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ANALYSIS OF A FINITE ELEMENT METHOD
FOR PRESSURE/POTENTIAL FORMULATION
OF ELASTOACOUSTIC SPECTRAL PROBLEMS

ALFREDO BERMUDEZ AND RODOLFO RODRIGUEZ

ABSTRACT. A finite element method to approximate the vibration modes of
a structure enclosing an acoustic fluid is analyzed. The fluid is described by
using simultaneously pressure and displacement potential variables, whereas
displacement variables are used for the solid. A mathematical analysis of the
continuous spectral problem is given.

The problem is discretized on a simplicial mesh by using piecewise constant
elements for the pressure and continuous piecewise linear finite elements for
the other fields. Error estimates are settled for approximate eigenvalues and
eigenfrequencies. Finally, implementation issues are discussed.

1. INTRODUCTION

In this paper we analyze a finite element method for the numerical solution of
a spectral problem arising in fluid-solid interactions. It concerns the numerical
computation of internal elastoacoustic vibrations, i.e., harmonic vibrations of a
coupled system consisting of an elastic solid enclosing an acoustic (compressible,
inviscid and barotropic) fluid.

A first possibility to solve this problem is to consider a formulation in terms
of displacements in the solid and pressure in the fluid (see [17]). However, such
an approach leads to nonsymmetric eigenvalue problems, which is an inconvenient
from the numerical point of view.

An alternative procedure has been recently introduced in [5] (see also [2, 3,
4]). It is based on using displacement variables also for the fluid, discretized by
lowest degree Raviart-Thomas finite elements on a triangular (or tetrahedral) mesh.
Interface coupling between this discretization and classical piecewise linear finite
elements for the solid displacements is achieved in a nonconforming way. FError
estimates have been obtained and it has been proved that no spurious modes arise
as is typical in other discretizations of this formulation (see [10]).

Another approach, also leading to symmetrical spectral problems, has been intro-
duced in [13]. It consists of using simultaneously the pressure and the potential of
displacements to describe the fluid motion. In the present paper we analyze a finite
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element method for the numerical solution of this pressure/potential formulation:
standard continuous piecewise linear finite elements are used for the solid displace-
ments and the potential variables, combined with piecewise constant elements for
the pressure. We show that this discretization leads to a sparse symmetric eigen-
value problem involving only scalar variables for the fluid. This analysis is valid for
both two- and three-dimensional problems.

Numerical results of the application of this method to some test examples have
been reported in [12, 13]. In the first of these references it is also shown that the
pressure variables can be further eliminated, to reduce the number of degrees of
freedom, in an inner step of a “shift and invert” eigensolver without destroying the
sparseness of the involved matrices.

We start by giving a weak formulation of the spectral problem which allows
us to characterize its solutions and to state their regularity properties. Then we
introduce the discretization and prove error estimates both for eigenfunctions and
eigenvalues. Finally, an alternative formulation of the discrete spectral problem,
more convenient from the computational point of view, is proved to be equivalent
to the one theoretically analyzed.

2. THE MODEL PROBLEM

We consider the problem of determining the vibration modes of a linear elas-
tic structure containing a compressible, inviscid and barotropic fluid. Our model
problem consists of a vessel completely filled with fluid, as shown in Figure 1. In
spite of the fact that this figure is two-dimensional, all the subsequent analysis is
valid for 3D as well as for 2D problems. However, for the sake of definiteness, we
will use 3D terminology if necessary.

QS
1—‘N
FI
QF
n
——
174
1—‘D

FIGURE 1. Fluid and solid domains.
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Let Q. and € be the polyhedral domains in R™ (n = 2 or 3) occupied by the
fluid and the solid, respectively; they are not supposed to be either convex or simply
connected. Let us denote by I'; the interface between solid and fluid and by v its
unit normal vector pointing outwards from €2.. The external solid boundary is
assumed to be the union of two polyhedral surfaces: I'y and I'y; the structure is
supposed to be free along I, and fixed along I'j (for simplicity, meas (I'y) > 0 is
also assumed). Finally, n denotes the unit outward normal vector along I',.

Throughout this paper we will use standard notation for Sobolev spaces and
norms. Furthermore, we will denote by C a generic constant not necessarily the
same at each occurrence.

The physical magnitudes of the fluid will be denoted by

e u: the displacement vector field,
e p: the pressure,

e c: the sound speed,

e p.: the density;

and those of the solid by

v: the displacement vector field,
pg: the density,

Ag and pg: the Lamé coeflicients,
€(v): the strain tensor defined by

1 8%’ 8’0]‘ L
Sij(v) _—2—<6$]+6$2), Zaj_la"'7na

o(v): the stress tensor, which we assume to be related to the strains by
Hooke’s law:

O’ij(V /\ Ze’:‘kk (51] + 2[1361]( ) i,7=1,...,n.

We are interested in the small amplitude motions departing from the rest. The
classical linearization procedure yields the following eigenvalue problem for the free
vibration modes of the coupled system and their corresponding frequencies w (see,
for instance, [14]):

Findw>0,u:Q, — R, v:Q, — R" andp: Q. — R, (u,v,p) # 0, such
that

(2.1) Vp —w?pu=0 in Q,
(2.2) p+p.ctdivu=0  inQ,
(2.3) div [o(v)] + w?p,v =0 in Qg,
(2.4) uwv=v-v onTl,
(2.5) oc(viv+pr=20 on T,
(2.6) o(vin=0 on T,
(2.7) v=0 onT,.
Let us introduce a new variable, ¢ := 2p, for the potential of the fluid dis-

placement field (indeed, from (2.1) we deduce u=V¢in Q.). Then the fluid
displacement u can be eliminated from (2.1), (2.2) and (2.4). Furthermore, we can
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replace p in (2.5) by p,w?@ to obtain the following set of equations equivalent to
(2.1)-(2.7):

(2.8) PG + c%p =0 in Q,,
(2.9) p=pew’p i Q,
(2.10) div [o(v)] +w?p,v=0  in Qg
(2.11) g—i =v-v onTl,
(2.12) o(V)v+ pwior =0 onT'.
(2.13) o(vin=0 onT',
(2.14) v=0 onT,.

Let X denote the product space defined by
X = H%‘D(Qs)n X L2(QF)7

where H%D(QS)" = {w € H(Qg)" : wlr_, = 0}. We endow X with the usual
product norm

1/2
I, @)= (1wl + ey | -

To give a weak formulation of the spectral problem above, we first multiply (2.10)
by a test function w € H%D(QS)” and then integrate in Qg. By using a Green’s

formula and taking into account (2.13) and (2.12) we obtain

(2.15) /Q a(v):e(w)—wQ/F p},,gbw~udl"=cu2/Q PV - W.

S I S

Next, we multiply (2.9) by 1/p.c? times a test function ¢ € L%(Q,), integrate in
Q. and add the resulting equation to (2.15). We get

1) [ ot [ g

S

1
= w? /psv-w-l-/ —2¢q+/ ppdow-vdl|.
: Qg op € r,

Similarly, by multiplying (2.8) by a test function 9 € H'(Q,), integrating in 2,
and using a Green’s formula and (2.11), we obtain

(2.17) /QpFV¢~V1/1=/Q cizpz/l—i-/rva-w/)dl".

Notice that this equation makes sense only if the following compatibility constraint

holds:
1
/ —2p+/ pev-vdl'=0.
QF‘C 1—‘I

In that case, the potential ¢ is uniquely determined up to an additive constant by
equation (2.17). Furthermore, if the test functions in (2.16), w € H%D(QS)" and

q € L*(Q,), are chosen so as to satisfy also this constraint, (2.16) will be valid
independently of this additive constant.

F
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Let us denote by V the closed subspace of X given by

1
V= (W,q)GX:/ —2q+/ ppw-vdl'=0
QFC FI

and let W := H'({,)/R, endowed with the standard quotient space norm. Thus,
(2.16) and (2.17) show that any solution of the original spectral problem (2.1)—(2.7)
also satisfies the following weak formulation:

Find w >0 and 0 # (v,p) € V such that

(2.18) /Q o(v):e(w) —I—/Q

S F

(1,

with ¢ € W such that
1
(2.19) / pFVQS-Vd):/ c—2p1/1+/ ppv v dl Yip € W.
QF QF

b

1
Psv-w+/ c—2¢q+/ pp¢w-vdF> V(w.q) €V,
O I

F 1

FI

In the following section we will prove further regularity of the eigenfunctions
of this spectral problem. As a by-product, we will show that all the solutions of
(2.18)—(2.19) also solve (2.1)—(2.7) with u = V¢.

For theoretical purposes it will be useful to consider also the variational spec-
tral problem obtained by eliminating ¢ in (2.18)—(2.19). Let us denote by M the
bounded linear operator

M: YV — W,
(f,9) — ¢

with ¢ being the unique solution in W of the compatible Neumann problem

1
(2.20) / pFVQS-V?/):/ —2gz/1+/ pef-vypdl Vi) € W.
Qp Q. ¢ r,
Therefore problem (2.18)—(2.19) is equivalent to the following one:

Find w > 0 and 0 # (v,p) € V such that:

(2.21) /Q s+ /ﬂ

={ /

3. CHARACTERIZATION OF THE SPECTRUM AND A PRIORI ESTIMATES

bq
e Pr c?

1
psV'W+/ C—QM(v,p)qu/ pFM(V,p)W'VdF}
nF

S 1

Y(w,q) € V.

Let us now consider the following continuous bilinear forms from V x YV — R:

a((v,p), (W,q)) :=/Q a(v);s(w)_,_/Q

s

pa,
. PeC?

1
b((v’p)a(WaQ)) :=/Q IOSV'VV—F\/;2 EM(VaP)Q"'/ pFM(V,p)W'VdF.
S F 1
The first one is symmetric and, by Korn’s inequality, elliptic on X, and hence on
V. Regarding the second one we have the following result:
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Lemma 3.1. The bilinear form b is symmetric and positive definite.

Proof. Let (v,p), (w,q) € V and ¢ := M(v,p), ¥ := M(w,q) € W. Then
b((v,p), (w,q)) = /ﬂ

= /psV‘W+/ pe VP - Vo
Q 1"‘

S

1
= [ owews [ S [ pvevpar
Q Q. € r

S I

b((w,q), (v,p))-

1
pov-wt [ St [ powevar
Q. € r

S I

Furthermore,

(3.1) b((v,p), (v,p)) = /Q plv+ [ ool Ve 20,

S FI
and this vanishes only if v = 0 and V¢ = 0. In this case, by the definition of M,
Jo v = fQF peV¢-Vip— [ pv-vipdl =0 for all € W. On the other
F I
hand, since (v,p) € V, then [, Hp=— [, ppv-vdl =0. Thus [, Hpp =0
F I F
for all ¢ € H(£,), and hence p = 0. 0

The previous lemma shows that b(-, ) is an inner product on V. Hence it defines
a norm on this space that we denote |-|. Furthermore, because of (3.1), the following
characterization holds:

(32)
(£, 9)1 := b((F, 9), (£, 9)) = / pulf? + / P [VOI%,  with ¢ = M(E, g).
Q

S QF‘
In order to analyze our spectral problem we introduce the following bounded
linear operator:

T: y — Y,
(f,9) — (v,p)

with (v,p) € V being the solution of the elliptic problem

(33) a((v,p), (W> Q)) = b((f7 g)’ (W> Q)) \V/(W7 Q) eV.

Notice that the ellipticity of @ and the continuity of b yield ||(v,p)| < C|(f, g)|.

It is simple to show that T is self-adjoint and positive definite with respect to
a and b. Hence all of its eigenvalues are real and positive. On the other hand,
()\, (v,p)) is an eigenpair of T if and only if w = —\/17_ and (v,p) are solutions of
(2.21). Therefore, the knowledge of the spectrum of T gives complete information
about the solutions of our original problem.

We have the following a priori estimates for T(V):

Lemma 3.2. There ezist constantst € (0,1] and C > 0 such that if (v,p) = T(f, g)
with (f,g9) €V, then v € HH(Q )", p € H(Q,) and

(3.4) IVl 2+ g + Pl B2 (0p) < CH(E, 9)I-
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Proof. Since (v,p) = T(f, g), then we have

|
(3.5) /ﬂ o(v) : e(w) + /Q e
1
=/ﬂ psf-WJr/Q c—2¢q+/rpp¢w-vdl“ V(w,q) €V,

S F I

for any ¢ € H'(Q,) such that

(3.6) /SIpFng-V@b:/Q 0—1291l1+/rpr-u¢dI‘ Vip € W.

F I

If ¢ is chosen as the particular solution of (3.6) satisfying

1 1
3.7 / —/ =,
3.1 Q. prC? P a, ¢ ?

F
then (3.5) is also true for (w,q) = (0,1), and hence for all (w,q) € X =V @

{(0,1)}).
In particular, for any q € L*(Q,), we may apply (3.5) to (0, q) € X to obtain

1 1
5 Pq = — ¢q.
Qp Pr€ Q €

Thus p = p,¢ and hence p € H(Q,) with

Pl o) < C [Ipllz2a,) + 1V8l2a,)7 | < CIE ),

the latter inequality because of ||(v,p)|| < C|(f, g)| and (3.2).

On the other hand, by testing (3.5) with different (w,0) € X and using p = p, ¢,
we have that v is a solution (in the sense of distributions) of the following elasticity
problem:

—divio(v)]=pf in Q,

o(v)v=—pv onT,
o(vin=0 on Ty,
v=0 onI'y.

Therefore, it follows from the results in [9] (see, for instance, [15]) that there
exists t € (0,1] such that v € H'**(Q4)" with

[V llmseagr < C [IElzz@gye + Iplaee,)| < C(E9))

This lemma, allows us to characterize the spectrum of the operator T:

Theorem 3.3. The spectrum of T consists of 0 and a sequence of strictly positive
finite multiplicity eigenvalues {\, : k € N} converging to 0.

Proof. Tt is an immediate consequence of Lemma 3.2, the compactness of the in-
clusion [H'*(Qg)" x HY(Q,)] NV — V (for ¢ > 0) and the self-adjointness and
positive definiteness of T. O

The following lemma states a priori estimates for M(V):
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Lemma 3.4. There ezist constants s € (1,1 and C > 0 such that, if $ = M(f, g)
with (f,9) €V, then ¢ € H5(Q.)/R and

(3-8) Vllaso» < ClIE -

Proof. By the definition of M, ¢ is solution of the compatible Neumann problem
(2.20); thus

1

—A¢p = i
¢ chQQ in Q,
9¢
6U:f'u onTI'.

This problem can be transformed into a homogeneous Neumann problem by using
the results in [8] on lifting of traces in a polyhedral domain. Then, we can apply
the results in [16] to obtain the claimed result. O

Now we are able to prove further regularity for the eigenfunctions of our problem,
which will be used to obtain error estimates for the finite element method to be
introduced in the next section:

Lemma 3.5. Let (f,g) be an eigenfunction of T. Then f € H*H(Q,)", g €
H5(Q,) and

(£l z2+e g )m + gl mr+s ) < CI(E, 9)l,
with t € (0,1] and s € (%,1] as in Lemmas 3.2 and 3.4, respectively.
Proof. Let (v,p) = T(f,g) = A(f, g). Since A > 0, Lemma 3.2 implies

1 .
g=xpe H'(Qy), with |lgllmi @, < CI(f,9)l,
and

1
f= XV € H1+t(Qs)n, with ||f||H1+t(QS)n <’ |(f,g)|
Now, let ¢ € H'(Q,) be defined by (3.6) and (3.7). Then, by proceeding as in
Lemma, 3.2, we have that p = p,¢. Thus by applying (3.8) we obtain

1
IVgllze@p)m = S IVPlae @) < CIVElHe @) < ClIE 9l < Cl(E, 9)l-
O

4. FINITE ELEMENT DISCRETIZATION

Let {7,}'} and {7;° } be two families of regular tetrahedral meshes of 2, and g,
respectively; h denotes as usual the meshsize. The meshes do not need to coincide
on their common interface I';, but we assume that the faces of those tetrahedra in
’Z}f, lying on the external boundary of Q, are completely contained either on I'y
or on I'.

In order to approximate the operator M we have to compute a solution of
problem (2.20). For this we use standard piecewise linear finite elements. Let
Lr(9,.) denote the space of continuous piecewise linear functions on 7, and let
Wy, = Lp(Q;)/R C W. We define an approximate operator My, : ¥V — Wy, by
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My (f, g) := ¢p, with ¢p being the unique solution in Wy, of the discrete Neumann
problem

1
@y [ o Ven Vo= [ Soont [ ptovindr e
QF QF ¢ FI
The error estimate for this approximation is very well known:

Lemma 4.1. For (f,g) €V, let ¢ and ¢n, be the solutions of problems (2.20) and
(4.1), respectively. Then,

(42) V(¢ = én)llrz(o, ) < CRAI(E, 9,
where s € (%, 1] is such that estimate (3.8) is valid.

Proof. Tt is a direct consequence of standard finite element error estimates and
Lemma 3.4. 0

Now we define an approximation of T. Let L£(2,) be the space of continu-
ous piecewise linear functions on ’J;LS and Qp(Q,) the space of piecewise constant
functions on T,F. Let Xy := {(Wh,qn) € Ln(Q)"™ X Qn(Qe) : Wi, = 0} and
Vh = Xh n V

The following approximation property holds:

Lemma 4.2. There exists a linear operator Iy, : ¥V — V}, such that, if p € H' ()
and v € HTH Q)™ for some t € (0,1], then

I1(v,p) = (v,PI| < C B [IVlliveagy + Py | -

Proof. Let vy, be the Clément interpolant of v in L£4(Q4)™ (see [7]). Let pp be the
L?(Q,)-orthogonal projection of p onto the subspace Qx (). The standard error
estimates yield

(4.3) v, — V”Hl(Qs)n < C ht”V||H1+t(Qs)n,
(44) 1Bn — Pllz2e,) < Chlplaia,)-
Let py := P, + dp, with dj a constant chosen such that

1
/Q E—z—ph—i-/r ppvh v dl' =0.

F I

Then (vi,pr) € Vi and, since fQ Lhn=[, Zp=— fr‘ ppV - v dl, then

F

_ —v) v dr.
dp, ~ meas ( </ ph+/ ppC2V, - udF> meas(Q )/F(v vp) v d

I

Hence, by using (4.3), we have
(45) |dh| < C th — V”Hl(QS)n < Cht“V”HH—t(QS)n.

Thus by defining I5(v,p) := (vh,ph), the proof follows from (4.3), (4.4) and (4.5).
O

Now let T, : YV — V be the linear bounded operator given by Ty(f,g) =
(Vh,pr), with (vp,pp) € YV}, being the solution of the discretized source problem

(4'6) a((vhaph)a (Wh, Qh)) = bh((fa g)a (Wh, qh)) \V/(Wha Qh) € Vh,
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where by, : ¥V x ¥V — R is the bilinear form defined by

bu((v,p), (W,4)) :=/Q psv-W+/Q C%Mh(v,p)w/ peMu(v,p)w v dT.

S I

Notice that (4.6) is a nonconforming approximation of (3.3), because b has been
replaced by b. The following lemma provides an estimate for the corresponding
consistency term which will be used below:

Lemma 4.3. There exists a constant C > 0 such that, for all (f,9) € V and
(Wh,qn) € Vi,

6((£, 9), (Wh,an)) — bu((£, 9), (Whyan))| < CREI(E, g)| | (wh, an)ll,

where s € (3,1] is such that estimate (3.8) holds. Furthermore, if (f,g) is an
eigenfunction of T, then

b((£,9), (Wh,an)) = br((£,9), (Wh,an))| < CR**|(E, 9)l | (W, an)]l-

Proof. Let ¢ = M(f,g) and ¢p = Myp(f,g). Let v = M(wp,qn) and ¢ =
Mp(Wh,qr). Then, by applying (2.20), (4.1), (3.2) and (4.2), we have

(4.7) b((fag)’(whth)) - bh((f’g)?(whth))
= / i2(¢>—¢>h)qh+/ Pp (¢ — pn)wp - v dl’
Q. € r

F I

- / PV (6 — bn) - Vb

Qp

- /Q PV (b~ br) - V(i — )

F

- / PV V() —n)

F

< CR(E,9)| | (Whyaqn)]l-

Assume now that (f,g) is an eigenfunction of T. Then from Lemmas 4.1 and
3.5 we have

IV (6 = dn)llL2 e, < CRII(E 9)ll < CR7I(E, g)l.

Therefore, instead of (4.7) we have in this case

b((£,9), (Wh,an)) — br((£,9), (Wh,qn)) = /Q PV (p—n) - V(¢ —tn)

F

C h%| (£, 9)| || (Wh, qn) |-

IA

O

A proof similar to that of Lemma 3.1 shows that by is symmetric and its restric-
tion to Vj x V), is positive definite. Thus the operator Tj : YV, — V}, turns out
to be self-adjoint and positive definite with respect to a and b,. Hence all of its
eigenvalues are real and positive.

The following lemma implies uniform convergence of Tp to T as h goes to 0,
which will allow us to use the spectral approximation theory in [1]:
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Lemma 4.4. There exists a constant C > 0 such that, for (f,g) €V,

[(T — Th)(£, 9)ll
(£, 9)]
with r = min{s,t}, where ¢t € (0,1} and s € (3,1] are such that (3.8) and (3.4)
hold. Furthermore, if (f,g) is an eigenfunction of T, then the previous inequality
holds forr =t.

<Ch",

Proof. This is a direct consequence of the First Strang’s Lemma (see, for instance,
[6]) and Lemmas 4.2, 3.2 and 4.3. In the case of (f, g) being an eigenfunction of T,
r = min{2s,t} = t. O

As a consequence of the lemma above, since the bilinear form b defining the
norm | - | is continuous on V, then T} converge to T in norm || - || (actually also
in | -|) and hence isolated parts of the spectrum of T are approximated by isolated
parts of the spectrum of Tj (see [11]). More precisely, for any eigenvalue A of
T of finite multiplicity m, there exist exactly m eigenvalues )\(1), cees Afzm) of Ty
(repeated according to their respective multiplicities) converging to A as h goes
to zero. Furthermore, no spurious modes can arise as is typical in some other
discretizations of spectral problems in fluid-structure interaction (see, for instance,
[10)).

From now on and until the end of this section let A\ be a positive fixed eigenvalue
of T of finite multiplicity m and let E be its associated eigenspace. For h small
enough, let )\21)’ e ,Agm) be the m eigenvalues of T}, converging to A and let Ey,
be the direct sum of the corresponding eigenspaces. Thus, by applying the spectral
approximation theory for compact ‘operators as stated in [1] (Theorem 7.1) and by
using Lemma 4.4, we obtain the following error estimates:

Theorem 4.5. There exists a constant C' > 0, independent of h, such that

1. for each (Vh,pr) € En, dist (v, pr), E) < Ch||(vh,pa)ll,
2. for each (v,p) € E, dist ((v,p), Ex) < Cht||(v,p)|,

where dist denotes the distance in norm || - || and t € (0,1] s such that estimate
(3.4) holds.

Finally, regarding the eigenvalues, we are going to prove a theorem providing
an improved order of convergence. For this purpose we will exploit the fact that
our spectral problem is “variationally formulated” in the sense of [1] (Section 8).
However the results in this reference cannot be directly applied to our case since
(4.6) is a nonconforming approximation of (3.3).

Let us denote by H the Hilbert space obtained as the completion of the space V
with respect to the norm | -|. Then (V,|| - ||) is continuously and densely included
in (H,|-]). Thus the operator T can be uniquely extended to H and this extension
is also self-adjoint with respect to b. Similarly, T} can also be extended to H;
however this extension is not self-adjoint with respect to b. Indeed, let us call T}
its adjoint with respect to this inner product; then, ¥(v,p), (w,q) € H,

b(T}(v,p), (W,q)) = b((v,p), Tn(w,q)) = a(T(v,p), Tn(w,q)),

whereas

b(Tw(v,p), (W,q)) = a(Th(v,p), T(w,q)),
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which, in general, do not coincide. Nevertheless a larger order of convergence can
be proved for the approximation of the eigenvalues:

Theorem 4.6. There exists a strictly positive constant C, independent of h, such
that

P—A? <CR¥, i=1,...,m,

with r == min{s, t}, where t € (0,1] and s € (5,1] are such that (3.4) and (3.8)
hold.

Proof. By specializing Theorem 7.3 of [1] to our situation we have that, for i =
1,...,m,

PR

< C| s sw [p((T-Tw)(E9),E9)|
(f,9)€EE (f,5)eE
E.91=1 ) #,9)1=1

+ (T = Th)e| (T - TH)Ie|| -

Lemma 4.4 provides a bound of |(T — T4)|g|, so we only need to estimate the two

remaining terms in the expression above. For the first one, let (£, g), (?, 9) € E and
let

(v,p) :="T(f,9) €V, #.p) =T(Eg) eV,
(Vh,pn) := Th(f,g) € Vi, (Vh,Dh) == Th(f,9) € Vi
Then
(4'8) b((T - Th)(f’ g)’ (E §)) = a((V,p) - (Vh,ph), (v,ﬁ))

= a((v—vap—pn),( ¥ —Vr,D—Dn))
+ [6((£, 9), Fn,Br)) — br((£, 9), (V1. Bn))] -

The first term in the r.h.s of this expression can be easily bounded by using the
continuity of ¢ and again Lemma 4.4:

(4.9) |a((v = v, p = Pa), ¥ = 90, D= B)) | < CH¥|(£,9)| (£, )],

whereas for the second one we use Lemma 4.3 and the uniform boundedness of
Th:H — Vi

(410) lb((f, g)a (Ghaﬁh)) - bh((f’ g)’ (Vhaﬁh))l Chzsl(f’ g)l ”(Ghaﬁh)”
< Ch¥|(f,9)lI(£,9)].

Thus, as a consequence of (4.8), (4.9) and (4.10), we obtain

VAN VAN

sup  sup lb((T —Ty)(f,9), (f, g))’ < O pmin{2s,2t}
(£.9)€E (£,9)cE
(E9I=12.6)1=1
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On the other hand, regarding I(T - T;;,)IEI? since V is dense in H, we have

(T-T})e| = sw swp b(T-T5{F ), (Fg)
(?xg)EE (f,9)€V
|(£,9)|=1 |(f,9)|=1

= sup  sup b((£,9),(T - Th)(f,9)).
(?vg)GE (£,9)€V
I(,9)|=11(F:9)=1

Then b((f,3), (T — Ta)(f,9)) = b((T — Tr)(f,9), (f,3)) can be handled as above.
However, now (£, g) ¢ E; so, by repeating the arguments above, we only obtain

p((T = Tw)(E.9), £9)| < Chmnt2 (£, 9) | F, D).

Nevertheless, since Lemma 4.4 yields |(T—T}) |g| < C kY, this is enough to conclude
the theorem. -0

5. COMPUTER IMPLEMENTATION

In the previous section it was proved that the spectrum and eigenfunctions of
T}, converge to those of T as h goes to zero. Equivalently, the solutions of the
spectral problem (2.18)—(2.19) are approximated by those of the following discrete
eigenvalue problem:

Find wyp, > 0 and 0 # (vp,pn) € Vi, such that

Pr4h

60 [ atwn)etm)+ [

S F

2 1.
= Wh PsVh Wht+ [ — dngn +
Q Q. € r

with ¢p, € Wy, such that

P

,0F¢.>h Wh -V dF:'

V(Wh,qn) €V,

S I

) ) 1 . . )
(5.2) / PV én - Vipy =/Q C—Qph?ﬁh-F/F pevh-vYpdl Vb, € Wh.
Q

F F I

In the equations above dotted variables (e.g., éh, ¢h) are used to denote classes
of the quotient space Wy, = L,(2,)/R. We will use this notation throughout this
section to distinguish these classes from their own members, which will be denoted
by the corresponding undotted symbol (e.g., ¢n, ¥, respectively).

From the computational point of view it would be convenient to avoid imposing
the constraint in the definition of V. To this goal, consider the following discrete
spectral problem, which is formally obtained by adding equation (5.2) multiplied
by w? to equation (5.1), and using a member of én, such that (5.1) is valid for any
test function in X'p:
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Find wp, >0 and 0 # (Vh, Dh, ¢n) € Xn X Lp(Qy) such that
(5.3) / o(vy) : e(wy) +/

Qg Qp

1
Zwﬁ[/ Pth‘Wh+/ —2¢>th+/ PrPrWp v dl
Q Q, ¢ r
F

0 2 Prdn
F

S I

1
+/ —2Ph¢h+/ ,OFVh'W/)hdF—/ ,OFV%'V%}
Q. € r Q

I F

V(Wh, qh,¥n) € Xp X Li(S2e).

As shown below, this is a well-posed algebraic generalized eigenvalue problem
with symmetric sparse matrices. Clearly it has w? = 0 as an eigenvalue with
associated eigenspace {0} x {0} x L(2;). In the following lemma we show that,
apart from w? = 0, problems (5.1)—(5.2) and (5.3) are equivalent. More precisely,
the following result holds:

Lemma 5.1. Let wp > 0. Then, wp, 0 # (Vi,pp) € Vi and th € Wh, are solution
of (5.1)=(5.2) if and only if wp, and O ;é (Vh,Dh, ®n) € X X Li(Q) are solutions
of (5.3), with ¢n, being the member of ¢y satisfying

1 1
(5.4) / 5 Ph = wﬁ/ — Ph-
Qp Pr€ Q. €

Proof. Let wp, > 0, 0 # (vi,pn) € Vi and ¢ € Wy, be solutions of (5.1)—(5.2).
Let ¢, be the member of ¢y satisfying (5.4). Then, by using ¢y instead of b in
(5.1), this equation is satisfied for (wp,gn) = (0,1) too, and thus it is valid for all
(Wh,qn) € Xn =V, ® ({(0,1)}). On the other hand, since (vn,pn) € Vi, (5.2) is
valid for all 1, € L,(€2,). Therefore wy, and 0 # (Vh,pr, dn) € Xp X Li(82,) are
solutions of (5.3).

Conversely, let wy, > 0 and 0 # (Vp, pr, dn) € Xh X L () be solutions of (5.3).
By testing this equation with (wp, qn, %) = (0,0,1) we prove that (vh,pn) € Vi.
Hence (5.2) is well-posed for ¥ € Wy, and satisfied by én. On the other hand we
prove that (5.1) holds by using (W, gx,0), with (Wx,qn) € V4, as a test function in

(5.3). Therefore wp, 0 # (Vh,pr) € Vi, and ¢ € W, are solutions of (5.1)-(5.2). O

Finally we will show that the discrete spectral problem (5.3) leads to a well-posed
algebraic generalized eigenvalue problem with symmetric sparse matrices. Let us
write it in matrix form. Let Y, ®, II, 2, ¥ and © denote the vectors of nodal
components of Vi, ¢n, D, Wh, ¥n and gy, respectively. The matrices associated
with the bilinear forms in the variational formulation (5.3) are defined by

SKY = / o(vy) : e(wp), EMY = / PsVh * Wh,
QS QS 1
AL R
Qn Qp PrC
UBII = / lzph’l,bh, TICY = / PeVh V’l,bh dr.
Q. € r,

K and M are the standard stiffness and mass matrices of the solid, respectively.
Similarly, D and F are the stiffness and mass matrices corresponding to the fluid.
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On the other hand, C is a matrix for the interface coupling between solid displace-
ment and fluid displacement potential, while B is a coupling matrix between the
latter and the fluid pressure.

Problem (5.3) is written in terms of these matrices in the following way:

K 0 0 2 M 0 Ct 0l
(5.5) 0 Do n|=w{ 0 0 Bt o
0 0 0 ® C B -F ®

This is a well-posed generalized eigenvalue problem with symmetric indefinite
sparse matrices. As was said above, w,% = 0 is an eigenvalue of this problem with
eigenspace {0} x {0} x L,(Q,).

Apart from w? = 0 it has a finite number of eigenvalues, which are exactly
those of Problem (5.1) with ¢, = My (vs,pp). Since this last problem involves
symmetric positive definite matrices, the number of nonzero eigenvalues is equal to
the dimension of V), (and all of them are strictly positive).

This implies that for any value of o, different from all these eigenvalues, the
matrix

K 0 o0 M 0 Ct K-cM o0 —oCt
0 DOJ—-cf 0 0 Bt = 0 D —oBt
0 0 O C B -F —oC —oB oF

is non singular and sparse. Consequently any “shift and invert” method could be
conveniently used to solve this eigenproblem.

On the other hand, since the pressure field is approximated by piecewise con-
stant functions, matrix D is diagonal. Because of this, the degrees of freedom
corresponding to the pressure can be statically condensed in the “invert” step of
any “shift and invert” method, without destroying the sparseness of the matrices
(see [12] for details). Therefore, the dimension of the system which should be effec-
tively solved is equal to the number of degrees of freedom of the solid displacement
plus those of the fluid potential, i.e., the same number as if the nonsymmetric
displacement /potential formulation in [17] were used.

In reference [12] a convenient two-step algorithm based on this static condensa-
tion is introduced to solve the eigenvalue problem (5.5). Further implementation
issues are discussed in this reference and 2D numerical experiments exhibiting the
good performance of the method are also reported.

REFERENCES

1. I. Babuska and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, Vol. II,
P.G. Ciarlet and J.L. Lions, eds., North Holland, Amsterdam, 1991. CMP 91:14

2. A. Bermitdez, R. Durdn, M.A. Muschietti, R. Rodriguez and J. Solomin, Finite element
vibration analysis of fluid-solid systems without spurious modes, SIAM J. Numer. Anal., 32
(1995) 1280-1295. MR 96e:73072

3. A. Bermudez, R. Duran and R. Rodriguez, Finite element analysis of compressible and in-
compressible fluid-solid systems, Math. Comp., 67 (1998) 111-136. MR 98¢:73073

4. A. Bermiudez, L. Hervella-Nieto and R. Rodriguez, Finite element computation of three di-
mensional elastoacoustic vibrations, J. Sound & Vibr., 219 (1999) 277-304.

5. A. Bermtdez and R. Rodriguez, Finite element computation of the vibration modes of a
fluid-solid system, Comp. Methods Appl. Mech. Eng., 119 (1994) 355-370. MR 95j:73064

6. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis,
Vol. II, P.G. Ciarlet and J.L. Lions, eds., North Holland, Amsterdam, 1991. CMP 91:14

7. P. Clément, Approzimation by finite element functions using local regularization, RAIRO
Anal. Numér., 9 (1975) 77-84. MR 53:4569



552

8.

9.

10.

11.
12.
13.

14.

15.

16.

17.

ALFREDO BERMUDEZ AND RODOLFO RODRIGUEZ

M. Dauge, Problémes de Neumann et de Dirichlet sur un polyédre dans R3: régularité dans
des spaces de Sobolev Lp, C. R. Acad. Sci. Paris, Série I, 307 (1988) 27-32. MR, 90a:35057

M. Dauge, FElliptic boundary value problems on corner domains: smoothness and asymptotics
of solutions, Lecture Notes in Mathematics 1341, Springer, Berlin, 1988. MR 91a:35078

M. Hamdi, Y. Ousset and G. Verchery, A displacement method for the analysis of vibrations
of coupled fluid-structure systems, Internat. J. Numer. Methods Eng., 13 (1978) 139-150.

T. Kato, Perturbation theory for linear operators, Springer, Berlin, 1976. MR 53:11389

M. Mellado and R. Rodriguez, Efficient solution of fluid-structure vibration problems, Appl.
Numer. Math. 36 (2001) 389-400. CMP 2001:10

H. Morand and R. Ohayon, Substructure variational analysis of the vibrations of coupled
fluid-structure systems. Finite element results, Internat. J. Numer. Methods Eng., 14, (1979)
741-755.

H.J-P. Morand and R. Ohayon, Fluid-structure interactions, John Wiley & Sons, New York,
1995.

T. von Petersdorff, Boundary value problems of elasticity in polyhedra: singularities and
approzimation with boundary element methods, PhD Thesis, Technical University Darmstadt,
Darmstadt, Germany, 1989

T. von Petersdorff and E.P. Stephan, Regularity of mized boundary value problems in R3 and
boundary integral methods on graded meshes, Math. Methods Appl. Sci., 12 (1990) 229-249.
MR 91k:35049

0O.C. Zienkiewicz and R.L. Taylor, The finite element method, Mc Graw Hill, London, 1989.

DEPARTAMENTO DE MATEMATICA APLICADA, UNIVERSIDADE DE SANTIAGO DE COMPOSTELA,

15706 SANTIAGO DE COMPOSTELA, SPAIN

E-mail address: mabermud@usc.es

DEPARTAMENTO DE INGENIERfA MATEMATICA, UNIVERSIDAD DE CONCEPCION, CASILLA 160-C,

CONCEPCION, CHILE

E-mail address: rodolfo@ing-mat.udec.cl



