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ON THE PRIMALITY OF n!+1 AND 2x3x5x---xp+1

CHRIS K. CALDWELL AND YVES GALLOT

ABSTRACT. For each prime p, let p# be the product of the primes less than
or equal to p. We have greatly extended the range for which the primality of
nl+1 and p# =+ 1 are known and have found two new primes of the first form
(6380! +1,6917! — 1) and one of the second (422094 +1). We supply heuristic
estimates on the expected number of such primes and compare these estimates
to the number actually found.

1. INTRODUCTION

For each prime p, let p# be the product of the primes less than or equal to p.
About 350 BC Euclid proved that there are infinitely many primes by first assuming
they are only finitely many, say 2,3, ..., p, and then considering the factorization of
p#+ 1. Since then amateurs have expected many (if not all) of the values of p# +1
and n! + 1 to be prime. Careful checks over the last half-century have turned up
relatively few such primes [5, 7, 13, 14, 19, 25, 32, 33]. Using a program written by
the second author, we greatly extended the previous search limits [8] from n < 4580
for n! +£1 to n < 10000, and from p < 35000 for p# £ 1 to p < 120000. This search
took over a year of CPU time and has yielded three new primes: 6380!41, 6917!—1
and 42209# + 1. The second of these (with 23560 digits) was the largest known
prime for which modular reduction was non-trivial at the time of its discovery. See
Table 1 for a complete list of the known primes of these forms.

TABLE 1. Factorial and primorial primes

form | values for which this form is prime search limit
n!+1 | 1,2, 3,11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, | 10000

427, 872, 1477 and 6380 (21507 digits)
nl—1 |3,4,6,7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469, | 10000
546, 974, 1963, 3507, 3610 and 6917 (23560 digits)
p#+11|2 3,5,7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, | 120000
4787, 11549, 13649, 18523, 23801, 24029 and 42209
(18241 digits)

p# —1]3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, | 120000
4093, 4297, 4583, 6569, 13033 and 15877 (6845 digits)
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In this article we first provide heuristic estimates of how many such primes
“should” be found. We next describe the program used and the search procedure,
then list several other new record primes found using this same program in related
searches.

2. HEURISTICAL ANALYSIS

An obvious question as we undergo a search of this type is how many such
primes do we expect? Are there a reasonable number of new primes to find in
this range? Heuristically we can offer an educated guess at what the answer to
these questions should be. This has often been done for other forms of primes such
as those defined by irreducible polynomials (see, for example, [3, 21]) as well as
for some non-polynomial forms (e.g., Mersenne [30, 35], Wieferich [11], generalized
Fermat [16],! and primes of the form k-2™ +1 [4]). We do it here for the first time
for the factorial and primorial primes. Even as we offer these heuristics, we must
agree heartily with Bach and Shallit as they muse

Clearly, no one can mistake these probabilistic arguments for rig-
orous mathematics and remain in a state of grace.? Nevertheless,
they are useful in making educated guesses as to how number-
theoretic functions should “behave.” ([1, p. 248])

2.1. Primorial primes. Primes of the form p# + 1 are sometimes called the pri-
morial primes (a term introduced by H. Dubner as a play on the words prime and
factorial). Since logp# is the Chebyshev theta function, it is well known that
asymptotically §(p) = log p# is approximately p. In fact Dusart [18] has recently
shown that
10(2) — 2| < 0.006788——  for z > 2.89 x 107.
log = ‘

So by the prime number theorem the probability of a “random” number the size
of p# + 1 being prime is asymptotically %. However, p# + 1 does not behave like
a random variable because primes ¢ less than p divide 1/¢*® of a random set of
integers, but cannot divide p# £ 1. So, following the pattern of classic papers such
as [3], we divide our estimate by 1— % for each of these primes q. Mertens’ theorem

[22, p. 351] states that

1T (1 - -(;-)_1 =eYlogz + O(1),

q<z
g prime
so we adjust the estimate of the probability that p# + 1 is prime to m%.
By this simple model, the expected number of primes p# + 1 with p < N would
then be

~
Z cllogp ~ e7log N.
p<N

IThe authors treated these as polynomials by fixing the exponent and varying the base.

21t is probably not a coincidence that this quote is similar to John von Neumann’s remark in
1951: “Any one who considers arithmetical methods of producing random digits is, of course, in
a state of sin.” [24, p. 1]
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TABLE 2. The number of primorial primes p# + 1 withp < N

actual expected
N | p#+1 | p# — 1| (of each form)
10 4 2 4.1
100 6 6 8.2
1000 7 9 12.3
10000 13 16 16.4
100000 19 18 20.5

Congecture 2.1. The expected numbers of primorial primes of each of the forms
p# + 1 with p < N are both approximately e” log N.

The known, albeit limited, data supports this conjecture. What is known is
summarized in Table 2.

Remark 2.2. By the above estimate, the n'® primorial prime should be about en/e”.

2.2. Factorial primes. The primes of the forms n! £+ 1 are regularly called the
factorial primes, and like the “primorial primes” p# =+ 1, they may owe their appeal
to BEuclid’s proof and their simple form. Even though they have now been tested
up to n = 10000 (approximately 36000 digits), there are only 39 such primes known
(see Table 1). To develop a heuristical estimate we begin with Stirling’s formula:

1 1 1
': —_ —_— — —
log n! (n+2>logn n—|—210g27r—|—0<n>

or more simply: logn! ~ n(logn — 1). So by the prime number theorem the
probability a random number the size of nl+1 is prime is asymptotically n(TglnTl—)'
However, n!£1 does not behave like a random variable for several reasons. First,
primes ¢ less than n divide 1/g-th of a set of random integers, but cannot divide
n!+ 1. So we again divide our estimate by 1 — % for each of these primes g, and by
Mertens’ theorem we first estimate the probability that n! &+ 1 is prime to be
e?logn
(2.1) n(logn —1)°

To estimate the number of such primes with n less than N, we may integrate
this last estimate to get:

Congjecture 2.3. The expected numbers of factorial primes of each of the forms n!+1
with n < N are both asymptotic to e”log N

Table 3 shows a comparison of this estimate to the known results.

TABLE 3. The number of factorial primes n! £1 with n < N

actual expected
N |nl4+1|n!—1] (of each form)
10 3 4 4.1
100 9 11 8.2
1000 | 16 17 12.3
10000 | 18 21 16.4
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As an alternate check on this heuristic model, notice that it also applies to the
forms k- n!+1 (k small). For 1 <k <500 and 1 <n < 100 the form k- n!+1 is
a prime 4275 times, and the form k- n! — 1, 4122 times. This yields an average of
8.55 and 8.24 primes for each k, relatively close to the predicted 8.20.

But what of the other obstacles to n!+1 behaving randomly? Most importantly,
what effect does accounting for Wilson’s theorem have? These turn out not to sig-
nificantly alter our estimate above. To see this we first summarize these divisibility
properties as follows.

Theorem 2.4. Let n be a positive integer.
i) n divides 1! — 1 and 0! — 1.
ii) If n is prime, then n divides both (n — 1) +1 and (n —2)! — 1.
iii) If n is odd and 2n + 1 is prime, then 2n + 1 divides exactly one of n! £ 1.
iv) If the prime p divides n! £ 1, then p —n — 1 divides one of n! £ 1.

Proof. (ii) is Wilson’s theorem. For (iii), note that if 2n+ 1 is prime, then Wilson’s
theorem implies

—1=1-2-...-n-(=n)-...- (=1) = (=1)™(n)? (mod 2n + 1).

When 7 is odd this is (n!)? = 1, so n! = £1 (mod 2n + 1). Finally, to see (iv),
suppose n! = +1 (mod p). Since (p — 1)! = —1, this is

p-1@-2)...-(n+1) = (1P p-n-1I=F1 (modp).
This shows p divides exactly one of (p —n — 1)! £ 1. O

To adjust for the d1v1sibi1ity properties (i) and (iii), we should multiply our
estimate 2.1 by 1 — logn’ Which is roughly the probability that n + 1 or n + 2 is

composite; and then by 1 — 410 o which is the probability n is odd and 2n + 1 is
prime. The other two cases of Theorem 2.4 require no adjustment. This gives us
the following estimate of the primality of n!+ 1:

1 e
2.2 1- —
22) ( 4log 2n> n

Integrating as above suggests there should be e7(log N — %log log 2N) primes of
the forms n! &1 with n < N. Since we are using an integral of probabilities in our
argument, we cannot hope to do much better than an error of o(log N), so this new
estimate is essentially the same as our conjecture above.

Finally, it is reasonable to finish by asking if Theorem 2.4 indeed summarizes all
of the important divisibility properties of n! & 1. In Table 4 we list the values of n
for which p divides n!+1 (n is given the same sign as the sign in n!+1). We notice
the prime divisors come in pairs which add to p — 1 (as shown in Theorem 2.4.iv).
The only other apparent property is that given p, we can place a lower bound on the
n as mentioned in the following theorem. This again does not alter our conjecture
in any significant way.

Theorem 2.5. Let p be a prime. If p|n!+1thenp=n+1,n+2o0rp>n+k
where k is a solution to T'(k) —k+ 1 =mn.

Proof. Suppose p | n! £1 and set p=n+ k. Clearly k > 1. If k =1 or 2, then we
are done, so suppose k > 2. By Wilson’s theorem (p — 1)! = —1 (mod p), so

p-Dp-2)-...-(n+1) = (-1 (k-1 =1 (mod p),
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TABLE 4. Divisors of n! + 1 not listed in Theorem 2.4

prime p | n for which p divides n! + 1 | prime p | n for which p divides n! + 1
17 | -5, -11 269 | 9, 259
23 | -4, -8, 14, 18 271 | 93, 177
29 | -10, 18 277 | 40, -236
53 | -15, -37 293 | 45, 75, 217, 247
59 | 15, -18, 40, 43 307 | -54, 63, 243, 252
61 | 8, 16, 18, -42, -44, -52 311 | -29, -90, 220, -281
67 | 18, -48 317 | 91, 225
7117,9,19, 51, 61, 63 331 | -99, -231
73 | -17, -55 359 | 122, -129, -229, -236
79 | 23, 55 379 | 35, 343
83 | 13, 36, -46, 69 383 | 85, 297
89 | -21, -67 389 | -158, -190, 198, 230
97 | -43, -53 397 | 93, -174, 222, 303
103 | 6, -96 401 | 25, -69, 128, 173, 227,
109 | -22, 86 -272, -331, 375
137 | 16, 35, 101, -120 419 | -102, 316
139 | 16, -122 431 | -64, 366
149 | -25, 50, -98, -123 439 | -37, -401
193 | -90, 102 449 | 74, -121, -327, -374
199 | -81, -89, -109, -117 457 | -177, -279
227 | 61, -82, 144, 165 461 | -63, -160, 300, -397
233 | 64, -101, -131, -168 463 | 151, 311
239 | -28, 210 467 | -56, -176, 290, 410
251 | 97, 153 479 | 15, -153, -325, 463
257 | 31, 225 499 | -98, 400

(The sign of n determines the sign in pjn!+1.)

showing that (k—1)! = £(—1)*"' (mod p). This means I'(k) £ (—1) is a non-zero
(k > 2) multiple of p = n + k, so T'(k) & (=1)* > n + k. O

3. THE PROGRAMS

The screening for primes had two phases: (1) We first pre-screened using trial
division, then each number n was checked for probable-primality. This work was
carried out by a program we call Proth.exe. (2) We then used separate programs
to verify the primality of the three probable-primes found in the first step.

3.1. Proth.exe: probable-primality testing. This program is named Proth.exe
because when it was originally written by the second author, it was intended just
to find primes of forms covered by Proth’s theorem (see [29] or [22, theorem 102]):

Theorem 3.1. Letn > 1, k < 2", and let N = k-2"+1 be a quadratic non-residue
(mod a) for some odd prime a. Then a necessary and sufficient condition for N to
be a prime is that a¥=1/2 = —1 (mod N).

At that time Proth.exe was written as a Windows program because of the wide
installed-base for this operating system, and was made available on the internet
[20] to support a variety of distributive computing projects. Because of Proth.exe’s
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success, it has been expanded to cover a variety of other forms (see the list of
records below), including probable-primality testing for the primorial and factorial
numbers.

Numbers that are not of the form & - 2™ + 1, but that satisfy the condition of
Proth’s theorem (there is an integer a for which a¥=1/2 = —1 (mod N)) are
called Euler probable-primes [31, p. 226]. The evaluation of aN-1/2 using the
left-to-right binary algorithm takes only [log, n] modular squaring operations [9,
p. 9], so the key to doing this quickly is in multiplying quickly. Proth.exe multiplies
by evaluating the convolution of the polynomials defined by the representation of
the numbers in base 216, and the convolutions are evaluated using real-signal Fast
Fourier Transforms implemented with double precision floating-point numbers [34,
chapter 20]. In modern microprocessors, accessing the data in the main memory is
more than 20 times slower than executing an arithmetic operation, so algorithms
such as split-radix FFT, which were developed to minimize the number of multi-
plications, are no longer the best algorithms. So we used a modified form of the
“Four Step” FFT [2]. Only two passes through the main memory are required.
Blocks of data, on which a classical FFT is performed, fit in the level 1 cache of
the processor. With numbers of about 30,000 digits, this algorithm is about five
times faster than the same algorithm based on an optimized real-data split-radix
FFT. Finally, to compute the modular reduction, the value of the reciprocal of n is
computed just once using steady-state division as described in [10, p. 9].

As mentioned above, Proth.exe has been used in a variety of distributive com-
puting projects. For example, as of the date we wrote this article, this program was
used to find the following record prime numbers: (1) 169719 - 2557557 4 1 (167847
digits), the largest known “non-Mersenne” prime (found by Stephen Scott in 2000);
(2) 481899 - 2481899 4 1 the largest known Cullen prime [23] (found by Masakatu
Morii in 1998); (3) 151023 - 2151923 _ 1 the largest known Woodall prime [23]
(found by Kevin O’Hare in 1998); (4) 50666416384 4 1, the largest known Gener-
alized Fermat prime [4, 16] (found by the second author in 2000); and finally (5)
18458709 - 232611 _ 1 the second largest known Sophie Germain prime [15] (found
by Charles Kerchner in 1999).

3.2. Primality Proving. Since the program Proth.exe did not include the neces-
sary routines for primality proving for numbers of the form n!+ 1 and p# + 1, we
used two other programs to complete the primality proofs. In both cases the proofs
are straightforward with the classical tests of [6]. For the factorial primes 6380! + 1
and 6917! — 1 we used a console version of the Dubner Cruncher (cf. [12, 28]). The
prime 422094 + 1 presented more difficulty because it was necessary to conduct
tests at 1339 of the prime divisors of 42209#. The verification was completed by
Chris Nash using his implementation (called PrimeForm) of these tests based on
the same large integer arithmetic library as Proth.exe. (This library, like Proth.exe,
was 'written by the second author.) The 1339 tests together took approximately 15
hours [27], even when they were combined using the technique of Mihailescu [26]
(similar to those of [7]).

ADDED AFTER POSTING

Theorem 2.4(iv) as stated is incorrect. It should read, “If the prime p divides
n! £ 1, then p divides one of (p —n —1)I £ 1.”
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