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AUTOMATIC REDUCTION OF ELLIPTIC INTEGRALS
USING CARLSON’S RELATIONS

NORMAN GRAY

ABSTRACT. In a series of papers, B. C. Carlson produced tables of elliptic
integrals, evaluating them in terms of easily computed symmetrical functions,
using a group of multivariate recurrence relations. These relations are, how-
ever, cumbersome to use by hand and, in the absence of a specific reductive
algorithm, difficult to use with computer algebra. This paper presents such
an algorithm, guaranteed to reduce a general elliptic integral to a set of fun-
damental ones.

1. INTRODUCTION

An elliptic integral is an integral of the form

/R(t, s(t)) dt,

where s? is a third- or fourth-order polynomial in ¢, with simple zeros, and R(t, s)
is a rational function of its arguments, containing at least one odd power of s. The
evaluation and reduction of such integrals has a long history, reviewed in [Car98].

In a series of papers, Carlson discussed such integrals [Car87, Car88, Car89,
Car91], written in the form

(1) [p] = [p1,p2,---,PN] = / (a1 4 byt)Pr/2 .. (ay + byt)PN/2 dt,
y

where p1,...,pny are nonzero integers, the integrand is real, and the integral is
assumed to be well defined. If three or four of the p; are odd, then this integral
is elliptic, and may be reduced either to the usual Legendre forms, or to the more
symmetric forms

) Relewn) = 3 [ e+l
0
@) Riewznn) = 5 [ lera)rner a0
(2C) RC(xay) = RF(x’y,y)a
(2d) Rp(z,y,2) = Ry(z,y,z2).

The reduction to Legendre form is usually done using tables such as [GR94]. Instead
of this, reduction to Carlson’s integrals has the advantages described in [Car87]: the
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interval of integration need not begin or end at a branch point of the integrand, and
the symmetry of Carlson’s integrals eliminates many cases. As well, the integrals
above can be numerically evaluated very efficiently.

If a given integral is not in Carlson’s tables, it can be reduced to one that
is, or reduced completely to the fundamental integrals, using recurrence relations.
Unlike the reduction to Legendre form, this reduction is analytically simple but
algebraically overpowering, especially in the case of higher values of p;: this is char-
acteristic of a problem which could be usefully attacked using computer algebra,
as long as there is some algorithm to automatically determine which sequence of
relations is to be used. I present such an algorithm, which is guaranteed to con-
verge to a sum of fundamental integrals. These integrals are still in the form in (1).
In a large number of important cases, however (N < 4, at most two factors com-
plex [Car91]), these integrals may be reduced analytically, as mentioned above (2).
It is the aim of this present work to reduce to as small a size as possible the set of
irreducible integrals requiring further analytic or numerical work.

There have been previous schemes for performing such reductions automatically.
[NP76] describes several such schemes, and the very serious problems from which
they suffer, such as a need for expert intervention or intractable intermediate expres-
sion swell. In [Car99] (and summarised in [Car98]), Carlson describes an algorithm
which will reduce elliptic integrals in stages, first performing an explicit partial-
fraction decomposition to reduce a general elliptic integral to a sum of simpler ones,
then using a one-parameter recurrence relation to reduce these to basic ones, and
finally translating these to a small set of fundamental ones which can be evaluated
efficiently (namely the Ry, Rp, Rp and R¢ described above). This is an algorithm
which reduces the integrals in a small number of elaborate steps, which is different
from the algorithm in the present paper, which uses a potentially large number of
simple steps, although the simple expedient of caching intermediate results dramat-
ically reduces the number of steps required (see Section 4). The present algorithm
uses only the multivariate recurrence relations described in [Car87, Car88], which
means it has the same domain of validity as those relations.

2. THE ALGORITHM

2.1. Notation. Throughout the following, I assume that the integrals have m > 1
odd powers, and n > 0 even ones, where m +n = N. I do not assume that m is
only 3 or 4, or that the a; and b; are real.

We assume x > y and a; + bt >0,y <t <z, fori=1,...,N. Define

(3) di]‘ = aibj - ajbi

and

(4) Xi = (a; + bz) /2, Y; = (ai + biy)/2.
We may then define

(5) A(pl’apN)-:—X{)ngfN—anYﬁN

If one limit of integration is a branch point of the integrand, then X; or Y; is
zero for some value of ¢ < m. If both limits of integration are branch points, the
elliptic integral is called complete.

This notation is defined in [Car88], but unlike that paper, I shall assume, for the
sake of simplicity, that b; # 0; an integral with m = 4, say, and one b; = 0, is really
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an integral with m = 3. I shall also assume that d;; # 0; since the relation d;; = 0
is equivalent to proportionality of a; + b;t and a; + b;t, an integral with d;; = 0
should be taken to be an integral with one lower m.

Carlson provides four recurrence relations to aid in the reduction to fundamental
integrals. These are as follows.

Let e; be an N-tuple with 1 in the ith place and zeros elsewhere, so that [p+2e;] =

[pl +2’p21 ce apN]

(A9) (p1+ -+ +py +2)bilpl =Y pjdjilp — 2¢;] + 2A(p + 2e,).
J#i

The next two relations are equivalent to each other:

(Bij) dijlp] = bjlp + 2¢:] = bilp + 2¢5],

(Clj) b][p] = bi[p—Qei +26j] +d¢j[p—26¢].

Finally

(D'l]k?) dij[p] = dkj[p + 2e; — 2€k:] + dik[p + 2e; — 26k].

- To these we add two further derived ones. The first is a rearrangement of (Ad):
(p; +2)djslp] = (p1 + - + DN + 4)bi[p + 2¢;] — 2A(p + 2¢; + 2¢;)
(A45) = > prdrilp + 2e; — 2ex).
—y

The second is obtained by using (Cjk) on all but one of the terms in the sum in

(Ag):
(ACij) (p1+---+pN+2)bilp| = pjdjlp — 2¢] + 2A(p + 2¢;)

+ Z pkl;dm (b][p - 26]'] + djk[p — 2ep, — 26j]).
ki F
Note that all of these relations involve the powers of p; being raised or lowered in
increments of two.
Carlson defined four fundamental integrals in the quartic case (see Section 2.2),
and three further ones in the cubic case. We modify this set, for both notational

convenience and generality, to the case where there are m odd, and n even powers.
Define

(6a) mnCo = [+1,+1,...,+1,0,...,0],
N——

m n

(6b) mnC1 = [~1,+1,...,+1,0,...,0],

(6¢) mnCON = [+1,+1,...,41,0,...,0,-2],

and, in general, ,,,C; (1 <@ < N) is 1, Co With (p; — p; — 2). Since trailing zero

powers make no difference, all the integrals ,,,C;, with n > i —m, are equivalent.
Define a target vector

(7) mnT = (+3,..,+5,-4,...,-3),

~

~~
m n
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where each component of ,,,7 is one-half less than the corresponding component
of 1nCo (it could be any amount strictly between zero and one), and define ¢; =
p; — 7 (1 < i < N). Call a power p; “high” if ¢, > 1 and “low” if ¢, < —1;
adding two to a low p;, and subtracting two from a high p;, will both reduce |e;|.
Thus, for example, p; = —1 is low, but p; = +1 is neither high nor low (there
is no significance to the definitions of high and low relying on strict inequalities:
since p1 to pm, are odd and p,41 to pn are even integers by hypothesis, €; can never
be integer and, a fortiori, never equal to either —1 or +1). Define oy = Zfil €]
With these definitions, term a recurrence relation “applicable” if, when it is applied,
it produces integrals which are closer to the fundamental integrals in (6), in the
sense that the parameter oy for each of the resultant integrals is strictly less (by a
finite amount) than that for the original integral.

By enlarging the set of recurrence relations above, we have obtained a set which
is such that any integral [p] is either one of the fundamental integrals ,,,C;, or has
at least one relation applicable. The algorithm consists of identifying an applicable
relation for all possible values of p. Using this algorithm, every integral [p] may
be mechanically reduced towards zero difference on. Since oy decreases mono-
tonically, and the step is finite, and on > 0 by construction, the procedure must
terminate; at that point, there will be no applicable relations, and all the remaining
integrals will be fundamental ones.

2.2. Alternative target: reduction to Carlson’s integrals. The fundamental
integrals defined above are not the same as those defined by Carlson. At the expense
of some symmetry, we may define

(8) mn 6E[+1,—1,...,—1,0,...,0],
(9) m’nT/E(+%a_%a""—%a_%,”'a_%)’

m n

with corresponding definitions for ,,,,C. Thus the fundamental integrals in [Car88]
can be written as

(10) I = 40Cy, Iy = 4 Cs, I = 40y, I = 40Cy;
and the integrals in [Car89] are
(11) I = 30C1, Ipe = 30Cy, I3. = 31Cy,

where all of these integrals can be written in terms of the integrals of (2). There
is no real extension beyond Carlson’s set here, since, for example, 40C% could be
transformed either directly into Iy = 4C} by a suitable permutation of the N-
tuples a, b and p, or into a sum of Carlson’s integrals through manual use of the
recurrence relations.

One does not have complete freedom to choose fundamental integrals and target;
see the discussion below the table in subsection 2.3

2.3. Reducing integrals. For each [p] calculate ¢(p), and count the number of
high and low coefficients, according to the above definitions.

Define s(e) = {s; : €5, > €5, > -+ > €55} If two or more of the ¢; are
equal, there will be more than one set {s;} which satisfies this condition; these are,
however, equivalent, and we may select one set arbitrarily.

For each of the integrals which is not a fundamental one, select the first case
in the table which matches the pattern of high and low powers, and apply the
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indicated recurrence relation. Blank entries indicate that there is no corresponding
constraint.

case high low constraint use

1 >N-1 SV py £ =2 (Asy)

2a >N-2 1 Doy # —2 (A'sn-18N)

2b 1 Dsy F —2, €5y < —2 (A'sy_15N)
3 >1 > 2 (Dsy—15n51)
4 >1 >1 (Cs1sn)
5 >2 (Bsy-15N)
6 >1 0 SV py £ —2 (ACspys1)

Case 5 will be the first match only in the rather trivial case when m = 2. There
is no match for the cases where there is only one low index sy, which is such that
0 > €5y, > —2 or ps,, = —2; however such an integral is deemed fundamental by
the definition above (it will be the integral ,,,,Cs,, ).

The above is valid for a range of choices of fundamental integral ,,,C; and cor-
responding ,,,,,7. However, one does not have complete freedom to choose funda-
mental integrals and targets. For certain choices, it would be possible to construct
cases where none of the above cases matched. For example, p = [3,3, 3, —11] does
not match cases 1 or 6; if the target were chosen sufficiently low that this had no
low indexes, it would match no cases at all. Similarly, p = [1,1, —1] does not match
any case, for the target defined in (7) (since e = —2 > —2), but this is a funda-
mental integral by the definition of ,,,C; above. Finally, p = [1, -1, -1, —1] does
not match any case for the target 4907’ defined in (9), and this case is unproblematic
only because it does match the corresponding fundamental integral 40C}.

In each of the expressions, the relation would fail if the coefficient on the left-
hand side were zero. As noted at the beginning of subsection 2.1, the coefficients d;;
and b; are assumed nonzero. In (Ai), (A'ij) and (ACij) the coefficient depends on
the set p;, and this is reflected in the extra conditions on the p; in those cases.

2.4. Evaluation of the function A(p). In the case where either endpoint of the
integration is a branch point, then some X; or Y; will be zero, and A(p) will be
uridefined if the corresponding p; < 0. '
To help deal with such undefined functions, and also to minimise the number
of A functions we must deal with, we may use the two further recurrence relations:

(AFij) di; A(p) = b; A(p + 2e;) — b; A(p + 2¢;),
(AF'i5) b;A(p) = djiA(p - 26]‘) + bjA(p —2ej + 2¢e;).
The first is (4.8) of [Car88|, and the second is obtained by replacing p by p — 2e;
and relabelling.
To use these, define a target y74 = (%, A %), and take any function A to be
fundamental if it has at most one low index. We may add two further cases:
case high low use
7 Z 1 Z 1 (AFlstl)
8 _>_ 2 (AFSN_lsN)
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This procedure will not remove undefined A(p), but will instead transform them
into a standard form, in which they either will cancel, or can be dealt with individ-
ually.

3. EXAMPLE

To illustrate the algorithm in action, I list the sequence of recurrence relations
for the integral

(0.3+0.3t)(0.5+0.1¢) 4t
12 I=
(12) /05\/ 0.7 —0.1¢ (0.9 — 0.3t)2

(compare [Car99, (6.16)]). This has m = 3, n = 1, a = [0.3,0.5,0.7,0.9], b =
[0.3,0.1,—0.1,—0.3] and p = [1,1,—1,—4]. In the first step, with target 3;7 as
in (7), we find € = [1/2,1/2,-3/2,-7/2], s = [1,2,3,4] and 04 = 6; this ¢ has no
indexes high, and two low, and so matches case 5, (B34), which reduces the integral
to a sum of p = [1,1,1,—4] and p = [1,1, —1, —2]. The sequence continues through
(A’34), (AF’43), (B14), (B24) and (B34) to finish with

(13) I = —2.083330C; — 0.520833 30C2 + 0.6944 30C3 — 2.604166 31 Cs
+6.944 A(1,1,1) + 8.33 A(1, 1,1, —2) = 6.24309544

(where the dot accent indicates a repeated decimal). Choosing instead the tar-
get 317/, as in subsection 2.2, we find ¢ = [1/2,5/2,1/2,-7/2], s = [2,1,3,4],
04 = 7; this has one high and one low index, and matches case 2a, (A’34), reducing
the integral to a sum of p = [1,1,-1,-2], p = [-1,1,-1,-2], p = [1,-1,—-1,-2]
and A(1,1,1, —2). The sequence continues with (C24) and (D142), to finish with
(14)

I =—0.3330C) —0.138830C) — 0.8333:C + 8.33 A(1,1,1, —2) = 6.24309544.

4. NUMERICAL CHECKS AND EFFICIENCY CONSIDERATIONS

The algorithm has been checked by implementing it in software, and then au-
tomatically reducing all of the distinct integrals with indexes within four of 35Cp,
41Co, and 51Cy, and evaluating the results numerically. These expressions match
to high accuracy.

As is typical of recursive algorithms such as this, there is a danger of the number
of intermediate terms becoming unmanageable. To illustrate the extent to which
this is a problem, and the degree to which it is solvable, I summarise, in Figure 1,
the results of automatically reducing integrals with m = 3 and n < 2, and values
of o ranging from o3 = % (p =[1,1,1]) to o5 = 22.5 (p = [5,5,5,4,4]). For each
distinct value of o which appeared, the figure shows the maximum number of times
the algorithm had to invoke one or other recurrence relation, in order to completely
reduce the initial integral to fundamental ones. As can be seen, this maximum has
a roughly exponential dependence on an integral’s initial distance from the target.
However, the algorithm is such that it benefits massively from an implementation
which caches results, so that no intermediate integral has to be reduced twice.
This produces the second curve in Figure 1; in the case of p = [5,5,5,4,4], the
number of relations invoked falls from 746046 to just 299, an improvement of over
three orders of magnitude. If we improve the caching by reusing the results of
reductions of other integrals, we can lower the number of invocations still more:
in the admittedly extreme case where we reduce all the above integrals in order
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Recurrence relations required: simple, cache, cumulative cache
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FIGURE 1. Maximum number of invocations of recurrence re-
lations required to completely reduce integrals between p =
[5,5,5,4,4] and p = [-3,—3,—3, —4, —4], for the naive algorithm,
a variant which caches intermediate results for each reduction, and
a further variant which cumulatively caches results. The logarithm
of the number is plotted against the distance ¢ from the target as
defined in (7). The number of invocations required can be mas-
sively reduced by an implementation which caches results.

from low to high o, we find the third curve of Figure 1, where successive high-o
integrals need only tens of extra calls of the recurrence relations. The total number
of recurrence relations employed in the three cases was 2 244 836, 21 234 and 2 880
respectively.
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