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ON THE STABILITY OF A FAMILY
OF FINITE ELEMENT METHODS
FOR HYPERBOLIC PROBLEMS

GERARD R. RICHTER

ABSTRACT. We consider a family of tensor product finite element methods for
hyperbolic equations in RN, N > 2, which are explicit and generate a con-
tinuous approximate solution. The base case N = 2 (an extension of the box
scheme to higher order) is due to Winther, who proved stability and optimal
order convergence. By means of a simple counterexample, we show that, for
linear approximation with N > 3, the corresponding methods are unstable.

1. INTRODUCTION

We begin by describing, in the context of a simple model problem, a finite element
method for hyperbolic equations in R? due to Winther [11]. Our problem will be:

(1.1) Ue = f(x),  x=(z1,22) €,
u given on I'j,(2),

where Q is the unit square and u, = a - Vu, where a = (a1, ag) is a unit vector
consisting of positive constants. We denote the boundary of Q by I'(Q2), the unit
outer normal by n = (n1,n2), and the inflow portion of I'(2), where - n < 0,
by T'in(€2). For our problem, I'i,(Q2) consists of the ;7 = 0 and x5 = 0 sides of Q.
Likewise, [yt (€2) is characterized by «-n > 0.

To apply Winther’s scheme to (1.1), we first partition {2 into a mesh of rectangles
Eirizy 0 < i1 < ny, 0 < iy < ng, as illustrated in Figure 1. Over this mesh, the
solution to (1.1) can be developed one element at a time, first in &, then in
either & ¢ or &1, etc. For computational and theoretical purposes, it is useful to
think of up as evolving though the mesh in “layers”, first in Sy = &p,0, then in
S1=&E1,0U&,1, then in Sy = £ 9 U&E1,1 Uy, etc. Note that up may be computed
concurrently in the elements comprising a layer. The j** such layer is given by
Sj = {&iin|i1 +1i2 = j }. After up has been developed in ©; = J;, Sj, it will have
advanced to the “frontline” F;, where

(1.2) F; = (Fm(Q) — Fm(Q«L)) UI‘out(Qi), 1=0,1,...,n1 + na.

The finite element approximation uy is developed in the same manner. For a
generic rectangular element £ = &;, ;,, we denote by IIj, r,(€) the corresponding
tensor product space of polynomials of degree ki, k2 in z1,x2. The approximation
subspace S;, will consist of those C°(Q2) functions which reduce to members of
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FIGURE 1

Ik ,(€) in all elements £. The finite element approximation u, € Sj starts as
an interpolant of the given initial data on I'i,(£2), and is required to satisfy the
conditions

(1.3) ((un)arvn)e = (fyvn)e, for all v, € _1,k-1(E),

where ( , )¢ denotes the L?(£) inner product. The number of equations equals
the number of unknowns in (1.3) because at the time when wuy, is computed in &, it
will already be known on I'jp ().

This finite element method has an obvious extension to the more general problem
where Q is a hypercube in RY and o = (a1, ...,an) > 0. For a generic element
E =& iy,...in, the trial and test spaces are N-dimensional tensor product spaces
g, k(&) and M_q,. k—1(€) in z1,...,zn; (1.3) thus becomes

(1.4) ((’U,h)a,’vh)g = (f, ’Uh)g, for all Vy € Hk—l,...,k—l(g)-

The jth layer is now Sj = {51'111‘2,“,1«5N|7:1 4+ +in=17J }

Explicit finite element methods such as these are potentially attractive candi-
dates for hyperbolic systems arising in applications. As compared to the “canoni-
cal” explicit method, discontinuous Galerkin [6, 9], they use fewer unknowns. For
example, if the N = 3 version of (1.4) is applied with k = 1 (linear approximation),
there is only one unknown to be solved for per element vs. eight for the discontin-
uous Galerkin method. The k = 1 version of the scheme (1.4) is equivalent to the
box scheme [10] and serves as a basic ingredient in cell verter methods, a class of
finite volume methods for hyperbolic and convection-diffusion problems, and more
general flow problems. The sole test function for linears, vy, = 1, enforces conserva-
tion over elements £. Error estimates have been obtained for cell vertex schemes in
two dimensions [1, 8]. Several second-order-accurate schemes in three dimensions,
including the N = 3,k = 1 version of (1.4), have been proposed in [2]. In both
two and three dimensions, these schemes are known to admit spurious oscillatory
solutions which neither grow nor decay. The method (1.4) also has potential ap-
plicability to transient hyperbolic systems. Here an easy way to obtain an explicit
space-time mesh, suitable for application of (1.4), would be to start with hypercube
elements &, oriented so that two opposite vertices lie along a line parallel to the
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t-axis, and then compress or stretch in the t-direction [5]. This produces elements
which are parallelograms for N = 2, parallelepipeds for N = 3, etc., to which the
method (1.4) generalizes trivially.

For the base case N = 2, the method (1.4) is known to be stable for arbitrary
k > 1 and satisfies the bound

(1.5) [wnl2, .y + lunls < C (Junlf, o + 1712

where | - | and || - || denote boundary and interior L? norms, respectively, and
C denotes a generic constant, independent of mesh size h and u. Winther [11]
proved stability for the N = 2 method in the setting of a more general hyperbolic
system and derived various optimal order error estimates and superconvergence
results. Whether the higher-dimensional analog of the method has the same de-
sirable attributes seems not to have been answered. In this paper, we provide a
negative indication. We show by means of a counterexample that the method (1.4)
is algebraically unstable; thus the bound (1.5) does not hold, for the case of linear
approximation for any N > 2. For smooth solutions, however, convergence rates
do not appear to suffer.

We note the existence of a related family of explicit finite element methods [9]
which generates a continuous approximate solution over simplices in RY as opposed
to hypercubes. Stability and near-optimal order convergence have been proved for
the case N = 2 and an arbitrarily high degree of approximation [3, 4]. Again, there
is no analysis for N > 2. In fact, it is not clear whether, for N > 2, there exists any
stable, optimal or near-optimal order finite element method for hyperbolic PDE’s
which is explicit and generates a continuous approximation.

In §2, we show that the bound (1.5) holds for N = 2 and k > 1. This was
first shown by Winther [11] for more general variable coefficient, linear hyperbolic
systems. Ours is a simpler analysis aimed at achieving the stability bound (1.5) for
the limited model problem (1.1). In §3, we reduce the k = 1 version of (1.4) to a
set of difference equations and construct a counterexample to (1.5) for N > 2.

2. STABILITY ANALYSIS FOR THE CASE N =2

We assume a quasi-uniform mesh of size h. A generic element £ = &;, ;, for
the case N = 2 is shown in Figure 2. It will be convenient to parameterize I'iy(£)
and Ty (€) in terms of a cooordinate ¢ = —apz1 + @122 measured normal to the
characteristic direction, as indicated in Figure 2. We use the notation upi, =
Un|Tin(€)r Unout = UnlDouy(€)r Uhin = mUhins Uh out = scUh,out- We also define L?
projection operators

Q1 : g k(E) = Mp—1,x(E),
Q2 : gk (€) = Mg —-1(E),

and a boundary projection @ which, for D = I'jy(€) or D = [ous(€), maps L?(D)
onto the space of discontinuous (in general) piecewise polynomials of degree < k—1
on the line segments comprising D. In this section, all boundary norms will be taken
with respect to ¢, and the notation | - | will signify an L2[to, ;] norm of the indicated
quantity.
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FIGURE 2
Lemma 2.1. On &, uy satisfies
(2.1) [0h,outl® < |hnl® + h72(Junlz + CIFIZ),
(2.2) |Qun,outl® < |Quainl® + llunll? + IIFIIZ,
(2.3) lunllz < C(Rluninl® +B2[1 £12),
(24) |Quaoutl® + h2[uh outl® + llunllz

< (1+ Ch) (|Qun,inl® + PP |ut, 1nl*) + CIIfI1Z.

Proof. Letting s denote arclength along I'(£), measured counterclockwise, we have
dt = a-nds. Thus the choice vy, = v} = 2a102(Up) g2, in (1.3) gives

((un)a, vi)e = 202((01tn )z, , (C1UR)z12,)e + 201 ((Q2UR) 0y s (C2UR) 12 ) e

- / {(oame Poanadst [ {aau)o e ds
D

BDUCA

2 2 2 / 2
Qo / uh out) dt — CVl Qo /_ _(uh,in) dt
BDUDC BAUA

2 2

= CV10‘2 (|uh,out| - |u;t,in| ) .
Via an inverse inequality, and the Schwarz and arithmetic-geometric mean (|ab| <
1(6a% + %2), 6 > 0) inequalities, we obtain

I(f,o)el < Cllflle - (un)ayaslle < CR2N Fllelunlle < B2 (llunl? + ClIFIZ)
and (2.1) follows.
Taking vy, = vi* = 2Q1Q2up, in (1.3), we get
((uh)a, vi*)e = 200 ((Un) ey, Q1Q2un)e + 202 ((Un)zy, Q2Q1Un)e
= 201 ((Q2un)z,» Q2un)e + 202((Q1Un) ey, Q1Un)e

= /_  (Qoup)?0orny ds + /_  (Qiun)’aznads
BDUCA DOUAB

= /_ _(Quh,out)2 dt — /_ _(Quh,in)Q dt
BDUDC BAUAC
= |Quh,out|2 - |Quh,in|2~

Application of the Schwarz and arithmetic-geometric mean inequalities to (f,v};*)e
then yields (2.2).
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Uniqueness (hence existence) of uj, within £ may be established by showing that
if |up,in] = 0 and ||f|le = 0, then [jup|le = 0. This is trivial to show for the case
of linear approximation (k = 1); more generally, see [11]. The bound (2.3) then
follows by an appropriate scaling of norms.

To establish (2.4), we note the existence of constants vy;, 2 such that

(2.5) '71|uh,in12 < |Quh,in|2 + hzlu;z,inlz < '72|uh,in|2>

with an analogous bound holding for us ou;. Applying this to the sum of (2.2), h?
times (2.1), and three times (2.3), we obtain (2.4). O

Having proved the lemma, we now apply (2.4) over layer S; (cf. (1.2)):

(Qual%, + B2l %, + lunl, < (1+Ch) (1Qualk,_, +h2lupl%_, ) + CIFI,-

Thus over the O(h™1) layers comprising Q:

1Qual2,.. o + 2w 2, e) + NunliE < C (1Quald, () + W21uh B o + IF1R) -

The desired stability result (1.5) then follows from a suitable application of (2.5).

Before closing this section, we briefly consider the case N = 3. Let S be the
set of triplets {(1,2,3),(2,3,1),(3,1,2)}. The test functions v}, and v;;* used in the
proof of Lemma 2.1 can be extended to N = 3 as follows:

U}t = 2 Z aiank(uh)ximja

(i,4,k)ES
vp* = 2091 Q2Q3up,

where Q1, @2, Q3 are the N = 3 analogs of Q1,Q2 defined previously. It can be
shown that these give the following boundary integrals:

((un)a,vi)e

> /r(s) [(@s(iun)e.)® + (awun)a, (e5un)a, + (Qi(agun)e,)*] cwnk

(3,4,k)€S

(un)as Vi )e = Z /1“ (QiQjun ) agmny.

(i,5,k)ES

A key difference from the N = 2 case is that the second derivatives appearing in v},
now require projection into the test space. The result is that uy is not fully coerced
on I'(€) by these two test functions.

3. DEMONSTRATION OF INSTABILITY FOR N > 2

We now consider the N-dimensional method (1.4). We restrict our attention to
a uniform mesh {£} of hypercubes of size h in each coordinate direction and focus
on the linear case, k = 1, where, for any N, the only test function is vy = 1. To
facilitate the description of the resulting method, we use a local coordinate system
% = (%1, ...,Zn) such that the vertices V of £ correspond to &; = +1,¢=1,...,, N,
and define 1y (X) = ux(x). Figure 3 contains an illustration for the case N = 3.
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Using the fact that the tensor product trapezoidal rule will exactly integrate a
multilinear up, over the faces of I'(£), we have

((un)as Ve =§ai (/ uh—/ri_ uh)

h N-1 N
= (.2.) a; Y Eiin(X)
1

= XV

where I'; (I;) denotes the face of I'(€) for which #; = +1(—1). Hence in the case
k=1, we get

B\ N1 N
) (5) 5 (Do) miwr - e
%€V \i=1
This gives
N 2\ - s N-1
_Z)”ceV, ®#(1,1,...,1) (Ei:l aixi) i (X) + (%) (f, De
Zév=1 Q@ .
We now show by means of a counterexample that the stability bound (1.5) does
not hold for linear approximation for N > 2. We partition the vertex set V into

{Vi}_,, where V; consists of those vertices (Z1,...,&n5) € V for which exactly k
Z;'s have value +1. The scheme can then be written

N N
(3.3) S Y diin(%) =2"""hf

=1 k=0 X€V)

32) an(1,1,..,1) =

where f is the average value of f(x) over £. If 4,(%) had the same value for all
& € Vi, 4F, say, then (3.3) could be written

N N
(3.4) (Z ai> af Z & | =2V "thy,
i=1

k=0 XEV)
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where we have used the fact that Z:‘cer Z; is independent of 4 via symmetry. Note
that Vj consists of (IZ ) vertices, and for X € Vg, ZN Z; = 2k — N. Therefore,

i=1

S di= = zz%_szgg 2k - N)(];[)

x€Vy i=1 %€V x€Vy =1
Thus (3.4) can be reduced to

N

a3 N 1 ZN
~k _ oN—=1p7¢ = =
(35) 2k N < )Uh =2 hf, a = 'N" L (077

k=0

Under the assumption that f has a common value, fj, forall€ C §;,7=0,1,...,
we look for solutions over the unit cube Q2 that are the same throughout each layer,
ie.,

up(i1hy .oy inh) = Uiy + -+ +in),

- in conformity with (3.5). Then, for an element £ C S;, we have 4f = U(j + k) and
(3.5) becomes

2N-1p

7

o

(3.6) XNj 2k — N) (N)U(j+k)=

k=0

As special cases, we have

2(Uj42 — U;) = (2n/Q) f;, for N =2,
3(Uj+3 + Uj+2 - UJ+1 U; ) (4h/a) T for N = 3,
Fi

4(Uj+a + 2Uj43 — 2Uj41 — Uj) = (8R/Q) for N =4.

In general, the characteristic polynomial associated with the difference equation
(3.6) is ¢(z) = chv=0(2k - N)(],\C])x’c We will show that it can also be written

$(z) =Nz —1)(z+1)"*
Note first that

(JIZ—_ 11) - (Nk_ 1) (& —(]1\;!(_1\})i DI k!(](VN—_klz! 1)!

_ (N-1)!
T KN — k)

2% -N(N
TN \k)

(k= (N —k))
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Thus

(z—D+D)VN 1=(z-1) 3 (N - 1)$k

-2 (%) ()

Having established the equivalence of the two forms for ¢(z), we immediately
conclude that (3.6) with f; = 0 has solutions

(3.7) U; =1, Uj = (-1)j™, m=0,..,N —2.

Of these N solutions, all but the first are spurious. Note, in particular, that for
N > 3 the mode U; = (—1)7jV~2 is unstable.

It is instructive to look at the finite element solution corresponding to the most
rapidly growing mode in the case N = 3 (i.e., U; = (—1)7j). It is, in &, ip 45

A S A N 1, .
uh(x1,$2,x3) = (—l)J I:(j + 5) T1ToT3 — §(x1x2 + ZoZ3 + az3x1) R
7 =11+ 12+ 3.

Each of the functions comprising tn—21E283, £182, L2&3, and £3&1—has o deriv-
ative which is orthogonal to constants over &;, ;,i,. Thus these functions are not
controlled directly by the inner product conditions (1.4), and this is the source of
the instability.

We conclude by giving a specific counterexample to (1.5) for the case N = 3.

Assuming the unit cube is divided into n® cubical elements, the corresponding layers
and vertex values of uy, are Sg, ..., S3n—3 and Uy, ..., Us,. Let up =0 on 'y () and

-1, x € Son_o,
f(x) =4 +1, x € Sapn-1,
0, otherwise.

The solution is then

0,7=0,1,...,2n,
T7 ) (4h/3a) (1) — 2n), j =2n+1,..,3n,

which gives |up|r,,, (@) = O(1) for a forcing function of size | fllo = O(Vh).
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