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FINITE SAGBI BASES FOR POLYNOMIAL INVARIANTS
OF CONJUGATES OF ALTERNATING GROUPS

MANFRED GOBEL

ABSTRACT. It is well-known, that the ring C[X1,. ..,Xn]A” of polynomial
invariants of the alternating group A, has no finite SAGBI basis with respect
to the lexicographical order for any number of variables n > 3. This note
proves the existence of a nonsingular matrix d, € GL(n,C) such that the ring

on .
of polynomial invariants C[X1, ..., Xn]An , where Afﬁ denotes the conjugate
of Ap with respect to dp, has a finite SAGBI basis for any n > 3.

1. INTRODUCTION

It was shown in [5] that invariant rings of permutation groups G have a finite
SAGBI (Subalgebra Analogue to Grobner Basis for Ideals) basis with respect to the
lexicographical order iff G is a direct product of symmetric groups. This result is
from the computer algebra point of view very discouraging. Only in a few special
cases can finite SAGBI bases be used to study such invariant rings and to rewrite
their corresponding polynomial invariants. Mainly because of the nonfiniteness of
SAGBI bases, which I first noted for invariant rings of the alternating group in three
variables, a novel reduction technique for polynomial invariants of permutation
groups was experimentally discovered in 1991, described and investigated in [2] and
[3], and implemented in [4].

The idea to rewrite elements of invariant rings of permutation groups with finite
SAGBI basis goes—as far as I know—Dback to Weispfenning in 1991. His first advice
to me was to reduce polynomial invariants of permutation groups in a similar way
as the classical algorithm of GauB rewrites symmetric functions [1]. This algorithm
is based on the fact that the n elementary symmetric polynomials

gy = X1+--'+Xn7
o, = X1 Xo+ ...+ X, 1X,,
On = Xan

are a SAGBI basis with respect to any admissible order [10] for the ring of symmetric
functions [8].

Until the end of 1996, my personal impression was that SAGBI bases can play
only a very limited role for the analysis of invariant rings of permutation groups.
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In early 1997, Sturmfels brought my attention back to SAGBI bases and explained
to me that it is important to study them further. He asked me to investigate the
finiteness of SAGBI bases with respect to the lexicographical order for invariant
rings of permutation groups similarly to what I had done before for the alternating
group in three variables [2, 9]. Shortly after writing [5], I was able to state a
conjecture saying that invariant rings of conjugates of permutation groups may have
a finite SAGBI bases with respect to the lexicographical order [7]. Furthermore, I
was able to prove this conjecture for the alternating group in three variables [6].
What makes this conjecture so significant in the theory of SAGBI bases for
invariants of permutation groups? It is, of course, the fact that if we can compute a
finite SAGBI basis B for the invariant ring of a conjugate of a permutation group G,

1. we can use this basis B for a guided reduction of the elements of the invariant
ring of the permutation group G by applying a simple linear transformation,
and

2. we can compute a basis B with almost SAGBI basis properties for the invariant
ring of the permutation group G.

Putting all this together brings me to the conclusion that Weispfenning’s idea to
treat invariants of permutation groups by means of SAGBI bases may still have a
chance to work simply by applying a certain, well-chosen linear transformation to
the given invariant ring of the permutation group G.

This goal of this note is to present a proof for the conjecture of [7] in the case
of invariant rings of conjugates of alternating groups for any number of variables.
The plan here is as follows: After introducing the basic notation in Section 2, we

are going to state and prove our result in Section 3. Eventually, Section 4 concludes
with some open problems.

2. Basics

The setting is the same as in [5] and [6]. N and C denote the natural and
complex numbers. C[X,...,X,] is the commutative polynomial ring over C in
the indeterminates X1, ..., X,, and T is the set of terms (= power-products of
the X;) in C[X4,... , X,]

Let G be a group of permutations operating on Xy, ..., X,, let # € G, and let
feClXy,...,X,]. Then w(f) is defined as f(7(X1),...,m(X,)), and f is called
G-invariant, if f = 7(f) for all 7 € G. C[X1,...,X,]¢ denotes the C-algebra of
G-invariant polynomials in C[X71, ..., X,],

orbitg(t) = Z s

se{n(t)|reG}

the G-invariant orbit of ¢ € T, and S, and A, are the symmetric and alternating
group operating on the variables Xy, ..., X,. &, = (dij)1<ij<n € GL(n,C)
denotes a nonsingular n x n matrix, A% = {674, | T € A,} the conjugate of A,
with respect to d,, and 6, (f) is defined as f(Z?:1 di; X5, .. 72?:1 dni X;).

Let <je. be the lexicographical order on T with X7 >y ... >ee Xn, and let
HT(f) and HC(f) be the head term of f € C[Xy,...,X,], and the coefficient
of HT'(f) with respect to <jer, respectively. A SAGBI basis B of a subalgebra of
C[Xy,...,X,] is such that with respect to a given admissible order, say <;e., every
head term of an element in the subalgebra can be expressed as a product of head
terms of the elements in B [8]. We assume in the following that n > 3.
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3. A FINITE SAGBI Basis For C[X7,. .. ,Xn]Ai"

Theorem 3.1. The invariant ring C[X1, ... ,Xn]A" is generated by the set B con-
sisting of the n elementary symmetric polynomials o1, ..., oy, and

Ong1 = orbita, (XTI XT3 X2 ,X,,).

The total degree of o; is i for 1 < i <mn, and the total degree of opi1 18 "(”2_1).

Furthermore, C[X1, ..., X ] has no finite SAGBI bases with respect to <y,
and especially, B is not such a finite SAGBI basis.

Proof. See [3] and [9] for the case n = 3, and see [5] for the general case n > 3. O

Lemma 3.2. Let 01, ..., 01 be as in Theorem 8.1, and let §, € GL(n,C) be
defined as

=Y
3
Il
o O O
O O =
|
—= O
)

Then the following hold:

1. det(5 ) =2.
HC(0n(0:)) =1, HT(0p(0:)) = X1 X2... X; for 1<i<n—2.
(577,(0'71—1)) =1, HT(an(Un—l)) X1 Xo. . X5 0 X,
((5n<0' ): —]., HT((Sn(O'n)) XlXQ Xn an 1-
HC(6n(0ns1)) = =1, HT(6p(0py1)) = XP X072 X2 , X, 1.

Furthermore, the set B = {6n(01), ... ,0n(0ns1)} is a basis for C[Xq,. .. ,Xn]Afz".

.U‘t“.“!\’

Proof. These are obvious consequences of the head term definition and the proper-
ties of invariant rings of a conjugate of A,,. 0

Table 1 contains—according to Lemma 3.2—the head terms of the elements of
the set B with respect to <je,, for 3 <n <6.

Theorem 3.3. Let B = {0,(01),...,0n(0ns1)} be as in Lemma 3.2. Then B is a
finite SAGBI basis for C[Xy, ... ,Xn]Aan with respect t0 <jeq.

TABLE 1. The head terms of the set B for different numbers of
variables n.

|n=3] n=4 | n=5 | n==6 |
Xl X1 Xl Xl
X1X;3 | X1iXo X1X5 X1Xo

X1 X2 | X1 Xo Xy | X1 X0 X5 X1 X5 X5
X%XQ X1X2X32, X1X2X3X5 X1X2X3X4
X3X2X5 | X1 XoX3X2 | X1 X5 X35X4Xe
XAX3X2X, | X1 XpXs X, X2
X5 XAXIX2X,
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Proof. We know from Lemma 3.2 that B is a basis for C[X1,... , XA . Once

we know this, we only have to check, according to [§], if B is in addition a SAGBI
basis. A detailed analysis of the set of head terms

{HT (6, (01)), .-, HT (9 (0n+1))}
reveals that we only have to verify that the polynomial®
(1) f= (5n(0n+1))2 + 0 (o) - (‘5n<‘7n—2))3 (6n(on-3)... 5n(‘71))2

can be reduced to zero by means of B to ensure that B is a SAGBI basis. From
the reduction point of view, f is the only relevant critical polynomial which can be
made up from the initial set B.

Let g = 0;(f). Then we know that ¢ € C[Xy,...,X,]4". Thus g can be
reduced with [3, algorithm 3.12] and represented as

(2) g=pi1(o1,...,0n) +p2(01,- .. ,0n)  Oni1
with p1,p2 € C[Xy,...,X,]. The representation (2) is definitely different from
g=02 +on 08 _o(on_g...01)

obtained simply by computing 6, !(f) via equation (1). Algorithm 3.12 terminates
after a finite number | € N of reduction steps. At any reduction step we have to
subtract a certain product of the basis polynomials o1, ..., opt1, say

Cint1

L — . e'il ein
hi =cio{" ... .on Oni]

with (e;,,... €., €i,,,) € N"x{0,1} and 0 # ¢; € Cinstep 1 <i <. Eventually,

after termination of algorithm 3.12, the representation (2) of g has been computed
as

g=h1+...+hl.
Algorithm 3.12 ensures that h; # h; for 1 <4 # j <[. This implies that
‘5n(hz) = Cz‘én(Ul)eil Ce (5n(0n)ei" 5n(0n+1)ei"+1 # 5n<h]),

and, because of our choice of 8, that HT'(6,,(h;)) # HT(0n(h;)) for 1 <i# j <1
We can now rearrange the sequence 6, (h1), ..., d,(h;) in such a way that

(3) HT(an(hz)) >lex HT<6n<h3))

for 1 <4 < j < [. This new sequence is then by construction able to reduce our
polynomial f as follows:

R

with fi,..., fiz1 € C[Xy,...,X,] and f; = 0. This reduction sequence has to be
a SAGBI basis reduction with respect to B, because the relations (3) imply

HT(6,(hy)) € T(f), HT(8n(h2)) € T(f1), ..., HT(Sn(hy)) € T(fi_1).

I'Note that we define (6n(dn—3)...6n(01))% =1, if n = 3.
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Note that Theorem 3.3 holds not only for C, but for any field of characteristic
Z€ero.

The argument of the proof is not restricted to f in equation (1), but works for
any other polynomial in C[X;, ... ,Xn]Ai". The polynomial §,,(c,4+1) occurs only
linearly in the representation of f. Hence a representation with this property can
be obtained for any polynomial in C[Xy,. .., Xn]4".

Corollary 3.4. Let f € C[X,,... ,Xn]Af»". Then f has a representation as
f=01(6n(01), .. ,0n(0n)) + P2(0n(01), - ,0n(on)) - On(ont1)
with p1,p2 € C[X1,..., X,] with respect to the SAGBI basis B.

4. CONCLUSION—OPEN PROBLEM

We have presented a d,, such that C[Xq,..., Xn]Ai" has a finite SAGBI basis for
any n > 3. This finite basis can now be used for a guided reduction and rewriting
of elements in C[Xy, ..., X,]4" instead of e.g., [3].

Of course, it would be of interest to characterize all 6, € GL(n,C) leading to a

finite SAGBI basis for the invariant ring C[ X, ... ,Xn]Af»". How this can be done
is even in the case n = 3 nontrivial and open.
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