differ-
entiable.
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Theorem 2 (Quadratic convergence of the directional Newton method). Let the
assumptions of Theorem 1 hold, and in addition assume that there exist positive
constants L, M such that

(23a) IVix) = VIO < Mx-yl, VxyeXo,

(23b) |Vi)-d| > 7,YxeXo, deR", [ld]=1,
0

(23¢) and q = ﬂ;‘_h_J < 1.

Then

(24) Ix* — xi| < |hO 1?:2;7, i=1,2,....

Note: Since 0 < ¢ < 1, the inequalities (24) show that the directional Newton
method is at least quadratically convergent.

Proof. By Theorem 1, part (a), all iterates x* lie in Xj.
| f(x) |
| Vf(x) - d? |
L1 FG) |, by (230),
LI f(x) = fxh) = Vi) - (x" = x|,

S = x|

IN

Il

since
FOEH) + VA (6 - %) = 0
follows by multiplying both sides of

xt—xl= _—__Vf(ig)—{i)l-)di—l di=! with Vf(xh.
(25) et —xi < B2 - by (220)
We prove by induction that
(26) %+ — x| < [BO] ¢, i=0,1,... .
By definition this inequality holds for ¢ = 0. Assume it is correct for ¢ — 1.
At < B P by (25),
LM

< =5 I ¢, by (26) fori—1,

= ”ho I q2i—1 , proving (26) for 7 .
For m > n we therefore have
™ =P < =X T X - xT
< ) @ T A4+ (@) 4+ ()Y,
by (26) ,
1RO ¢t (1+¢* + (@) + ),
IB°) ¢ ~*
1—¢*"

IA
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lim [|x™ — x"|=||x* — x™| < M proving (24)
Moo = 1_ q2n ) .
O

The main special case of Theorem 1 is the gradient method discussed next.
Corollary 1. Fori=0,1,... define the direction d* and step h* by

‘ Vf(x")
(27a) d = =,

IVl

: f(x) :

(27b) h* = —— " -Vfx"),
NI

and let f,x°, Xo, M, L, q be as in Theorems 1-2. Then the iterations
28 x't1 :=x"——i(}z.)——foi ,1=0,1,...,
(25) wiGe /)
satisfy all conclusions of Theorems 1-2. (]

3. NEWTON DIRECTIONS ALONG MAXIMAL MODULUS COMPONENTS
OF THE GRADIENT

A directional Newton method not covered by Theorem 1 is where the direction
d in each iteration is chosen as the unit vector along the maximal absolute value
|3%%|. However, the proof of Theorem 1 applies here, with small changes.

Theorem 3. Let f: R® — R be differentiable, and let x° be a point where

fx%)#0, VI’ #0.
Let m(0) be an index such that

, af of
0y . 0y _ 9f /0
|fo(x7)] = oo (x I (x")
and define the vectors h® and x* by
f(x°)
TV 0N ) k = 0 )
(29a) W = ey 0 F O
0 , k#m(0),

(29b) x! = x"+hn°.
Consider the interval

Xo = {x:]x = x!loo <||h® [l }
and assume that f € C%[Xo], and

(30a) sup || f (X)[lw = M,
x€Xo
af(x) |” 0
(30D) Bomey | 2 2 fx) [ M.

Define sequences {x'}, {h‘} recursively as follows. Let m(i) be an index of the
maximal modulus of %(a—;’;;),

of

6$m(1,)

FHESIES (x')| =
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| I I
(31a) k] = { e e
O b) k #m(i)?
(31b) x* = x4 ht.
Then

(a) Allx* lie in Xo.

(b) The sequence {x'} converges, as i — oo, to a point x* € Xo that is a zero of
f

(c) Moreover, Vf(x*) # 0 unless ||x* = x°||oo = 2 |00 -

(d) Further, fori=1,2,...,

. ‘ M o
32a, x Tt xt S — S
(32b) (S| [l = x* 12,

S 2V ) e

Proof. The proof of Theorem 1 can be adapted here, by replacing each occurrence
of | V£(x*)-d*| by || VF(x?) ||co, and by using the co—norm instead of the Euclidean
norm. For example, condition (30b) is analogous to (8b). It can be rewritten as

(33) IVf(x%)lloo> 2 [ 0°[loo M,
the analog of (14), etc. O

The convergence rate of method (5) is quadratic under conditions analogous to
Theorem 2. The proof is analogous to that of Theorem 2.

4. SYSTEMS OF EQUATIONS

Consider an arbitrary system of m equations in n unknowns:

(34) f(x) = 0, or fi(z1,22,...,2,) = 0,i=1,...,m.
If m = n, the usual Newton method for solving (34) uses the iterations
(35) xFL = P (xR THE(xR) , k=0,1,...,

where the Jacobian matrix

Je(x) = (ga{; )

is assumed nonsingular. If Jg(x) is singular, or if m # n, the Moore-Penrose inverse
can be used in (35),

(36) xFH = xkb — p(xP) (xR, k=0,1,...

(see [1]). Note that the gradient method (28) is a special case of (36), corresponding
tom=1.
Alternatively, several authors (e.g., [3, Vol II, p. 165], [9, p. 362]) suggest

minimizing the sum of squares Y,  f2(x), using a suitable method, such as the
i=1,...,m
steepest descent method. Following this idea, consider the single equation,

(37) F(x)= Y fix)=0
1=1,...,m
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that is equivalent to the system (34), in the sense of having the same solutions.
There are now two (Newton) approaches to solving (34) or (37):

Approach 1: Apply a vector Newton method, e.g., (35) or (36), to the system
(34).
Approach 2: Apply a directional Newton method, e.g., (28) or (5), to equation
(37).
An advantage of Approach 2 is that it avoids the inversion of the Jacobian matrix,
as in (35) or (36).
Another advantage is suitability for parallel implementation.
Disadvantages of Approach 2 include slower convergence. Indeed, the gradient
of (37) is

_2 Z fz sz )

and as the values f;(x) get close to zero, the condition (14) may no longer hold.
Thus quadratic convergence is lost.

Example 1. Another example of what can go wrong in Approach 2 is illustrated
by the system of n equations in n unknowns,

fl(x) = 1—,”1,‘1 = 0,
fi(x) = 10(zi_1—x2) =0,i=2,...,n,

that is solved quickly by the Newton method (35), for all n that can be handled.
However, the sum of squares ) f? is the notorious Rosenbrock function

(38) Rp(x) i= (1—21)? +100 ¥ _(zi-1—12})?,
i=2
for which no directional Newton method works well, even for small n. O

To salvage Approach 2 we can apply, in iteration k, the Newton method to the
modified function
F(x)

(39) Tx—xF1]@

, for suitably chosen o > 0,

to get a next point x**1 (see, e.g., [2]). The denominator in (39) creates a barrier
at x*~1, and the resulting method may be called a Newton barrier method.
The modified function (39) is “steeper” than the original F', making it more
likely to satisfy (14). However, the modified function is less likely to satisfy the
second derivative condition (8a). The choice of o will be studied elsewhere.

Example 2 (Intersection of surfaces). In computer graphics it is often required to
compute and display the intersection C := S; NS, of two surfaces S;,Ss in R3. The
surfaces in question may be represented explicitly,

S = {(:anaz) 2= f(xay)} y Spi= {(:anaz) tz zg(m,y)},

in which case their intersection C is the set of points r = (z,y, 2) satisfying

(40) i f(fIJ, y) = g(:c,y)

and then z := f(z,y). If the surfaces are given implicitly,
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then the intersection points satisfy
(41) F(z,y,2) =0, G(z,y,2) =0.

The so-called marching methods compute a starting solution r®=(z%,1%, 2%) €
C and from it compute other intersection points sufficiently close to each other to
enable displaying the curve C (see [7]).

A starting solution requires solving the single equation (40) in 2 unknowns, or
the system (41) of 2 equations in 3 unknowns. Either way, the Newton method
(35) cannot be used. The remaining alternatives include the method (36) using the
generalized inverse of the Jacobian matrix (see [1], [7]), or the directional Newton
methods of this paper.

For any point r* = (z*,y*, 2*) € C, a next point r
or (41) with an additional equation, such as

k+1 is found by solving (40)
z =2+ A, A sufficiently small ,

to give movement in the z direction. One can solve (in parallel) for movements in
the y and z directions, then select the point closest to r¥. O

Example 3 (Complex roots of nonanalytic functions). If f(z) is analytic, its roots
z = x + iy can be approximated by the complex Newton method

k
AR S L ) B
(42) z =2z —f—l(;;k—),k—o,].,...,
or equivalently, by solving the system of 2 equations in 2 unknowns

If f is not analytic, then (42) cannot be used; however the system (43) may still
be solved by the real Newton method (35). If f is a nonanalytic function of several

complex variables, say f(z1,21, 22,22, - - - , 2m, Zm), then (43) is a system of 2 equa-

tions in 2m variables, and its surrogate equation R2f + 32 f = 0 can be solved by

the above directional Newton methods. O
ACKNOWLEDGMENT

We thank Professor Arkadi Nemirovski and the referees for their help and con-
structive suggestions.

REFERENCES

[1] A. Ben-Israel, A Newton-Raphon method for the solution of sytems of equations, J. Math.
Anal. Appl. 15(1966), 243-252. MR 34:5273

(2] A. Ben-Israel, Newton’s method with modified functions, Contemp. Math. 204(1997), 39-50.
MR 98¢:65080

[3] L.S. Berezin and N.P. Zhidkov, Computing Methods, Pergamon Press, 1965. MR 30:4372

[4] W. Fleming, Functions of Several Variables, 2nd Edition, Springer, 1977. MR 54:10514

[5] C.-E. Froberg, Numerical Mathematics: Theory and Computer Applications, Benjamin, 1985.
MR 86h:65001

[6] Y. Levin and A. Ben-Israel, MAPLE programs for directional Newton methods are available
at: ftp://rutcor.rutgers.edu/pub/bisrael/Newton-Dir.mws.

[7] G. Lukécs, The generalized inverse matriz and the surface-surface intersection problem, pp.
167-185 in Theory and Practice of Geometric Modeling (W. Strasser and H.-P. Seidel, edi-
tors), Springer-Verlag, 1989. MR 91f:65041

[8] A.M. Ostrowski, Solution of Equations in Fuclidean and Banach Spaces, 3rd Edition, Aca-
demic Press, 1973. MR 50:11760



262 YURI LEVIN AND ADI BEN-ISRAEL

[9] A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis, 2nd edition, McGraw-
Hill, 1978. MR 58:13599

[10] J. Stoer and K. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1976. MR
83d:65002

RUTCOR~-RUTGERS CENTER FOR OPERATIONS RESEARCH, RUTGERS UNIVERSITY, 640 BARTHOLOMEW
RD, PiscaTaAwAYy, NEwW JERSEY 08854-8003
E-mail address: ylevin@rutcor.rutgers.edu

RUTCOR~-RUTGERS CENTER FOR OPERATIONS RESEARCH, RUTGERS UNIVERSITY, 640 BARTHOLOMEW
RD, PiscaTaway, NEw JERSEY 08854-8003
E-mail address: bisrael@rutcor.rutgers.edu



