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AN ALGORITHM
FOR FINDING ALL PREPROJECTIVE COMPONENTS
OF THE AUSLANDER-REITEN QUIVER

PETER DRAXLER AND KLARA KOGERLER

ABSTRACT. The Auslander-Reiten quiver of a finite-dimensional associative al-
gebra A encodes information about the indecomposable finite-dimensional rep-
resentations of A and their homomorphisms. A component of the Auslander-
Reiten quiver is called preprojective if it does not admit oriented cycles and
each of its modules can be shifted into a projective module using the Auslander-
Reiten translation. Preprojective components play an important role in the
present research on algebras of finite and tame representation type. We present
an algorithm which detects all preprojective components of a given algebra.

1. INTRODUCTION

It is one of the main aims of representation theory to understand the category
of representations of an algebra A over a commutative ring k. We consider the case
that & is an algebraically closed field and A is associative and finite-dimensional
as k-space. Moreover, we are only interested in finite-dimensional representations
which we consider as finite-dimensional right A-modules. Together with the A-
homomorphisms these modules form the category mod—A.

The key which allows us to study mod—A with combinatorial algorithms is the
observation that A and to a large extend also mod—A can be studied using directed
graphs known as quivers. Namely, it was observed by Gabriel (see [Gal], [Ga2])
that any basic finite-dimensional algebra over an algebraically closed field k is of
the shape k[Q]/I where @ is a finite quiver and I is an admissible ideal of the path
algebra k[Q]. Since any finite-dimensional algebra is Morita equivalent to a basic
algebra and Morita equivalent algebras have equivalent module categories, it is no
loss of generality to study only the representation theory of basic algebras.

The quiver describing mod—A is usually called the Auslander-Reiten quiver of
A. Tts set of vertices is formed by picking precisely one representative from each
isomorphism class of indecomposable modules, and the number of arrows from X
to Y is given by the k-dimension of the space rad(X,Y)/rad%(X,Y). Note that
the Auslander-Reiten quiver is even a translation quiver, meaning that it carries
an additional structure, namely the Auslander-Reiten translation Ta.

In general, it is hard to calculate components of the Auslander-Reiten quiver.
One reason is that the calculation of 74 involves the transpose functor (see [ARS]),
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for which no practicable way of implementation is known. The other reason is that
the Auslander-Reiten quiver usually has many oriented cycles, and therefore no
inductive construction is possible because there are no natural starting points. One
exception is the so-called preprojective components, which are components without
oriented cycles where every vertex can be shifted into a projective module by some
power of 74.

Preprojective components play a decisive role in the study of finite-dimensional
algebras. The reason is that in many cases (e.g. for algebras of finite representation
type, see [BGRS]) covering techniques (see [BG]) allow us to reduce the study
of an algebra to the study of an algebra having a preprojective component in its
Auslander-Reiten quiver. The Bautista-Larrién separation criterion ([BL]; see also
[Bo]) provides a handy sufficient condition to ensure the existence of a preprojective
component. Nevertheless, there are many algebras that do not satisfy the separation
criterion whereas their Auslander-Reiten quivers do have preprojective components.

We will see in Section 3 that concerning preprojective components it suffices to
consider algebras A = k[Q]/] where Q is cycle-free, i.e. there are no oriented cycles
in Q. The aim of this paper is to present an inductive algorithm which produces

an initial subquiver Q* of @ such that the algebra A* = k[Q*]/I N k[Q*] has the
following properties:

e The Auslander-Reiten quiver of A* has preprojective components which con-
tain all indecomposable projective modules over A*.

e A preprojective component of the Auslander-Reiten quiver of A* is a pre-
projective component of the Auslander-Reiten quiver of A if and only if it
does not contain any indecomposable radical summand of an indecomposable
projective module associated with a direct neighbour of @* in Q.

e All preprojective components of the Auslander-Reiten quiver of A appear as
above.

Since modules in preprojective components are characterised by their dimension
vectors and by [KP] only a finite initial piece of a preprojective component can
contain a given module, this is a finite algorithm which allows us to check the
existence of preprojective components and to construct all of them.

Implementations of algorithms for the calculation of preprojective components
(in case they exist) are contained in the CREP program system. (The CREP
system and information about it can be found in the WWW under the URL
http://www.mathematik.uni-bielefeld.de/birep/crep.html.)  These implementa-
tions can be used to perform our inductive algorithm step by step. A completely
automatic implementation of our algorithm which only needs the quiver @ and the
dimension vectors of the indecomposable projective modules and the indecompos-
able direct summands of their radicals as input data is in preparation.

The inductive calculation of preprojective components is very fast, because only
comparisons and additions of vectors with short integer entries have to be per-
formed. These vectors are of length ¢, which is the number of vertices of the quiver
Q@ where A = k[Q]/I is the given algebra. Thus the running time does not depend
- on the number of arrows and is quadratic in g, since for every inductive step at
most g dimension vectors of length ¢ have to be calculated. Since the calculations
of the new dimension vectors are independent of each other, on a parallel computer
the running time will even be linear in gq.
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Let us outline the contents of the paper. In Section 2 we provide the necessary
definitions and preliminaries. For more background we refer to [ARS], [GR] and
[Ri]. Section 3 is devoted to the study of completely preprojective algebras which
are defined by the property that every indecomposable projective module appears
in some preprojective component. In Section 4 we present our algorithm and show
that the first of the above properties holds. Finally, in Section 5 we establish the
uniqueness of A* and prove the two remaining properties.

2. DEFINITIONS AND PRELIMINARIES

2.1. Let A be a basic finite-dimensional k-algebra with a chosen decomposition
1 =3"",¢; of the unit element of A into orthogonal primitive idempotents. We
form a k-linear category A using {1,...,n} as set of objects and e, Ae, as space
A(z,y) of morphisms from z to y. The composition is the multiplication in A.
The category mod—A of finite-dimensional right A-modules is equivalent to the
category mod—A of k-linear contravariant functors from A to the category mod—k
of finite-dimensional k-spaces. We will denote the functors in this category as A-
modules. The equivalence sends an A-module M to the functor which associates
the space Me, to the object  and the right multiplication by a with each morphism
a € eyAe,.

Note that A is a spectroid in the sense of [GR], meaning that A is a k-linear cate-
gory with finite-dimensional morphism spaces such that the endomorphism algebra
of each object is local and any two objects are isomorphic if and only if they are
equal. The assumption that the algebra A we started with is finite-dimensional is
reflected by the fact that the spectroid A is finite, i.e. has a finite set of objects. We
will follow [GR] by considering finite spectroids A rather than finite-dimensional
algebras A.

If we choose a minimal complete set of representatives of isomorphism classes of
indecomposable modules in mod—.A, then the induced full subcategory ind—.A4 will
also be a spectroid, but usually with an infinite set of objects.

Examples for objects in ind—.A4 are the indecomposable projective modules P, =
A(—,z) and the indecomposable injective objects I, = D A(x,—) for all objects z
of A, where D = Homg(—, k) is the usual duality.

2.2. If S is an arbitrary spectroid, then its Jacobson radical rad § consists of all
nonisomorphisms in §. The quiver Qs of S has the set of objects of S as set
of vertices, and the number of arrows from x to y is the dimension of the space
rad S(z,y)/ rad® S(z, ).

The k-linear path category kQ of an arbitrary quiver @ has the vertex set of Q
as objects and the set of oriented paths from z to y in @ as basis of the morphism
space kQ(z,y). A k-linear functor m : kQs — S which is the identity on the
objects and maps the set of arrows from x to y to a set of morphisms inducing a
basis of the space rad S(z,y)/rad® S(z,v) is called a presentation of S. If Ais a
finite spectroid, then any presentation 7 : kQ 4 — A is full and therefore A can be
identified with k@ 4/I, where I is the kernel of 7.

2.3. Due to results of Auslander and Reiten the quiver of the spectroid ind—.A
for a finite spectroid A carries the additional structure of a translation, i.e. it is a
translation quiver, which is usually called the Auslander-Reiten quiver and denoted
by I' 4. In order to introduce the translation, let us first recall the notion of almost
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split morphisms and minimal morphisms in mod—A. A morphism g : Y — Z in
mod—A is said to be right almost split if it is not a retraction but each morphism
¢ Y’ — Z which is not a retraction factors as ¢’ = gh. It is easy to see that the
existence of such a g forces Z to be indecomposable. A morphism g : Y — Z is
called right minimal if each endomorphism h : Y — Y satisfying g = gh has to be
an isomorphism. Left almost split and left minimal morphisms are defined in the
dual fashion.

The importance of right minimal and right almost split morphisms (and dually
the left minimal and left almost split morphisms) comes from the following fact.
If Z and U are objects in ind—A and g : ¥ — Z is a right minimal and right
almost split morphism, then the number of arrows from U — Z in I' 4 equals the
multiplicity of U as direct summand of Y.

For each object x of A the inclusion ¢, of the submodule rad P, = P,rad A
into P, is right minimal and right almost split. Dually, the projection from I,
onto the factor of I, by the socle of I, is left minimal and left almost split. If Z
in ind—A is not projective or X in ind—.A is not injective, then the fundamental
result of Auslander and Reiten (see [AR]) says that there is a short exact sequence

0-X 1y 2 Z-0in mod—A (called Auslander-Reiten sequence) where f
is left minimal and left almost split and g is right minimal and right almost split.
Moreover, the modules X and Z uniquely determine each other. Therefore, by
putting X = 747 and Z = 7, X we obtain mutually inverse bijections between the
nonprojective objects of ind—.A and the noninjective objects of ind—.A. The map
T4 is called the Auslander-Reiten translation. It follows that for Z and U in ind—.A
with Z nonprojective the number of arrows in I' 4 from U to Z equals the number
of arrows from 747 to U. This is the defining property of a general translation
quiver.

In order to avoid case by case inspections, for the indecomposable projective
modules P, we put 74P, = 0 and for the indecomposable injective modules I, we
put 7, I, = 0.

2.4. The components of I' 4 are usually hard to calculate. The situation is much
easier for preprojective components. A (connected) component © of I"4 is said to
be preprojective if it does not contain oriented cycles and for every vertex Z of ©
there is a nonnegative integer n such that 77} Z is projective.

For a module M in mod—.A the vector dim M = (dimy M (x))zea € Z"™ is called
the dimension vector of M. Since for every exact sequence0 - X — Y — Z — 0
the equation dim X +dim Z = dim Y holds, the dimension vector of the end term
7 of an Auslander-Reiten sequence can be easily calculated once the dimension
vectors of the start term X and the indecomposable summands of the middle term
Y are known.

By writing A as kQ_4/I the modules P, = A(—, z) are actually known because
the paths in @ 4 ending in z and not belonging to Z form a finite set of generators
for P, over k which can be reduced to a basis. With some more effort one can now
decompose the radicals rad P, into indecomposable summands. Because by [Ha]
an indecomposable module in a preprojective component is uniquely determined
by its dimension vector, preprojective components can be calculated inductively
using the dimension vectors of the indecomposable projective modules and their
indecomposable radical summands. Thus these dimension vectors together with
the quiver @4 will serve as input data for our algorithm. The crucial point is
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that one has to know which indecomposable projective modules actually appear in
preprojective components. This is the question we will answer.

2.5.  We need some device which allows us to induce Auslander-Reiten sequences
from subspectroids. Let B be a full subspectroid of the finite spectroid A; then the
canonical restriction functor resp : mod—A — mod—ZB has a right adjoint R and a
left adjoint L which both are functors mod—B — mod—.A. For an object z of A and
a module U in mod—B we have RU(z) = Homp(resg P;,U) and LU(z) = U Qg
resg A(z, —) =2 D Hompg(U,resp I;). Consequently, the functor R is left exact and
maps the indecomposable injective module I, over B to the corresponding module
I, over A. Similarly, L is right exact and maps P, over B to P, over A. In [Sc]
it is shown that for Z in ind—B the module LZ in ind—.A satisfies RTsZ = 74LZ.
Dually, for X in ind—B the module RX is in ind—A and L7z X =7, RX.

For a spectroid S a full subspectroid 7 is called initial provided that, for any
nonzero map f:x — y in S, if y lies in 7, then also z lies in 7. In an analogous
way a full subquiver Q" of a quiver @ is said to be initial if, for any arrow = — y,
if y lies in @', then also x lies in Q.

Let B be a full subspectroid of a finite spectroid A with A = kQ 4/I. Then B is
initial if and only if the full subquiver Q' of @ 4 associated with the objects of B is
initial. In this case Qg = Q" and B = kQ'/I NkQ'.

For an initial subspectroid B of A every module N over B can be considered
as a module over A by putting N(xz) = 0 for all  which belong to A but not
to B. Moreover, this inclusion mod—B — mod—.A coincides with the functor L.
Therefore the formulas from [Sc] degenerate to RTsZ = 742 and 75 X = 7; RX.
In contrast to LN, the module RN is usually not isomorphic to N. Nevertheless,
because RN (z) = N(z) for all z in B, there is a canonical inclusion of N into RN,
which allows us to consider N as submodule of RN.

We will frequently use the fact that an Auslander-Reiten sequence 0 — X —
Y — Z — 0 in mod—A where X and Z belong to mod—25 is actually also an
Auslander-Reiten sequence in mod—13.

2.6. For a preprojective component © of I' 4 we denote by S(0©) the full subspec-
troid of ind—.A associated with the vertices of ©. The defining property of right
minimal and right almost split maps shows that any presentation k® — S(0©) is

full. With the same argument one obtains that S(0) is an initial subspectroid of
ind—A.

3. COMPLETELY PREPROJECTIVE ALGEBRAS

3.1. A finite-dimensional algebra or equivalently a finite spectroid A is called
completely preprojective if every indecomposable projective module lies in a pre-
projective component. Note that A (or equivalently Q) is not assumed to be
connected. This is quite uncommon in the representation theory of algebras, but
we will see that this is essential for our purposes because we will have to build
up quivers inductively from smaller subguivers which usually will not be connected
even if the final quiver is. A preprojective component © of I' 4 is said to be complete
if all indecomposable projective modules P, belong to ©.

If A is completely preprojective, then any cycle in Q4 would give rise to a
cycle in a preprojective component of I' 4. Hence the quiver Q4 of a completely
preprojective finite spectroid A has to be cycle-free, i.e. it does not admit oriented
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cycles. Similarly, one sees that @ 4 is connected if and only if there is precisely one
preprojective component, which is obviously complete.

Proposition 1. Let A be a finite spectroid and © a preprojective component of the
Auslander-Reiten quiver I" 4. If we denote by B the full subcategory of A associated
with all objects © such that Z(x) # 0 for some Z in ©, then the following assertions

hold:
(1
(2

) B={ze A| P, € ©}.

) B zs an initial subspectroid of A.

(3) 7g X =7, X and 78X = 74X for each module X in ©.

(4) @ is a complete preprojective component of I's.

(5) For each y in A and not in B none of the indecomposable direct summands
of resg P, lies in ©.

Proof. (1) If P, is in ©, then P,(z) = A(z,z) # 0 and therefore z is in B. Con-
versely, if Z(z) # 0 for Z in ©, then by the Yoneda lemma Hom 4(F;, Z) # 0 holds.
Since S$(©) is initial, also P, belongs to ©.

(2) Suppose A(z,y) # 0 and P, in ©. Again by the Yoneda lemma Hom 4 (P, P,)
=# 0, and therefore P, is in ©.

(3) For Z in © we first consider the case that Z is not projective, and we
dispose of an Auslander-Reiten sequence 0 - X — Y — Z — 0 in mod—A. On
the other hand, Z is also a B-module and there is an Auslander-Reiten sequence
0— X' — Y — Z — 0 in mod—B. Because for each indecomposable summand
U of Y there is a nonzero morphism from U to Z and from X to U, also X and
Y are B-modules, and therefore 747 = X = X' = 753Z. For Z projective we get
Rz X = 1747 = 0, and therefore also 73 X = 0.

If X is a noninjective module in ©, then the same arguments as above yield
T X = 74X. In case X is injective, then 7, X = 0. But the module RX is
injective as well, and thus 7, X = 7, RX = 0.

(4) follows from (1) and (3) immediately.

(5) Let y be an object of A but not of B. We assume that there is an indecompos-
able direct summand U of resg P, which lies in ©, and obtain 0 # Homp(resg Py, U)
= RU(y). Hence the canonical inclusion of U into the indecomposable module RU
is not an isomorphism, and thus U cannot be an injective A-module. By (3) the
nonzero module X = 7, U lies in ©. The equation U = 74X = R7sX = RU gives
a contradiction. O

3.2. Proposition 1 shows that preprojective components can always be found as
complete preprojective components for some initial subspectroid. After a prepara-
tory lemma we will use this result to show that we only need to consider finite
spectroids whose quivers are cycle-free.

Lemma 2. Let B be an initial subspectroid of a finite spectroid A. Suppose that
O 1is a preprojective component of Ug. If for all y in A but not in B the indecom-
posable direct summands U of resg P, do not belong to ©, then © is a preprojective
component of ' 4.

Proof. Since S(0) is initial in ind—B, the assumption on the summands U of the
restrictions resp P, shows that RX = X for all X in ©, and hence 74X = 75X,
74X = 75 X. This implies that the Auslander-Reiten sequences constituting ©
remain Auslander-Reiten sequences over A. Thus it remains to show that © is



AN ALGORITHM FOR FINDING ALL PREPROJECTIVE COMPONENTS 749

closed under neighbours in I" 4. For this reason we prove that for an arrow X — Y
in T' 4 the start term X lies in © if and only if the end term Y lies in ©. We only
establish one direction, because the proof of the other is similar. Suppose that X
belongs to ©, and consider a left minimal and left almost split map X — M. It
suffices to show that M is a B-module. In case X is not injective, then as seen
above 7, X and consequently M are B-modules. For X injective we know that
M = X/soc X is a B-module as well. O

For an arbitrary finite spectroid A we denote by .A™® the full subspectroid given
by all objects = of A such that no predecessor of z in ) 4 lies on an oriented cycle
of Q4. Clearly A" is an initial subspectroid of .4 whose quiver is cycle-free.

Theorem 3. Let A be a finite spectroid.

(a) If T4 has a preprojective component ©, then all modules in © are Alnit_
modules and © is a preprojective component of I' qinie which does not contain
any indecomposable summand of a restriction res gmie Py for all y in A but
not in AP,

(b) If © is a preprojective component of T g which does not contain any in-
decomposable summand of a restriction res ginie Py for all y in A but not in
At then © is a preprojective component of T 4.

Proof. The first part follows from proposition 1 because every initial completely
preprojective subspectroid of A has to be contained in A™?®. The second part
follows from Lemma 2. O

Thus when looking for preprojective components one only has to consider the
initial subspectroid At whose quiver is cycle-free. For computational purposes it is
worth noting that, for checking if the indecomposable summands of the restrictions

res ginie Py appear in preprojective components of I' ginit, one only has to know the
dimension vectors of these modules.

3.3.  The next lemma will allow us to recognise complete preprojective components
from finite initial pieces. We recall that in a quiver @) a vertex z is said to be a
predecessor of a vertex y if there is a path z = 29 » 21 — -+ — z, = y in Q.
Moreover, X is called direct predecessor of y if there is an arrow z — y in ). The
notions of successor and direct successor are defined in the dual way.

Note that in a preprojective component © of I" 4 each module X has only finitely
many predecessors.

Lemma 4. Suppose that A is a finite spectroid with cycle-free quiver Q4 and ©’
is a full cycle-free subquiver of T 4.

If © is closed under predecessors in T 4, contains all indecomposable projective
A-modules, and each vertex in ©' has only finitely many predecessors, then the full
subquiver © of T' 4 whose vertex set consists of all nonzero modules of the shape
74X with X in ©" and an integer n > 0 is a union of preprojective components
of T' 4 which contains all indecomposable projectives.

In particular, if ©' is connected, then © is a complete preprojective component.

Proof. Since clearly all indecomposable projectives belong to ©, the following re-
main to be shown.

(1) © is a union of components of T 4.
(2) © is a cycle-free quiver.
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(3) For each vertex Z of © there exist a nonnegative integer n and z in A such
that 77 = P;.

(1) Let X — Y be an arrow in I" 4. We show that X belongs to © if and only if Y’
belongs to ©. If Y is in ©, then there is a minimal nonnegative integer n with 7Y
in ©’. In case there exists a nonnegative integer m < n such that 777 X is projective,
then X is in © by definition. Otherwise we obtain an arrow 73X — 73Y. Because
©' is closed under predecessors, 74X has to lie in ©' and consequently X in ©.

If X is in O, then we assume that Y does not belong to ©, which implies that
Y is not projective and we obtain an Auslander-Reiten sequence 0 — U — V —
Y — 0. By the definition of © the module U = 74Y cannot belong to © as well.
On the other hand, X is a direct summand of V, which, as seen above, shows that
its predecessor U is in ©. Thus we have found a contradiction.

(2) We assume that there is a cycle X = Zy — Z; — -+ — Z; = X in ©. There
is a nonnegative integer n such that all 74 Z; are nonzero and at least one of these
modules lies in ©’. Because ©’ is closed under predecessors, then the whole cycle
lies in ©’, which is a contradiction.

(3) By definition, for X in © there exists n with 7;X in ©’. Because each point

of the cycle-free quiver ©' has only finitely many predecessors, we find another m
such that 7} "X is projective. [

3.4. Loosely speaking, our strategy is to build up a completely preprojective finite
spectroid A inductively by adding vertices starting from the sources. To formulate
the induction step we define A to be a one-point extension of the subspectroid B
by the object z if and only if x is a sink of @ 4 and the only object of B which does
not belong to .A. This implies that B is initial and resg P, = rad P;.

We will need the notion of directing modules. If A is a finite spectroid and X,V
are objects in ind—.A, then a path of length n from X to Y in ind—.A is a sequence
X =Xy — X1 — - — X, =Y of nonzero radical morphisms X;_; — X; in
ind—A. The indecomposable module X is called directing if there does not exist
a path of length n > 0 which starts and ends in X. A possibly decomposable
module Z = ", Z; with Z; indecomposable is said to be directing if there do
not exist summands Z,,7Z; and a nonprojective Y in ind—.A such that there is a
path from Z; to 74Y and a path from Y to Z; in ind—A. It was shown in [HR]
that both concepts of directing modules coincide for indecomposables. Moreover,
it was proved that for a one-point extension A of B by z the projective module P,
is directing in ind—A if and only if the radical rad P, is directing in mod—5.

Note that it is easy to check whether a module whose indecomposable summands
are all preprojective is directing, because in this case all the involved paths in ind—.A
come from paths in preprojective components. In particular, each indecomposable
module in a preprojective component is itself directing.

Recall, furthermore, that a path Zg — Z; — .-+ — Z,, in the Auslander-Reiten
quiver I" 4 is said to be sectional provided Z;_o # 747; for all i =2,... n.

If A is a completely preprojective finite spectroid, then z in A is called a strong
sink if P, does not have a proper projective successor in the Auslander-Reiten

quiver of A. Every strong sink of A is obviously a sink of @ 4, but the converse
does not hold in general.

Theorem 5. Let the finite spectroid A be a one-point extension of B by z. We
decompose rad P, = @, U; into indecomposable summands. Then A is completely
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preprojective and x 1s a strong sink of A if and only if B is completely preprojective
and rad P, has the following properties:

(a) All summands U; lie in preprojective components of I'.

(b) The module rad P, is a directing B-module.

(c) For each object y of B and summand Uy, any path U; = Zo — Zy — -+ —
Zm = Py in I'p has to be sectional.

Proof. Let us start the proof by assuming that B is completely preprojective and
rad P, satisfies the conditions (a),(b),(c). We define ®” as the full subquiver of
the union of the preprojective components of I'g given by all modules Z such that
any path from some U; to Z is sectional. In order to construct the quiver ©, we
add the vertex P, and as many arrows from each U; contained in ©” to P, as this
module appears as summand in rad P,. We wish to apply the preceeding Lemma 4,
and have to check the required properties.

By construction @’ is cycle-free and each vertex has only finitely many predeces-
sors. Since B is completely preprojective, condition (c) shows that all modules P,
for y in A belong to ©’. Thus it remains to prove that ©’ is a full and predecessor
closed subquiver of I' 4. Both assertions can be derived from the following claim:
If Z is a module in © and g : N — Z is right minimal and right almost split in
mod—A, then all indecomposable direct summands of N belong to ©’.

If Z is not projective, then Z is a B-module in ©"” and there is an Auslander-
Reiten sequence 0 —» X — N -2, Z — 0in mod—A but also an Auslander-Reiten
sequence 0 — X' — N’ =45 Z — 0 in mod—B. Assuming X # X', from X =
T7AZ = R1sZ = RX' we obtain RX'(z) = X (z) # 0. Thus Homp(U;, X') # 0 for
some Uj, and hence there is a path from U; to X’ yielding a nonsectional path from
U; to Z. This is a contradiction to Z in ©”. Therefore all summands of N belong
to ©".

In case Z = P, for y in B, clearly N = rad P, lies in mod—B, and the same ar-
guments as above apply. For Z = P,, by (a) and (b) all indecomposable summands
U; of rad P, lie in ©".

In particular, we have seen that ©" is a full and predecessor closed subquiver of
I's, which finally implies that P, cannot have a proper projective successor.

For proving the converse we assume that 4 is completely preprojective and x is
a strong sink. In order to show that B is completely preprojective, we want to use
Lemma 4 again and consider the full subquiver ©’ of T" 4 whose vertex set consists
of all Z # P, such that there does not exist any nonsectional path from some U;
to Z. All Z in © are B-modules, because otherwise 0 # Z(z) = Hom4(P,, Z), and
therefore there is a path from P, to Z inducing an nonsectional path from some
U, to Z. It follows that ©' is a cycle-free and predecessor closed full subquiver of
'z such that each vertex has only finitely many predecessors. It remains to prove
that © contains all indecomposable projective B-modules.

Let us assume the existence of some P, with P, not in ©’. This means that
there is a nonsectional path U; = Zy — Zy — -+ — Z,, = P,. All Z; have
to be B-modules, because otherwise Hom4(P;, Z;) # 0 and the Yoneda lemma
would yield that z is not a strong sink. Let us choose t as the smallest index
such that Z; = 747Z;12. Without loss of generality we may assume that there is no
nonsectional path from U; to Z;. By [HR, proposition 2] we obtain Homg(Uj, Z;) #
0, implying RZ;(x) # 0 and hence RZ; # Z;. On the other hand, we know that
Zt = TAZH_Q = RTBZH_Q = RZt
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Since the preprojective module P, is a directing A-module, by [HR)] rad P, is a
directing B-module, which implies (a) and (b). Finally, we have seen above that all
indecomposable projective B-modules belong to ©', yielding (c). O

4. THE ALGORITHM

4.1. In view of the reduction to A™? introduced in the last section, from now
on we will only consider spectroids A whose quivers are cycle-free. We know that
any preprojective component comes from a completely preprojective initial sub-
spectroid which we could find by inductive one-point extension using Theorem 5.
The problem is that for each consecutive one-point extension we need a strong sink,
and it is not clear how to arrange this. Before we formulate the algorithm solving
this problem, we will illustrate the difficulty by an easy example.

Let the spectroid A be given by the quiver from Figure 1 equipped with the re-
lation v3. If we make inductive one-point extensions along the sequence (1, 2, 3, 4),
then Theorem 5 always applies and therefore A is completely preprojective. If we
use the sequence (1,3,4), then we obtain a completely preprojective initial sub-
spectroid B, but now the simple projective radical P of P, has a nonsectional path
to P; in the finite preprojective Auslander-Reiten quiver I's, which we display in
Figure 2. As usual, the Auslander-Reiten translation is indicated by dotted arrows.

2O
(67
1
AN
O————»0
FIGURE 1

FIGURE 2

4.2.  We inductively define an ascending sequence Ag, A1,... of initial subspec-
troids of A, starting with the empty spectroid as Ag, which we agree to be com-
pletely preprojective. For n > 0 we distinguish two cases.

Case 1. A, _1 is not completely preprojective. If this happens, we put A, :=
An_1.
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Case 2: A,_1 is completely preprojective. We define a quiver @),, with three
types of vertices. The first type of vertices consists of all = in A but not in A, _;
but rad P, is a A,,_1-module. The second type of vertices is given by all z in A
but not in A, _1 such that there is an indecomposable direct summand U of rad P,
which belongs to a preprojective component of I' 4, _,. There is only one vertex of
the third type, which is a vertex oo different from all objects of \A. Note that there
may be vertices which are of the first and second type simultaneously.

This set of vertices is equipped with four types of arrows. First, for all x,y in
A we have an arrow o, : © — y provided that y is a proper successor of = in Q4.
Second, for all 2,y in A there is an arrow o, :  — y if there is a preprojective
component of I' 4., containing an indecomposable direct summand U of rad P, and
an indecomposable direct summand V' of rad P, such that there is a nonsectional
path from U to V. Third, for all z in A such that rad P, is an A,,_;-module there is
an arrow e 5 1 00 — x provided that there is an indecomposable direct summand
of rad P, which does not lie in a preprojective component of I' 4, _,. Fourth, there
is & 100p 0os,00 1 00 — 00.

We continue, again distinguishing two subcases.

Subcase 2.1: Q,, does not have sources. We put A, := A, _1.

Subcase 2.2: @, has sources. We choose a source x and define A,, to be the full
subspectroid of A given by all objects z in \A,,_; and z.

Finally, we define A* to be the union of all the subcategories A,,, and state some
easy observations.

Remark. (a) The sequence Ag C A; C --- is a strictly ascending sequence of full
subspectroids of A.

(b) There is a nonnegative integer n* which is at most the number of vertices of
Q4 such that A* = A,«.
(c) Each source of Q4 lies in A*.

4.3. Before analysing the subspectroids 4,, we want to establish a technical
lemma. To formulate it, we suppose that A is a finite spectroid with cycle-free
quiver and B is an initial subspectroid. By C we denote the full subspectroid of
A given by all objects = not belonging to B. The subspectroid C is final in the
obvious sense. The C-B-bimodule B is obtained by restricting the .A-.A-bimodule
A(—, =) to B in the first and to C in the second argument. We recall that modules
in mod—.A can be interpreted as triples U = (U, vu, Uy), where U, is in mod—C,
U, in mod—B and vy in Home (U,,, Homp (B, U, )). More precisely, an equivalence
from mod—.A to the category of these triples is given by sending an A-module U
to its restriction U, to C, its restriction U, to B and the morphism ~y which maps
for z in C an element u in U,(z) to A(y,z) — Ua(y),a — U(a)(u). Note that
Homp(B,U,) is considered as an object of mod—C using the C-module structure of
B in the usual way.

We need the following easy observation. If U = (U, vy, U,) is an indecompos-
able module in mod—.A with U, # 0, then for each indecomposable summand U’
of U, there is an object z of C such that Homp(ress Py, U’) # 0. The reason is
that otherwise the triple (0,0,U’) would be a nontrivial direct summand of U.

Lemma 6. If x is in C and U is an indecomposable direct summand of rad Py
satisfying U +# resg U, then for each indecomposable direct summand U’ of resg U
there exists an object y of C which is a proper predecessor of x in Q4 and such that
there is an indecomposable summand V of rad P, satisfying Homp(resg V,U’) # 0.
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In particular, for each x in C and each indecomposable direct summand U’ of
resp P, there 1is an object y of C which is a predecessor of x in Q4 and such that
there is an indecomposable direct summand V' of rad P, which is a B-module and
a predecessor of U’ in ind—B.

Proof. We define A’ as the full subspectroid of A given by all proper predecessors
of £ and B’ as the full subspectroid of A’ given by all objects from B. We observe
that A’ and B’ are initial subspectroids of \A. Moreover, rad P, and therefore also
U are actually A’-modules. Applying the remarks above to the indecomposable
summand U’ of resg U = U,, we obtain an object y in A’ but not in /3’ satisfying
Homp (resg Py, U’) # 0. Since resg P, = resg Py for all y in A’, we also get
Homgp(resg Py, U’) # 0. Because y does not belong to B, we know that resg P, =
resp rad P, which shows the existence of an indecomposable summand V' of rad P,
with Hompg(resg V,U’) # 0.

In order to prove the additional assertion, we define l(x) to be the number of
proper predecessors of z in Q 4 which do not belong to B. If [(x) = 0, then rad P, =
resg P, and the claim is clear using y = z. Now we suppose {(x) > 0 and consider
an indecomposable direct summand U’ of resg P,. We find an indecomposable
direct summand U of rad P, such that U’ is a summand of resg U.

If resg U = U, then U = U’ and we choose y = z again. Otherwise we apply the
lemma to obtain a proper predecessor y of z in Q4 lying in C, such that there is
an indecomposable direct summand V' of rad P, satisfying Hompg(resg V,U’) # 0.
Hence there is also an indecomposable summand V' of resg V with Homg(V’,U’) #
0. The module V' is an indecomposable direct summand of resg P, where [(y) <
I(x). By induction there is a predecessor y’ of y in @4 not belonging to B such

that there is an indecomposable summand V" of rad P, which is a predecessor of
V' in ind—B. |

4.4. After this preparation we are ready to study the subspectroids A,,.

Lemma 7. For every integer n > 0 the following assertions hold:

(1) A, is an nitial subspectroid of A.

(2) A, is completely preprojective.

(3) Ifn >0 and A, is a one-point extension of A,_1 by x, then the full subquiver
of T4, whose vertex set consists of the predecessors of P, is a predecessor
closed full subquiver of T' 4 such that T4 X = 74, X for all its vertices X.

Proof. We apply induction on n and observe that for n = 0 nothing needs to be
proved. For n > 0 we know by induction that (1), (2), (3) hold for A,_;. Thus
we are in case 2 of the algorithm. For subcase 2.1, A, = A,_1, we are done. Thus
there is a source x of @, such that the the objects of A,, are obtained from the
objects of A,,_1 by adding . We decompose P, = @, U; into indecomposable
direct summands Uj;.

On (1): For each object z of A which does not belong to .A,,_; such that rad P,
is not in mod—.A,,_1, there exists a proper predecessor y in () 4 not belonging to
Ap,_1. Therefore there is an arrow oy, in ¢n, showing that z is not a source.
Consequently, rad P, is a A,,_1-module and all proper predecessors of z in () 4 are
in A,_1, yielding that 4,, is initial as well.

On (2): We want to apply Theorem 5, and have to check the conditions (a), (b),

(¢).
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The absence of an arrow co — x shows that all summands U; lie in preprojective
components, which is (a). The failure of (b) would mean that there is a nonsectional
path from a summand U; to a summand Uj yielding a loop in z. For (c) we assume
the existence of a nonsectional path from some U; to P, where z is in A,_;.
Then there is also an indecomposable summand V of rad P, such that there is a
nonsectional path from U; to V. By the inductive construction of A,,_; there has
to be t < n such that A; is the one-point extension of A;_; by z. By induction we
know that property (3) of the lemma holds for A;. Hence, there is a nonsectional
path from Uj; to V in the preprojective components of the Auslander-Reiten quiver
of A;_1. In particular, U; is an A¢_1-module, and we obtain an arrow z — z in
Q@:. This is a contradiction to z being chosen as source of ;.

On (3): It suffices to show that each right minimal and right almost split mor-
phism g : ¥ — X in mod—A,,, where X occurs as predecessor of P, in ', is
actually right minimal and right almost split in mod—.A. For X projective this
is obvious. For X not projective it is enough to prove that 74X = 74, X. If we
assume that this equality does not hold, then the formula 74X = R74,X shows the
existence of an object y in A but not in \A,, satisfying Hom 4, (resa, Py, 74, X) # 0.
We obtain the existence of an indecomposable direct summand U of rad P, and an
indecomposable direct summand U’ of the restriction ress, U such that there is
a nonsectional path from U’ to some U;. By Lemma 6 there is another object z
not belonging to .4,, which has an indecomposable summand V' of rad P, which
itself is an A,-module and a predecessor of U’ in ind—.A,,. Altogether we found a
nonsectional path from V' to U; in the preprojective component of A, _1. Thus z
is a predecessor of z in @,,, which contradicts the fact that x is a source. O

Remark. Part (2) of the lemma shows that in the algorithm case 1 never occurs, and
part (3) implies that the predecessors of P, in ind—.A are precisely the predecessors
of P, in the preprojective components of I' 4.

Since A* = A,,«, the lemma immediately yields our first main result.

Theorem 8. Suppose A is a finite spectroid with cycle-free quiver. Then the fol-
lowing assertions hold:
(1) A* is an initial subspectroid of A.
(2) A* is completely preprojective.
(3) For all z in A* the predecessors of Py in the preprojective components of I' 4
are precisely the predecessors of P, in ind—A.

5. PROPERTIES OF A*

5.1. We continue to study finite spectroids .A whose quivers are cycle-free. In the
previous section we introduced an algorithm producing an initial subspectroid .A*
which is completely preprojective. The construction of A* depends on the choices
of sources in the quivers @Q,. Consequently, it seems possible that for different
choices of sources the algorithm yields different subspectroids A*. Our first aim in
this section is to show that this is not the case.

We define X in ind—.A to be predecessor bounded if there is a bound for the
length n of paths Xg — X; — -+ — X, = X in ind—A ending in X. Otherwise
X is called predecessor unbounded. Clearly, X is predecessor bounded if it lies in a
preprojective component.

The following proposition follows immediately from the work of Liu (see [Li]).
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Proposition 9. Let A be a finite spectroid. If Q2 is a component of I' 4 not con-
taining any projective vertex, then each module X in Q) is predecessor unbounded.

Proof. The component €2 is semiregular in the notation of [Li]. If {2 does not contain
an oriented cycle, then it is even a left stable component with this property, and
by [Li, theorem 3.3] for each vertex X of Q all the modules 770 X with m > 0 are
pairwise different. In particular, X is predecessor unbounded.

In the case that  contains an oriented cycle, by [Li, theorem 3.6] it is a stable

or coextended tube as introduced in [Ri]. It is easy to see that each object X of £
is predecessor unbounded. O

Let us return to our algorithm.

Corollary 10. If 0oy i an arrow in Qn with T # oo, then P, is predecessor
unbounded in ind—A.

Proof. The existence of the arrow oo, means that there is a radical summand
U; of P, which does not belong to any preprojective component of A,,_;. On the
other hand, these preprojective components contain all indecomposable projective
A, _1-modules. Therefore the component containing U; satisfies the assumptions
of proposition 9. Thus U; is predecessor unbounded in ind—.A,_;. Since P, is a
successor of U; in ind—A and A,,_; is an initial subspectroid of A, we obtain that
P, is predecessor unbounded in ind—A. |

5.2. In an analogous fashion as for ind—.A, we say that a vertex x of a quiver @Q
is predecessor bounded provided there is a bound for the length n of paths z¢y —
T, — - — T, =2 in @ ending in z.

Lemma 11. If  # oo is a predecessor unbounded vertex of Q,,, then P, is prede-
cessor unbounded in ind—A.

Proof. We start out by proving the following claim: If o : © — y is an arrow in @,
with z,y # oo, then P, is a predecessor of Py in ind—A.

The claim is obvious, if o = 0, comes from a path in Q4. Otherwise a = a’z’y
such that there is a nonsectional path U = Zy — Z; — -+ — Z,, = V from an inde-
composable direct summand U of rad P, to an indecomposable direct summand V'
of rad P, in a preprojective component of A, _;. We may choose such a nonsectional
path and an index t with Z; = 74, _, Z+o having the property that there is no non-
sectional path from U to Z;. By [HR, proposition 2] we get Hom 4, , (U, Z;) # 0
and thus 0 # Homy, _,(vesa,_, P, Zt) = RZi(z) = TaZiy2(x). The Yoneda
lemma yields a path from P, to P, in ind—A.

Now we proceed with the proof of the lemma. That z is predecessor unbounded
shows that for each integer m > 0 there is a path zg — 1 — -+ — Ty, = 2 in Q.
If for some m the vertex oo appears as x; and without loss of generality we assume
that z; # oo for all [ > t, then by corollary 10 and the claim P, is predecessor
unbounded in ind—.A. In the case that all the paths can be formed without using
00, because of the finiteness of A we find a path such that there exists ¢ > 0 with
zo = x¢. Using the claim, this gives rise to a cycle of indecomposable projective
modules starting and ending in P,,. Again by the claim, this makes P, predecessor
unbounded in ind—A. |
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Theorem 12. Let A be a finite spectroid with a cycle-free quiver. The set of objects
of A* consists precisely of those objects of A such that P, is predecessor bounded.

Proof. Since A* is completely preprojective, P, is obviously predecessor bounded
in ind—.A* for each z in A*. Part (3) of Theorem 8 shows that this is also true in
ind—A. Conversely, if = is not in A* = A,,+, then by possibly passing to an appro-
priate predecessor in (4 we may suppose that x belongs to @,,~. The assumption
that z is predecessor bounded implies that the full subquiver of Q.+« given by the
predecessors of x is cycle-free and consequently has a source which is a source of
Qn+ as well, a contradiction. Thus z is a predecessor unbounded vertex of @~ and
therefore P, is predecessor unbounded in ind—.A4 by Lemma 11. O

Corollary 13. A is completely preprojective if and only if A = A*.

The characterisation of A* given in the theorem could be used to define A*
abstractly. One is tempted to say that A* is something like a maximal initial com-
pletely preprojective subspectroid of A. As a warning against this misconception
and an illustration of the algorithm, we present an example showing that there may
exist initial completely preprojective subspectroids which properly contain A*. Let
A be given by the quiver from Figure 3 subjected to the relations Ba, f'a’, and
dep.

FIGURE 3

It turns out that A* = Ag is the full subspectroid supported by {1,2,3,4,5,6}.
The quiver @7 is shown in Figure 4. The one-point extension of A* by 8 is still
completely preprojective and an initial subspectroid of A.

O
00 7 8

FIGURE 4
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5.3.  The following theorem summarises our findings.

Theorem 14. Let A be a finite spectroid with cycle-free quiver.

(a) If © is a preprojective component of I 4« such that for each z in A\ A* no in-
decomposable direct summand of rad P, belongs to ©, then © is a preprojective
component of I' 4.

(b) If © is a preprojective component of I' 4, then © is a preprojective component
of T' g4« such that for each x in A\ A* no indecomposable direct summand of
rad P, belongs to ©.

Proof. By Lemma 6 we know that © does not contain any indecomposable direct
summand of res4» P, for all z not in A*. Thus (a) follows from Lemma 2.

In order to see (b) we observe that all projectives P, in © are predecessor
bounded. Hence the initial subspectroid induced by all z such that P, belongs
to © is contained in A*. Consequently, © is a preprojective component of I 4+.
Assume there exists an indecomposable summand U of rad P, with z not in A*
such that U appears in ©. Because RU # U, the module U cannot be an injective
A*-module and therefore there is some nonprojective module V' in © such that
U = 174+V. But this implies 74V = R4+ V # 74+V, which is a contradiction. O

5.4. A finite spectroid A of global dimension at most 1 is called hereditary. By
[Gal] it is of the form A = kQ, where @ is a finite cycle-free quiver. It is well-known
(see e.g. [Ri]) that hereditary spectroids are completely preprojective. We want to
use our setting to reprove this classical result.

An enumeration {z1,...,z,} of the set of objects of a completely preprojective
spectroid A is called a construction if j > i provided that x; is a predecessor of ; in
Q 4. Equivalently, this means that A can be built up by one-point extensions along
this enumeration. Our algorithm from Section 4 produces special constructions
which we call strong constructions. The example in subsection 4.1 shows that in
general not all constructions are strong.

Theorem 15. If A is a hereditary finite spectroid, then every construction of A is
strong. In particular, A is completely preprojective.

Proof. We want to show that, given a construction {z1,... ,z,} foralln =0,...,7,
the subspectroid A, may be chosen as the full subspectroid of A induced by
{z1,...,zp}. For this purpose by induction it is sufficient to prove that z, is
always a source of @,. The heredity of A shows that all summands of rad P, are
projective and predecessors of projective modules are projective. Therefore arrows
of type 0o » and o7, , for x,y # oo do not exist. O

Remark. Our algorithm will also work for the much more general class of Artin
algebras (see [ARS]) if one is able to calculate the dimension vectors of the inde-

composable projective modules and the indecomposable direct summands of their
radicals.
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