MATHEMATICS OF COMPUTATION

Volume 71, Number 237, Pages 407-413

S 0025-5718(00)01294-1

Article electronically published on October 17, 2000

SPARSE SQUARES OF POLYNOMIALS

JOHN ABBOTT

ABSTRACT. We answer a question left open in an article of Coppersmith and
Davenport which proved the existence of polynomials whose powers are sparse,
and in particular polynomials whose squares are sparse (i.e., the square has
fewer terms than the original polynomial). They exhibit some polynomials of
degree 12 having sparse squares, and ask whether there are any lower degree
complete polynomials with this property. We answer their question negatively
by reporting that no polynomial of degree less than 12 has a sparse square,
and explain how the substantial computation was effected using the system
CoCoA.

1. INTRODUCTION

A polynomial has a sparse square if the number of terms in the square is strictly
smaller than the number of terms in the polynomial itself. The problem we tackle
in this article is that of finding the lowest degree in which there are polynomials
with sparse squares.

The general question of existence of polynomials (in characteristic 0) with sparse
powers was addressed and resolved in [2] where some remarkable theorems are
proved covering both the case which interests us as well as several generalizations.
They report that the problem had already attracted prior attention from several
authors, including Erdos, Freud, Rényi, Schinzel and Verdenius. Furthermore, they
gave explicitly some new polynomials with sparse squares of lower degree than any
previously known example. Their polynomials are

(14 2z — 222 + 42® — 102 + 502° + 1252°)(1 + ax®),

where « can take any one of eight distinct values, of which six are rational; the
rational values are —110, —253, —55/2 and 15625 divided by each of these.

We answer one of the questions they left open, namely whether there is a still
lower degree polynomial having a sparse square. They correctly observed that
the answer can be found merely by performing a finite computation; the difficulty
lies in the scale of this computation which, at the time they wrote their article,
was intractably large. Since then, significant advances have been made both in
computer hardware and in the algorithms/programs used for calculation. These
advances, coupled with careful exploitation of the symmetries of the problem, are
sufficient to bring the task within reach.

We describe how we undertook the computation using the system CoCoA (3]
which offered a convenient environment in which to manage and effect the calcu-
lation of numerous Grébner bases, an essential step of our solution. Note that the

Received by the editor February 1, 2000.
2000 Mathematics Subject Classification. Primary 11C04; Secondary 12Y05.

(©2000 American Mathematical Society
407



408 J. ABBOTT

results in [2] were for “complete” polynomials, i.e., of the form Z?:o a;z* where all
the a; are nonzero. In Section 4 we also consider “noncomplete” polynomials (i.e.,
where some of the a; may be zero). We conclude from our extensive calculations
that there is no polynomial of degree less than 12 (in characteristic 0) having a
sparse square.

The author would like to thank Professor Robbiano and the other members of
the CoCoA Team for their valuable help and suggestions.

2. ASSUMPTIONS AND NOTATION

We shall say that a polynomial f has a sparse square if the number of nonzero
coefficients (“the number of terms”) in f? is strictly smaller than the number of
terms in f. Our search will be for f € Q[x] having sparse squares, where Q is the
algebraic closure of the rationals.

The two following lemmas will be useful. Lemma 1 is the key to making the
search finite: it allows us to ascertain the existence of polynomials with sparse
squares by determining the solvability of one or more systems of polynomial equa-
tions. This latter we can do by means of Grobner bases [1]. Lemma 2 helps shorten
the search when we look for noncomplete polynomials in Section 4.

We shall say that a polynomial f = Z?:o a;x* has zero pattern Z to mean that
Z C{1,2,...,d—1} and a; = 0 & ¢ € Z. In particular, a complete polynomial
has zero pattern Z = (). Note that we exclude the indices 0 and d from Z, so f is
not divisible by x and its degree is d.

Lemma 1. Let d be a positive integer, and Z a zero pattern for a polynomial of
degree d. Let S = {0,1,...,d} \ Z, so the generic polynomial with zero pattern
Zis f = ZSES asx®, where the ags are nonzero variables, and its square is f? =
Z?io bjz?, where the b; are polynomials of degree at most 2 in Zlag,a1,. .. ,aq).
Then there is a polynomial with zero pattern Z having a sparse square if and only
if there is a subset of indices J C {0,1,2,...,2d} of cardinality at least |Z| +d+1
such that the polynomial system {b; : j € J} admits a solution with every a, being
nonzero.

Proof. Both directions are simple. O

Lemma 2. Any polynomial having a sparse square contains at least b terms.

Proof. A polynomial containing a single term has a square containing a single term.
A polynomial containing two terms has a square containing three. A polynomial
containing three or more terms has a square containing at least four terms. Let
f=aizh +asx® +--- + ai—12%-1 + a;z%, where the a; are nonzero, the d; are
in descending order, and ¢t > 3. Then

f2 = a%xz‘il + 2a1a2xd1+d2 4+ 2at_1atxdf—1+d‘ + afa:Qd‘

and these four terms do not vanish or cancel with other terms. As the square
contains at least four terms, a polynomial with a sparse square must have strictly
more than four. O

3. THE CASE OF COMPLETE POLYNOMIALS

We begin by studying the case of complete polynomials, as this is simpler to
describe. The noncomplete case will be addressed in the next section where the
ideas developed here will be extended.
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3.1. A large but finite search. We shall perform the search degree by degree.
Let d be the degree in which we shall seek a polynomial with a sparse square. The
generic complete polynomial of degree d is just f = Zf=0 a;x* with the a; being
nonzero unknowns. By Lemma 1 we know that a complete polynomial of degree d
exists if and only if there are nonzero values for the a; which annihilate {b; : j € J}
for some index set J of cardinality at least d 4+ 1. We choose to determine this by
iterating over all the subsets of {bg, b1, ... ,b2q} having cardinality d + 1, and for
each subset determining whether such nonzero values of the a; exist.

The Weak Nullstellensatz tells us that a system of polynomial equations is in-
soluble if and only if the associated ideal contains the element 1: here “insoluble”
means that there is no solution in the algebraic closure of the field generated by the
coefficients of the polynomials. All systems which we shall consider contain only
polynomials with integer coefficients, hence the Weak Nullstellensatz tells us about
solvability in @, the algebraic closure of the rationals. We can determine effectively
if an ideal contains 1 by computing a Grobner basis for it: the ideal contains 1 if
and only if the Grébner basis contains a constant (regardless of the term-ordering

chosen).
We now explain what has to be done in each iteration. Let the set of indices to be
considered this iteration be J = {j1,j2,... ,Jda+1}. It is not sufficient to determine

the solvability of the polynomial system {b; : j € J} since we must also include
a side condition to restrict the a; to being nonzero. This side condition can be
expressed in various ways, one of which is by including the equation z ]_[glzO a;—1=0
in the system, where z is a new indeterminate. The ideal associated to the system
is

d
I =1deal(bj,, by, bjarn 2 [ [as = 1).
=0

All that remains is to compute a Grébner basis of this ideal, and check whether it
contains a constant. Unfortunately such a direct approach is too costly.

3.2. Refinements. The search strategy outlined above needs considerable refine-
ment before the whole computation becomes tractable, most particularly the search
in degree 11. The calculation can be accelerated in two ways: by reducing the num-
ber of subsets to consider or by speeding up the processing for each subset. Our
ideas were guided by the suspicion that the ideal will almost always contain 1, thus
our efforts are concentrated on this particular case.

Symmetries. To shorten our search we exploit three symmetries which preserve the
number of terms in a polynomial and also in its square:

A. f— af: we can multiply the polynomial f by a nonzero number «;

B. f(z) — f(az): we can rescale the variable in f by a nonzero number «;

C. f(z) — 2%f(1/x): we can reverse the order of the coefficients in f.

Reducing the number of subsets. A moment’s consideration suffices to see that sub-
sets containing 0, 1, 2d — 1 or 2d can be discarded immediately as none of the
coefficients by = a2, by = 2apa1, bag—1 = 2aq-1a4 and bag = a2 can ever be zero
for nonzero a;. Furthermore, we can eliminate roughly half the remaining combi-
nations by using Symmetry C: we need to compute a Grébner basis for only one of
the subsets S and S’ = {2d — s : s € S}; though when S and S’ coincide we save
nothing.
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Example 1. When d = 11, if we did not use Symmetry C, then we would have
to consider 50388 = (233*) subsets: f2 has 23 coefficients but we ignore the four
indices 0, 1, 2d — 1 and 2d. To see how many we must consider if we exploit
Symmetry C, we need to know how often S and S’ coincide. They coincide only
when S is “palindromic”, so S must have six indices in between 2 and 10, and the
other six arranged as a “mirror image about 11”7 between 12 and 20; thus there
are 84 = () such subsets. Hence Symmetry C allows us to reduce the number of
subsets to try to 25236 = 3 ((%35*) +(2)), i.e., just slightly more than half.

Speeding up each subset. The cost of computing a Grobner basis generally increases
rapidly as the number of indeterminates involved increases, thus any way to get
rid of some indeterminates is potentially interesting. In fact, by exploiting Sym-
metries A and B we can reduce the number of indeterminates by two. We may
assume that ag and ag—1 are both equal to 1: firstly use Symmetry B to make the
coefficients of % and z?~! equal in f, and then use Symmetry A to reduce them
both to 1. For this problem there does not seem to be any other obvious way of
getting rid of further indeterminates.

One disadvantage of eliminating aq and a4z—1 as above is that the system of equa-
tions is no longer homogeneous, yet homogeneity is a valuable asset for Grobner
basis computations. Various ways of preserving homogeneity were tried experimen-
tally, but none proved to be as fast as replacing ag and ag—1 by 1.

Observe that the side condition (that the a; be nonzero) led us to include a single
polynomial of high degree in the system of equations to be solved, viz. z H?:o a; —
1. An alternative could be to include many degree 2 polynomials: z;a; — 1 for 4
running from 0 to d—2, but this involves using lots of extra indeterminates (namely
20, - - - 2d—2), and turned out to be much slower in practice.

Instead, a useful variation was to weaken the side condition so that just ag is re-
stricted to being nonzero; that is replacing 2 H?:o a; —1 =0 by simply zag—1 = 0.
This reduced computation time significantly, and in most cases this weaker condi-
tion was enough to prove insolubility. In those cases where the weaker condition
was insufficient to rule out solutions, we then returned to the full side condition.

Our final refinement arose from the observation that each time we compute a
Grobner basis we are seeking a solution to a system of d + 1 polynomials in d — 1
indeterminates, and typically we find that the system is insoluble. Since we have
only d—1 indeterminates, we would not generally expect to be able to solve a system
with more than d — 1 polynomials. Moreover, if we can prove that some d-tuple
of the polynomials b; is insoluble, then obviously any system containing that tuple
must also be insoluble. Thus, with a single Grébner basis computation we could
dispose of the d — 3 subsets (of cardinality d + 1) which contain that particular
d-tuple.

There remained the question of which d-tuples to select, and the answer hinged
on two matters: the first was how to cover “efficiently” (i.e., without too much
overlap) all the cases, and the second was that some d-tuples of polynomials led to
very costly Grobner basis computations. The solution adopted was to use a partial
cover of cheap d-tuples of polynomials, and then to handle the uncovered subsets
individually. Our measure of “cheapness” was derived empirically by studying the
behaviour in degrees 9 and 10. The earlier reduction to the case ag = ag-1 =1
means that the top few coeflicients, bog_o, bog—3, bag—q and baq—5, are simpler than
the others. The measure of cheapness is simply that subsets containing more of
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these four polynomials are cheaper, and, among those containing the same number
of these simple polynomials, the cheaper ones are those containing more polynomials
with higher indices.

The partial cover was determined using a simple greedy algorithm. At the outset
none of the subsets of cardinality d + 1 is marked as covered. First, we took those
d-tuples which covered d — 3 unmarked subsets, starting with the cheapest d-tuples.
As each d-tuple was selected, we marked as covered all the subsets containing it.
When there was no further tuple covering d—3 unmarked subsets, we then repeated
the process but for tuples covering only d — 4 unmarked subsets, and so on until
there was no d-tuple left which covered more than 2 subsets. At every stage,
however, the most expensive d-tuples were excluded from consideration. Those
subsets left unmarked at the end were tested individually. For example, in degree
11 we obtained a partial cover of about 3550 tuples which left about 3400 subsets
uncovered; these figures should be compared with the total number of subsets,
viz. about 25000 after exploiting Symmetry C.

Experimentally this approach worked well: only a small proportion of subsets
were left uncovered by the partial cover, and almost all d-tuples in the cover chosen
were quickly shown to be insoluble. A summary of times and number of Grébner
bases computed is given in Table 1 in Section 5. It should be noted that these times
are quite sensitive to seemingly small changes in the measure of “cheapness”.

A single Grobner basis. The vanishing of some subset of {bg,bs,...,bag—2} of
cardinality d + 1 is equivalent to the simultaneous vanishing of all products of
d — 3 of these b;. Based on this fact, a referee observed that the question could be
resolved by computing a Grobner basis of just a single ideal generated by (2;:33)
monomials in new symbols By, ..., Bag_2 together with the polynomials B; — b,
for 7 = 2,3,...,2d — 2, and the side condition. Computationally this approach
encounters difficulties even in degree 7: we stopped the computation after more

than 30 hours’ CPU when the memory space in use exceeded 350 megabytes.

4. THE CASE OF NONCOMPLETE POLYNOMIALS

In the previous section we considered only “complete” polynomials with sparse
squares. Similar techniques can be used to look for noncomplete polynomials, f,
with sparse squares. Previously we searched through various distributions of zeroes
amongst the coefficients of the square. Now we must search through distributions of
zeroes amongst the coefficients of both f itself and f2. As previously, we conducted
the search degree by degree. Most of the refinements we used before were adapted
to this case—a notable exception being the use of (partial) covers. The reversal
symmetry was used in two ways: to reduce the number zero patterns in f to be
checked, and when the zero pattern in f was invariant under reversal then, as
before, roughly half the zero patterns in f2 could be eliminated.

In the case of complete polynomials we observed that we could exclude all index
sets containing at least one of 0, 1, 2d—1, and 2d. This technique can be generalized
for noncomplete polynomials. We assume that the polynomial has a prescribed
zero pattern, i.e., the polynomial is of the form f = 7 _sa,z° where the a, are
nonzero, and the support S is a fixed subset of {0,1,...,d}. Viewing the a, as
transcendentals and f2 as a polynomial in z, we classify the indices £ € 0,1,... ,2d
into three categories:

(i) the coefficient of z* in f2 is identically zero;
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(i) the coefficient of z* in f? is of the form af, or 2a;a;—; for some i;
(iii) the rest.

Note that category (ii) represents terms which can never be zero whenever the a,
are nonzero, hence we can exclude from the search all subsets containing indices
of this category. In practice, so that f is genuinely a polynomial of degree d, we
insisted that the support contain both 0 and d; furthermore, by Lemma 2 we need
test only polynomials with support of cardinality 4 or more.

The classification of indices may easily be read off the square of f = ees T’

Let ¢ be an index in the range 0 to 2d, and let c; be the coefficient of z* in fz.
Then ¢ is in category (i) whenever ¢; = 0, ¢ is in category (ii) whenever ¢; = 1 or
ct = 2, otherwise t is in category (iii).

Example 2. Consider polynomials of degree 11 having zero coefficients for pre-
cisely 23, z*, 27 and z8. Such polynomials have exactly 8 terms, so we want to know
if the square could have 7 or fewer terms. Put f = 1+z+22+z5+20+2°+210 4211,
Now consider f2: it has no zero coeflicients, fourteen coeflicients equal to 1 or 2,
and nine others. Thus there are fourteen indices of category (ii), and hence the
square of any polynomial having the given pattern of zero coefficients will have at
least fourteen terms, and so the polynomial cannot possibly have a sparse square.
Therefore no searching through subsets is needed in this case.

We ran the computer search as described here from degree 5 to degree 11. By
Lemma 2 we know that there cannot be any noncomplete polynomial of degree less
than 5 with a sparse square. In every case, the corresponding ideal contained 1,
proving nonexistence of a polynomial with that support having a sparse square.
In Section 5 we give a summary of the total number of Grobner bases actually
computed and the total time taken in each degree. The computations in degrees 5,
6 and 7 were very fast, and are excluded from the table.

5. TABLE OF RESULTS

Table 1 summarizes the statistics produced by our experiments. As already
hinted above, the programs used for the “complete” and “noncomplete” cases were
distinct; the latter being less refined. Therefore we distinguish in the table the data

TABLE 1
Degree G-bases Time
8 (complete) 118 6
8 (noncomplete) 290 10
9 (complete) 460 45
9 (noncomplete) 2300 69
10 (complete) 1800 2200
10 (noncomplete) 17000 1200
11 (complete) 7000 | 370000
11 (noncomplete) | 119000 | 128000




SPARSE SQUARES 413

given by the two different programs—this is indicated together with the degree.
The column headed “Time” gives the CPU time in seconds on a 433MHz Digital
Alpha running DEC Unix; the version of CoCoA used was 3.7. The column headed
“G-bases” indicates the approximate number (to two significant digits) of Grobner
bases computed during the whole calculation.

6. CONCLUSION

Coppersmith and Davenport had already done the computations to show that
no complete polynomial of degree less than 8 had a sparse square. We have now
done them for degrees 8, 9, 10 and 11, and in every case have found that there was
no solution, i.e., there is no complete polynomial in any of these degrees having a
sparse square. Similarly, our search for noncomplete polynomials having a sparse
square showed that none exists of degree less than 12.

~ Even though the underlying mathematics is rigorous, as is common with results
dependent on lengthy computations, our conclusions must be tempered by the fact
that our implementations have not been proved correct in any rigorous sense (i.e.,
correctness of processor, compiler, the CoCoA system, and our code). So, with
the foregoing provisos, we have proved that there are no polynomials of degree less
than 12 having sparse squares.

From our table of results it is quite evident that the computations in degree
11 account for almost all the total time, and it seems reasonable to conclude that
a complete search in degree 12 using our techniques would still be prohibitively
long. So, we leave open the matter of confirming that the only polynomials of
degree 12 having sparse squares are the eight given in [2], up to the symmetries
A, B and C. Indeed, their solutions are really four pairs related by the symmetry
f(z) — az'? f(L) where the scalar o depends on the choice of f.

We did conduct a search for complete polynomials of degree 12 lying in F,[z]
having sparse squares for the prime p = 29641. The search found the images in
F,[z] of the polynomials given in [2], and no others. Unfortunately, we cannot
deduce from this anything about the existence or nonexistence of other solutions of
degree 12 in Q[z].
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