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AVERAGE EQUIDISTRIBUTION
AND STATISTICAL INDEPENDENCE PROPERTIES
OF DIGITAL INVERSIVE PSEUDORANDOM NUMBERS
OVER PARTS OF THE PERIOD

FRANK EMMERICH

ABSTRACT. This article deals with the digital inversive method for generating
uniform pseudorandom numbers. Equidistribution and statistical indepen-
dence properties of the generated pseudorandom number sequences over parts
of the period are studied based on the distribution of tuples of successive terms
in the sequence. The main result is an upper bound for the average value of the
star discrepancy of the corresponding point sets. Additionally, lower bounds

for the star discrepancy are established. The method of proof relies on bounds
for exponential sums.

1. INTRODUCTION

Uniform pseudorandom numbers in the interval [0, 1) are basic ingredients of any
stochastic simulation. Their quality is of fundamental importance for the success
of the simulation, since the outcome of a typical stochastic simulation strongly de-
pends on the structural and statistical properties of the underlying pseudorandom
number generator. Reviews of several methods are given in Harald Niederreiter’s
excellent monograph [10] and in his comprehensive survey [12]. The classical and
most frequently used method for the generation of pseudorandom numbers is still
the linear congruential method. However, its simple linear nature implies several
undesirable regularities [10]. Mainly for this reason, a variety of nonlinear methods
for the generation of pseudorandom numbers has been introduced and studied as
alternatives to the linear congruential method. Surveys of this important research
area are given in [1, 2, 3, 12]. A particularly interesting nonlinear approach for gen-
erating uniform pseudorandom numbers is the digital inversive method, which was
introduced and studied in [4]. These generators have several attractive properties
such as a handy criterion for the maximum possible period length and desirable sta-
tistical independence properties over the full period. A review of previously shown
results on the digital inversive method can be found in [5]. The present paper
deals with the (average) equidistribution and statistical independence properties of
digital inversive pseudorandom numbers over parts of the period.
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In order to describe the digital inversive method, let p be a prime, and put ¢ = p*
for some integer k > 1. Denote by Fy and F the finite field with ¢ elements and its
multiplicative group, respectively. For v € Fy, define ¥ € Fy by 7 = v~ L e, 7is
the multiplicative inverse of v in F, and put 0 = 0. Now, two parameters o € Fy
and 3 € F, are selected and a sequence (v,)n>0 of elements of Fy is generated by
choosing an initial value vy € F,; and using the inversive recursion

Tn+1 = aﬁn + B

for n > 0. Note that F, can be viewed as a k-dimensional vector space over the
finite field F, [9, Chapter 1.4]. Let B be an ordered basis of F, over F, and
denote by ¢, € FI’,c the coordinate vector of vy, € Fj relative to B for n > 0. Let
Zm ={0,1,...,m — 1} for any integer m > 1. Since F,, = Z/pZ can be identified
with the set Z,, each vector ¢,, = (¢p 1,...,Cn k) can also be viewed as an element of
Z’;. Then a digital inversive sequence (&,)n>o of uniform pseudorandom numbers
can be defined by

k
Ty = ch,jpﬂ €[0,1)
j=1

for n > 0. It is obvious that the sequences (2 )n>0, (Cn)n>0, and (¥, )n>0 are always
purely periodic and have the same period length. It was shown by Niederreiter [11,
Theorem 1] that the sequence (V,)n>0 has the maximum possible period length
q = p”® if and only if the order of o7~ in the multiplicative group F;2 is equal to
g+ 1, where 0,7 € F; are the two roots of the polynomial z? — Bz — a € Fylz].
Note that any quadratic primitive polynomial over Fy, has this property. It is always
assumed from now on that the sequence (v,)n>0 has the maximum possible period
length ¢ = p*.

Finally, consider the sequence (7.n)n>0 of elements of F; defined by v, 0 = ko
and

Ven+1 = Kzain,n + K/B
for n > 0 and an arbitrary (fixed) element x € Fy. A short calculation shows that
Vin = KYn for all m > 0. Let copn = (Con,iyr--+)Crnk) € Z’; be the coordinate
vector of v, , € Fy relative to the ordered basis B of F; over Fj,. Then a digital

inversive sequence (Zy n)n>o of uniform pseudorandom numbers is obtained again
by

k
Trn = Z Cn,n,jp_J € [Oa 1)
Jj=1

forn > 0.

Equidistribution and statistical independence properties of a sequence of pseu-
dorandom numbers over parts of the period can be studied based on the (star)
discrepancy of the first N generated (nonoverlapping) s-tuples of successive terms
in the sequence. For a long time, the (star) discrepancy of the first N generated
s-tuples of an individual sequence of recursively defined pseudorandom numbers
could not be analysed successfully and, therefore, the average behaviour over cer-
tain parameters was often studied. This state of affairs also motivated the present
article, which deals with the behaviour of digital inversive pseudorandom number
sequences (T n)n>0 On the average over the parameter x € F,. Very recently, it
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was even possible to analyse the star discrepancy of the first N generated s-tuples
of an individual sequence of digital inversive pseudorandom numbers (cf. [14]). Al-
though in [14] overlapping instead of nonoverlapping s-tuples are considered, these
complementary results open up the opportunity to compare the individual and the
average behaviour of digital inversive pseudorandom numbers, but this comparison
is postponed until the discussion in the final section.

First, in order to define the star discrepancy, let to,t1,...,txy_1 € [0,1)¢ be N
arbitrary points. For any subinterval J of [0,1)%, denote by L(J) the number of
points among tg,t1,...,tx_1 falling into J, and let Vol(J) be the d-dimensional
volume of J. Then the star discrepancy of the points tg,t1,...,ty_1 is defined by

L(J)

D;v(to,tl,...,t]\r_l): sup —]—V——VOI(J).,

Jeg*

where J* stands for the family of all subintervals J of [0,1)% containing the origin.
In order to analyse the equidistribution and statistical independence properties
of digital inversive sequences over parts of the period, the s-dimensional points
Xen = (:EK,,STL; Tr,sn+1y- - awn,sn+s—1) € [0, 1)3

for n > 0 are considered, and the abbreviation

*(8) *
DK,;N = ‘DN(XK>0’ RTH P ?XK,N—]_)

for 1 < N < q/ged(s,q) is used. In the third section, the main results on the star

discrepancy D:(f\} are established. A detailed discussion of these results is given in
the fourth section. The second section contains some useful auxiliary results.

2. AUXILIARY RESULTS

First, some further notation is necessary. For integers r > 1 and b > 2, let C.(b)
be the set of all lattice points z = (z1,...,2,) with integer coordinates satisfying
—b/2 < z < b/2 for 1 < i < r, and let C¥(b) = C.(b) \ {0}. For real z, the
abbreviation e(z) = €2™V~17 is used.

In order to state an estimate for the star discrepancy of a point set for which

all coordinates of all points have a finite digit expansion in a fixed base b, consider
points

Wpn = (wn,Oa wn,la e ,wn,d—l) S [03 ]-)d
with

t
Wt = Wanb77 € [0,1)
j=1

and wp; € Zp for 1 < j<t,0<1<d-1,0<n < N, and an integer ¢t > 1.
Further, for h = (hq,..., h:) € Ci(b), define

max{l < £ <t:hy#0} for (hy,...,h) #0,
Lhy,... h) =
0 for (hy,...,ht) =0,
and put

1)@ sin(whel /b)) for (ha, ..., he) #0,
Qulhr,-o- he) = {1 for (hy,...,ht) =0,
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where £ = £(hq,...,ht). It should be observed that, for base b = 2,
Qa(h) = 27

for any h € C;(2) = {0,1}?, i.e., this definition of Q2(h) is identical with the one
given in [10, equation (3.16)]. Finally, for h = (hg,...,hg_1) € Cyq(b) with each
h e Ci(b) for 0 <1 <d—1, let

d-1
(h) = ][ @u(h).
1=0

Lemma 1 follows at once from [7, Theorem 1(ii) and Lemma 3(iii)] and slightly
improves [10, Theorem 3.12].

Lemma 1. Let wo,w1,...,wy_1 € [0,1)% be N points with a finite digit
expansion of the form as described above. Then their star discrepancy Dy =
Dy (wo,W1,...,Wn_1) satisfies

N-1 dlt

D* d
Disy X W) 2 5D gy ||+ 47
hectd(b) =0 l 0 j=1
where the outer summation is extended over all h = (hg, ..., hg_1) € Cj(b) with

components hy = (hy1,...,hit) € Cy(b) for 0 <1 <d—1.

Now, for an integer b > 2, let J;* be the family of all subintervals J of [0, 1)4 of
the form

d—1
- a
7=11]5)
1=0
with integers 0 < ¢, < b for 0 < [ < d — 1. Subsequently, x - y stands for the

standard inner product of x,y € R%. Lemma 2 can be deduced from Lemma 3 in
Niederreiter [11].

Lemma 2. Let b > 2 be an integer. Let t, = yn/b € [0,1)% be points with y,, € Z¢
for 0 < n < N. Then the corresponding exponential sum satisfies

N-1 o (41 L(J)
h-t,)] <-— 27|h 1)-1|N ——= — Vol(J
3 >—W<11J0<”' +1) ) e |22 — v
for any lattice point h = (ho,...,hg_1) € Z¢ for which not all coordinates are

divisible by b.

A crucial role for estimates of the star discrepancy D:(Js\? in the digital inversive
method is played by certain exponential sums. In the following technical lemma,

an upper bound for their average absolute value (in the mean-squared sense) over
all K € Fy is established.

Lemma 3. Let 1 < N < q/gcd(s,q). Further, let h = (hg,...,hs_1) € C;,(p)
with components hy = (hy1,...,hi k) € Cr(p) for 0 <1< s—1. Then
2

RijCr sn+tl,j < N(sq—N)+ (s —1)(2s — 1)q.
1

slk:

> Ze >
KEF* n=0 lO]
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Proof. (i) First, let N < 2s— 1. Then the elementary estimates

2
N-1 s—1 k

DEDIEY 15 9) DI

KEFy | n=0 1=0 j=1
< N2(g—1) < (25— 1)Ng— N?
=N(sq—N)+(s—1)Ng< N(sq— N)+ (s —1)(2s — 1)q
yield already the desired upper bound.
(ii) Subsequently, N > 2s — 1 is always assumed. Let {d1,...,6;} be the dual
basis of the ordered basis B of F, over F, [9, Definition 2.30], and put m4; =
Z?zl hi;6; € Fy for 0 <1 < s —1. Note that h # 0 implies that there exists at

least one index 0 < ¢ < s — 1 with g4 # 0. Now, it follows directly from the first
half of the proof of Lemma 5 in [6] that

2

N-1 s—1 k

1
E E e —E E hijCe,sn+1,5
wery [n=0 \P1Z0j=1

=0

s—1
= q# {(n,t) € L%+ Y 1 (Yomit — Yot41) = 0} - N?

s—1

s—1
=q# {(n,t) €LY Y M1 Venit = Zm+1%t+z} - N?
1=0

1=0
=q Y (An(m))? = N2,
No€Fy
where

s—1
An(no) = # {n EZN Y My1Vonst = "70}

1=0
for ng € Fy. For s = 1, it is obvious that Ay(n9) = 1 for exactly N values of
no € Fy and An(no) = 0 for all other values of ny € F,, which immediately yields

the desired upper bound N(q— N). Therefore, s > 2 will be assumed from now on.
(iii) For any no € Fy, let

s—1
A?\I(WO) = # {TL € ZN Ysntt Ysn4s—2 = 0, Z M+1Ysn+l = 770}
=0

and

1=0
Now, the condition N < q/ ged(s, q) and some short calculations show that

Z A?v(ﬂo) = #{’I’L S ZN CYsnctt Vsnds—2 = 0}
no€Fy

s—1
A*N(no) = # {n S ZN Y Ysn ot Vsn4s—2 7& Oa an+1’}/sn+l = 770} .

< #{’I’L € Zq/ ged(s,q) ¢ Vsn  Vsnds4+2 = 0}
= #{TL € Zq/ ged(s,q) * Yged(s,q)n " Vged(s,q)n+s—2 = 0}
SH#HMELg Y Vnys2 =0} =5—1
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and

=0

=

s—1
Ay (o) < # {n € L/ ged(s,q)  Von* Vamps—z # 00 D g1 Vem gt = 770}
{TL € Zq/ ged(s,q) ¢ Yged(s,g)n *** Vged(s,g)n+s—2 # Oa

s—1
an+1’}/gcd(s,q)n+l = 770}

=0

s—1
< # {n €LY Va2 # 0, Y M1Vl = "70} <s

=0

for any ng € F,, where the last inequality follows at once from Lemma 4 in [6] with
d = s. Further, observe that

An(mo) = A% (o) + A (m0)

for no € Fy and

Z An(mo) = N.

no€Fy

Note that the sum of squares

S Unmo)? = 3 (A% () + Ay (m0)?

N0 €Fy no€F,

achieves its maximum possible value under the restrictions A%, (ny) > 0 for any no €
Fyy Yneer, A(no) < s=1,0 < Ax(no) < s forany no € Fy,and 3-, - An(m0) =
N, if all entries A (1) take extreme values, which means more precisely that

o A% (no) = s—1 and A} (no) = s for exactly one value of ng € Fy,
o A% (no) =0 and A% (no) = s for exactly v other values of ny € Fy,

A% (mo) = 0 and A% (o) = p for exactly one further value of 19 € F,, and
finally

o A% (no) = A (no) = 0 for all other values of ng € F,

where v > 0 and 0 < p < s are suitable integers such that N = 2s — 1 + vs + p.
Therefore, one obtains the estimate

> (An(mo))? < (25 — 1)* +vs® + 2
noE€EFy

=sN+(s—1)(2s—1) — u(s — p)
<sN+(s—1)(2s—1).

Together with the formula of step (ii), this estimate yields the desired result. [
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3. MAIN RESULTS

Theorem 1. Let 1 < N < q/ged(s,q). Then the average value of the star discrep-
ancy D (N in the digital inversive method over k € F; satisfies

2% q—N(l 1> 1
2B ST (Clogp = )+ = forp>3,
b ) - JVNV =1 \7 ¥P7T5) T g forp
q_lneF* S _lf__ q___]V.+l fO’/‘p—2
2NV a-1 g ’
and, for s > 2
1 *(Js\z
— 5
q 1I‘C€F€’l“
—1——\/5-4—(3 1)(2s —1)/N Zlo +gk+1 5 forp>3

1 ko
—\/ﬁ\/s+(s—1)(25~1)/N (§+1) forp=2.

Proof. First, observe that the result is trivial for s > g, since the corresponding
upper bounds are greater than 1; hence, assume s < g from now on. Since all
coordinates of the points x,, have a finite digit expansion in base p, Lemma 1
is applied with b = p,d = s,t = k, and w,, = X n for 0 < n < N. Thus, with
h = (hg,...,h,;) € C;,(p) and by = (hy;1,..., hig) € Cr(p) for 0 <1< s—1,it
follows that

®) 1 N— s—1 k s
CEER D W A1) S £ 9) srtmeeey | S
heCy, (p) n= Pizoi=1
Further, the average value of D:Ef\; satisfies
1 #(s)
q- 1 Dn;N
KEFY
1 1 N-1 s—1 k s
<y 2 W | =5 2> ‘Zzhlacnsnm *
hec;, (p) werr [nmo  \PiZ0i=1
2
N-1 s—1 k

AN
| —
¢
S
E"/
-
¢

- Z Z hl,Jcn sn+l,j +

p lO]l

)

=
m
Q
o
z
S
=)
|
—
By
m
oy
*
3
]
o
Q| ®»
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where in the last step the Cauchy—Schwarz inequality was applied. By Lemma 3
one obtains that

! +(s)
_]_REFJ w;IN
S% Z Wp(h)\/q—ii(N(sq—N)—i—(s—1)(23—1)q)+§
heCy, (p)
_ 1 J(s+(s=1)(2s-1)/N)q
_ﬁ\/ q—1 Z Wi(

heCy, (p)

(i) For p > 3, it follows from [13, Proof of Theorem 2, equation (14)] that

2 2 s
Z Wp(h)<<;10gq+gk:+1> -1,

heCi, (p)
which implies that
1 D*(.’s\;<_L\/(S+(S—1)(2S—1)/N)Q—N
KN — 7 —
q- 1 KEFy N q 1

2 2 8 s
X —logg+-k+1) —1)+-.
s ) q

For s = 1, this is already the desired result. For s > 2, a short calculation and
the assumption N > s+ (s — 1)(2s — 1)/N (or equivalently, N > 2s — 1) yield the
estimates

1 *
Ly oy
a KEFy

< %\/S-I-(S—l)(?s—l)/N((%logQ-F§k+1>s—1> +2

< ——\/%\/H (s—1)(2s —1)/N <72—rlogq+ §k+1>s.

For N < s+(s—1)(2s—1)/N, the result is trivial, since the upper bound is greater
than 1.

(ii) For p = 2, it follows from the second part of [10, Lemma 3.13] that
Z W2 <— ) - 1)
heCy, (

and the same arguments as in ( ) yield the desired result. O

Corollary 1. Let 1 < N < ¢/ ged(s,q) and 0 < © < 1 be fized. Then there exist

more than (1 — x)(q — 1) values of k € F,; such that the star discrepancy D:E,s\} in
the digital inversive method satisfies

“N /1 1\ 1
26 JIZ T (Zlogp+ <)+ ) forp=3,
q—1 \ 7 ) q
_l|_

4= orp =2,
2VN Y g—1 q) forp

DiN <

||~ 8=
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and, for s > 2,

2 2 s
5 \/_\/s-l— (s —1)( 23—1)/N<;logq+gk+1> forp >3,
I‘CN<

*(s)
\/_\/s-l— (s —1)( 23—1)/N(]; ) forp=2.

Theorem 2. Let 1 < N < gq. Then there exist values k € F; such that the star

discrepancy D N in the digital inversive method satisfies

1 qg— N

—=\| o forp 23,
D) s J4/NY ¢-1
KN = 1 q—N

———[—— forp=2
s\ =1 forp
and any dimension s > 1.

Proof. First, consider the s-dimensional points

s
Yen = (cn,sn,la ceey cf-c,sn-{—s—l,l) S Zp

for n > 0, where ¢ enti,1 € Zp is the first coordinate of the vector ¢y sn4s for
0<1<s-—1. Let

ten = y;-t,n/p € [Oa 1)8

for n > 0. For any subinterval J € J;, let L(J) be the number of points among
tr0,te,1,- .., bk vo1 falling into J.

(i) Now, observe that x, , € J if and only if t, , € J forany n > 0 and J € Ty
which implies that

*
DN (Xk,0,Xi,15 - -+ X, N—1) > Tax

J) _ Vol(J)“

( i) An application of Lemma 2 with b =p,d = s,t,, = tx, for 0 <n < N, and
= (1,0,...,0) € Z® yields

N—

Z €\Ck,sn, l/p

N—-1

> elh-tyn)

n=0

9 s—1
z 2nhy|+1) =1 | N
7r<H(7f|z|+) ) e

=0

IN

L(J)
N

- Vol(J)I

= 4N max L(J)
JeT;

- v01(J)|

for any arbitrary prime p > 2.
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(iil) For p = 2, the estimate in (ii) can be improved by the following short
calculation, namely

N-1
Z e(cm,sn,l/2)
n=0
= #{0<n < Nicomi =0 —#{0<n< N:cemy =1}
=[2#{0 <n <N :ckon1 =0} —N|
= |2L([0,1/2) x [0,1)*"!) — N|
B 2N‘L([O’ 1/2);\; 070 Vol([0,1/2) x [0,1)°71)
S 2N max Lj) _VOI(J)l )

Jegi | N
(iv) Finally, it follows as in [6, Theorem 3] that there exist values of x € Fy with

N-1

Z e(cn,sn,l/p)

n=0

N(g-N)

> )
= -1

which yields altogether the desired lower bounds for the star discrepancy D:(f@ O

4. CONCLUSIONS

Theorem 1 shows that in the digital inversive method the star discrepancy
D;fj@, on the average over the parameter k, has an order of magnitude at most
N~1/2(log q)* for any parameters o and 8, provided that the condition for the
maximum possible period length is met. Corollary 1 is an immediate consequence
of Theorem 1, which says that, for any fixed parameters o and 3, only an arbitrarily
small percentage of the values of the parameter x may lead to a star discrepancy
D:(]S\; with an order of magnitude greater than N~*/2(logq)®. On the other hand,
Theorem 2 shows that, for any parameters « and [, there exist values of the pa-
rameter x such that the star discrepancy D:(]s\; is of an order of magnitude at least
N~1/2_if N is not too close to q. These results are in good accordance with Jack
Kiefer’s probabilistic law of the iterated logarithm for the star discrepancy of N
independent and uniformly distributed random points from [0,1)*, which is almost
always of an order of magnitude N~1/2(loglog N)*/? [g].

The average-case results of the present paper complement recently obtained up-
per bounds for the star discrepancy of (overlapping s-tuples of) individual sequences
over parts of the period with an order of magnitude N~'/2¢*/4(log q)° (cf. [14, The-
orem 2]), which may be viewed as corresponding worst-case results. It should be
observed (and has also been pointed out by the referee) that both types of re-
sults provide useful information on the distribution properties of digital inversive
pseudorandom numbers and none implies the other.
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