MATHEMATICS OF COMPUTATION

Volume 71, Number 238, Pages 873-881

S 0025-5718(01)01372-2

Article electronically published on November 21, 2001

KIRKMAN TRIPLE SYSTEMS OF ORDER 21
WITH NONTRIVIAL AUTOMORPHISM GROUP

MYRA B. COHEN, CHARLES J. COLBOURN, LEE A. IVES, AND ALAN C. H. LING

ABSTRACT. There are 50,024 Kirkman triple systems of order 21 admitting
an automorphism of order 2. There are 13,280 Kirkman triple systems of
order 21 admitting an automorphism of order 3. Together with the 192 known
systems and some simple exchange operations, this leads to a collection of
63,745 nonisomorphic Kirkman triple systems of order 21. This includes all
KTS(21)s having a nontrivial automorphism group. None of these is doubly

resolvable. Four are quadrilateral-free, providing the first examples of such a
KTS(21).

1. INTRODUCTION

A Steiner triple system of order v, denoted STS(v), is a pair (V, B), where V is a
set of v elements, and B is a set of 3-element subsets of V' called triples or blocks, so
that every 2-element subset of V' occurs in precisely one triple of B. Steiner triple
systems have been extensively investigated; see [3].

A parallel class in an STS(v) (V, B) is a set of disjoint triples whose union is the
set V; a parallel class therefore contains v/3 triples, and hence an STS(v) having
a parallel class can exist only when v = 3 (mod 6). When the entire block set B
can be partitioned into parallel classes, such a partition R is called a resolution of
the STS, and the STS is resolvable. If (V,B) is an STS(v) and R is a resolution
of it, then (V,B,R) is a Kirkman triple system, and (V, B) is its underlying STS.
The distinction between resolvable STSs and KTSs is that a resolvable STS may
underlie many nonisomorphic KTSs, since in a KT'S the specific resolution is given.

If (V,B) and (X, D) are STSs, an isomorphism from (V, B) to (X, D) is a one-to-
one mapping 7 from V to X for which {z,y, z} € Bif and only if {7 (), 7(y), 7(2)} €
D. The systems are isomorphic if there is at least one isomorphism from one to the
other, and nonisomorphic otherwise. Extending this to Kirkman triple systems,
we require an isomorphism to preserve parallel classes, i.e., to map all triples of
a parallel class of the first system to triples of a parallel class of the second. An
automorphism is an isomorphism from a system to itself. The set of automorphisms
forms a group under composition, the automorphism group of the system. The order
of the automorphism group is the number of automorphisms which it contains, while
the order of an automorphism is the smallest positive number of times that it can
be applied in order to obtain the identity map.
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A parallel class contains v/3 triples, and hence a resolution R consists of r =
(v — 1)/2 parallel classes, R = {R1,...,R.}. A parallel class T is orthogonal to
the resolution R if T N R; contains zero or one triple for each 1 < ¢ < r. Let
R =A{R1,...,R,} and T = {T1,...,T;} be resolutions of the same STS. These two
resolutions are orthogonal if the number of triples in R; N7} is either zero or one
forall 1 < 4,7 < r. When a system has two orthogonal resolutions, it is doubly
resolvable.

Kirkman [6] first asked about the existence of Kirkman triple systems in 1850 and
solved the case when v = 15 (the Kirkman 15-schoolgirl problem). Ray-Chaudhuri
and Wilson [10] published the first solution to the existence question for KT'Ss for
all v =3 (mod 6).

There is a unique STS(9) up to isomorphism, and it is resolvable. Indeed, it
underlies a unique KTS(9). Of the eighty nonisomorphic STS(15)s, four are resolv-
able; together they underlie seven nonisomorphic KTS(15)s. The catalogue of seven
KTS(15)s was presented by Woolhouse [12, 13] in 1862-63, although the systems
themselves were known prior to that time. The KTS(9) and seven KTS(15)s do not
admit an orthogonal resolution, and so no STS(v) is doubly resolvable for v < 21.

The determination of Kirkman triple systems of the next order, v = 21, has re-
mained far from complete. Mathon, Phelps, and Rosa [7] found all KTS(21)s having
an automorphism which contains three disjoint cycles of length 7, and Tonchev [11]
determined that there are 5 further KTS(21)s having an automorphism of order
7 (and having seven elements fixed by the automorphism). Mathon and Rosa (8]
established that there are 48 KTS(21)s having an automorphism of order 5. Al-
together, using these systems and applying various substitutions, a total of 192
nonisomorphic KT'S(21)s have been generated; see [4] for details. Of these known
designs, all have an odd number of automorphisms (group order 1 occurs 56 times,
3 66 times, 5 48 times, 7 three times, 9 twelve times, 21 five times, and 63 twice).
None is doubly resolvable.

Our interest was primarily to search for a doubly resolvable STS(21). Doubly
resolvable ST'S(v)s do not exist when v € {9, 15} but do exist for all v > 21 with v =
3 (mod 6) with 23 possible exceptions [2]. The smallest possible exception occurs
when v = 21, so that the smallest known (nontrivial) doubly resolvable STS(v) has
v = 27. We are also interested in knowing more about the number and possible
structure of KTS(21)s. For example, a problem posed in [1} is the determination of
a quadrilateral-free KT'S(21); a quadrilateral or Pasch configuration is a set of four
triples on six elements which pairwise intersect in one element each. Although in
the following we do not succeed in finding a doubly resolvable STS(21), we have
found four quadrilateral-free KTS(21)s; and perhaps more importantly, we have
found a much larger collection of KTS(21)s than was known previously.

2. KTS(21)s WITH AN AUTOMORPHISM OF ORDER THREE

- As a consequence of earlier work [7, 8, 11], all KT'S(21)s having an automorphism
of prime order greater than 3 are known. We therefore examine KTS(21)s having
an automorphism of order 3. Let m be an automorphism of a KTS(21) (V,B,R).
Suppose that 7 has order 3. Let us first consider the action of 7 on the elements
in V. The elements are partitioned into orbits, where each orbit contains 1 or 3
elements; an element in an orbit of size 1 is fized by w. It is easily verified that if
W C V contains precisely the fixed elements under =, then the triples appearing
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on W form a sub-STS(|W]). It follows that the number of fixed elements must be
0, 3, or 9. The latter possibility is excluded as follows. A parallel class containing
no triple of the sub-KTS(9) contains triples which have at least twice as many
elements of V'\ W as of W; but 12 (= 21 — 9) is not twice as large as 9, so no such
parallel class can be present. Hence the number of fixed elements e cannot be 9,
and e € {0, 3}.

Next consider the action of 7 on the parallel classes. The ten parallel classes fall
into orbits of size 1 or 3. It follows that the number ¢ of fixed parallel classes is
1, 4, 7, or 10. The latter possibility is excluded as follows. If R is a fixed parallel
class, then it must contain a fixed triple; but (as we shall see) the number of fixed
triples is at most 7. Hence ¢ € {1,4,7}.

Finally let us consider the action on triples. If a triple T = {z,y, z} is fixed by
7, then one of two cases arises. In the first, 7' contains only fixed elements. In the
second, we find that 7(z) =y, 7(y) = z, and 7(2) = x. In either case, an element
can be in at most one fixed triple, and hence the number of fixed triples is at most
7. Now the 70 triples of the KTS(21) are either fixed or in orbits of three triples
each, and hence the number b of fixed triples satisfies b € {1,4,7}. Further, we
have that ¢ < b since every fixed parallel class contains a fixed triple.

The class of a KTS(21) with an automorphism of order 3 is the triple (e, ¢, b),
where e, ¢, and b represent the numbers of fixed elements, fixed parallel classes,
and fixed blocks, respectively, under the automorphism of order 3. Our arguments
until this point establish that the classes that might arise are (e, ¢, b) for e € {0, 3},
¢, b€ {1,4,7}, and ¢ < b. We can eliminate further cases. In a fixed parallel class,
any triple containing a fixed element must be a fixed triple; otherwise, the fixed
element appears in more than one triple of the parallel class. Hence when e = 3,
we must have ¢ = 1 since the only fixed triple containing a fixed element is that
triple which contains all three fixed elements.

The nine possibilities for (e, c,b) are listed in Table 1. For each, the number of
KTS(21)s in this class is listed, along with the automorphism group orders of the
corresponding KTS(21)s. The totals given in the last line account for nonisomorphic
KTS(21)s.

The computational techniques used to find these systems employ backtracking to
find tactical decompositions and nauty to eliminate isomorphic copies among them.
Then backtracking is again used to fill (or sign) the tactical decompositions, and
nauty used to select one representative of each isomorphism class of the KTS(21)s
so produced. For a discussion of backtracking and tactical decompositions, see [5]
and references therein; for nauty, see [9].

A single KTS(21) can admit more than one automorphism of order 3. When
this occurs, the KTS has an automorphism group of order divisible by 9. In such
cases, the KTS(21)s found can appear in more than one of the classes. In Table
2, sets of classes are given for which at least one KTS(21) appears in precisely
this set of classes. For each set of classes and each automorphism group order, the
corresponding number of nonisomorphic KT'S(21)s is given.

We examined all of the KTS(21)s and found that four of them are quadrilateral-
free. Table 3 gives one example.

Of the 13,280 KTS(21)s with an automorphism of order 3, only 11 have the
property that every triple belongs to at least one parallel class which is orthogonal
to the ten parallel classes of the KTS(21). This is a basic necessary condition for
the design to be doubly resolvable; however, none of the 11 admits an orthogonal
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TABLE 1. Numbers of KTS(21)s

Group Order

Class 3
(0,1,1) | 1004
(0,1,4) 20
(0,.1,7)

(0,4,4) 840
(0,4,7) 20
(0,7,7) 55
(3,1,1) | 8910
(3,1,4) | 2170
(3,1,7) 16
Total | 13035

6 9 21 27 63| Total
17 11 1] 1033
2 9 1 32

1 4 5
34 20 1 4 1 900
23 1 44

4 24 2 85
100 16 9026
31 20 4 4 2| 2231
16 4 36

189 45 5 4 213280

TABLE 2. Types of KTS(21)s

number | group

Automorphism classes
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(o))
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[N}
NoREN fiNeliNe N Ne]

9

63

(0>151) (03454) (0’7’7) (35157)
(0,1,1) (0,4,7) (0,7,7) (3,1,4)
(0,1,1) (0,4,7) (0,7,7) (3,1,4)
(0,1,4) (0,4,4) (0,7,7) (3,1,4)
(0,1,4) (0,4,4) (0,7,7) (3,1,4)
( ( E3,1,1)

)
)
0,1,4) (0,4,7) (0,7,7)
) (3,1,1)
)

)

) (

) (
(0,1,7) (0,4,4) (0,7,7
(0,4,4) (0,4,7) (3,1,1
0,4,4) (0,4,7) (3,1,4)
0,4,4) (3,1,7)

0,4,4) (3,1,4) (3,1,7)

( (
(0,4,4) (
(0,4,4) (0,4,7) (3,1,4)
(0,4,4) (
(3,1,4) (

3,1,4) (3,1,7)

TABLE 3. A quadrilateral-free KT'S(21)

01534090 71141 2 3
4 612|7 810910145 713
31017]11314}4 816/41115
81315/01617|21317|61416
2 91912112011 618/01019
71420{51218|31219|81220

111618|6 1519(51520[917 18

4 51001 8 912 0 45 311} 2 610
8 611/101112| 3 814/6 7 9|11 913
21412} 5 617/ 5 916/01213| 3 715
11715} 01415 7121721516} 11216

0 920 2 718| 11119{11020] 0

31318| 41319| 6132041418 51419
71619 31620{101518[817 19| 41720

181920
036
147
258
91215

101316

111417

resolution. The number of parallel classes orthogonal to the given resolution ranges
from 17 to 32 in this set of 11 KTS(21)s; examples of seven disjoint parallel classes
orthogonal to the given resolution are present. The numbers of parallel classes of
the 13,280 KTS(21)s which are orthogonal to the given resolution appear in Table

4; in parentheses, the numbers are given for the eleven ‘candidate’ systems.
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TABLE 4. Numbers of parallel classes

Orthogonal p.c.’s 0 1 2 3 4 ) 6 7 8
# KTS(21)s 4088 4021 1516 1388 1091 431 256 167 122
Orthogonal p.c.’s 9 10 11 12 13 14 15 16 17

# KTS(21)s 47 37 47 4 7 12 5 1 102
Orthogonal p.c.’s | 18 20 21 23 25 26 27 32 53
# KTS(21)s 3 84) 2 702 2 2 1(1) 72 1

TABLE 5. Underlying STS(21)s

# STSs # KTSs | # STSs # KTSs | # STSs # KTSs

1 16 1 10 4 8

2 7 5 6 3 5

65 4 109 3 1336 2
9904 1

TABLE 6. Group orders for resolvable STS(21)s

Number Group Order | Number Group Order | Number  Group Order

1 2%.3%.7=1008 1 2.32.72=2882 1 2.3.-7°=294

1 2.32.7=126 1 28.32=12 4 2.3.7=42

1 3.3=27 4 2%.3=24 1 3.7=21

5 2.32=18 11 32=9 109 2.3=6
11290 3

A Steiner triple system of order 21 can underlie numerous KTS(21)s. Among the
13,280 K'TS(21)s, we find 11,430 nonisomorphic underlying STS(21)s. Each of these
underlies from 1 to 16 nonisomorphic KTS(21)s among those with an automorphism
of order 3; in Table 5, the column ‘#KTSs’ gives the number of KT'S(21)s underlain,
and the column ‘#STSs’ gives the number of nonisomorphic ST'S(21)s underlying
the given number of KTSs.

The 11,430 underlying STSs can, in general, have larger automorphism groups
than do the KTSs which they underlie. Table 6 gives the automorphism group
orders for the resolvable STS(21)s.

3. KTS(21)s WITH AN AUTOMORPHISM OF ORDER TWO

Let 7 be an automorphism of order 2 acting on a KTS(21). Evidently 7 fixes at
least one element. Since the fixed elements must carry a subsystem, 7 must fix 1,
3, 7, or 9 elements. Since 7 has order two, any fixed triple either lies entirely on
the fixed elements or is of the form {f,z,7(z)} with f fixed and x not fixed by .
Now if 7 elements were fixed by 7, they carry an STS(7), which does not contain
two disjoint triples. It follows that at least 7 parallel classes are fixed and that at
least 35 triples are fixed. There are not enough fixed triples to achieve this, so 7
cannot fix 7 elements. If m were to fix nine elements, there are 12 fixed triples on
the fixed elements, and 6 other fixed triples. Each fixed parallel class contains 3 of
the 12 and none of the 6; or 2 of the 12 and 3 of the 6; or 1 of the 12 and all of the
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6. Therefore, there is no integral way to allocate the fixed triples to fixed parallel
classes, and hence 7 cannot fix 9 elements.

In addition, 7 cannot fix only one element, since it would then be a reversal, and
no reverse STS(21) exists (see, e.g., [3]). Hence m must fix exactly three elements.

It follows that 7 fixes exactly ten triples; one is on the three fixed elements, and
nine are of the form {f,z,7(z)}. To determine the number of fixed parallel classes,
we proceed as follows. One parallel class contains the fixed triple on the three
fixed elements, and hence the class is fixed. Moreover, it contains no further fixed
triples as all such triples contain a fixed element. There remain nine fixed triples.
When any one is included in a parallel class, the class is fixed under 7. But then
the remaining two fixed elements must also appear in fixed triples, and hence the
parallel class must contain three such. Hence there are three parallel classes which
are fixed, each containing 3 of the 9 remaining fixed triples. The final six parallel
classes contain no fixed triples, and indeed are paired under the action of 7.

Summarizing, 7 fixes three elements, ten triples, and four parallel classes; all
other elements, triples, and classes are paired by m. We generated KTS(21)s with
such an automorphism 7 in a number of steps. We outline the process here. We
chose (Zg x {0,1}) U {00g, 001,002} as the set of elements, with the automorphism
7 (x,1) — (x,1 —1) for (z,1) € Zg x {0,1} and = fixing oog, 001, C02.

Generating such a system directly appears to be quite time-consuming, and
hence we adopted a number of simplifications of the structure to generate solutions
using sequence of backtrack programs, eliminating isomorphic intermediate solu-
tions after each. Each backtrack was implemented in at least two separate ways.
Every KTS(21) admitting 7 can be projected onto Zg as follows. First, for each of
the 60 triples which are paired under 7, we delete one triple from the pair; when
they appear in paired parallel classes, we select triples to remove so that one of the
parallel classes in each pair has all of its triples removed. We then project onto Zg
by mapping (x,0) and (z,1) both to x for each x € Zg. We then delete the infinite
elements. The resulting collection of blocks consists of triples, pairs, and singletons
on the elements of Zg (one fixed triple has been deleted, and the remaining nine
reduced to singletons). This ‘design’ has the property that every 2-subset of Zg
occurs in exactly two blocks, since in the KTS(21) there are four 2-subsets of the
form {(z,1), (y,7)} each occurring once, but these arise in two paired 2-subsets. In
addition, the projected K'T'S has its blocks partitioned into seven classes, as follows:

1. one parallel class of three triples;
2. three parallel classes, each containing three singletons and two triples; and

3. three sets, each containing four triples and three pairs so that every element
is in exactly two.

In addition, the nine singletons are all distinct. If one further omits this infor-
mation about partitioning the blocks, the set system of interest has nine elements
and thirty blocks of which 21 are triples and 9 are pairs; the singletons can be omit-
ted. The basic properties are that every 2-subset occurs in exactly two blocks, and
every element occurs in exactly two pairs. We employed backtracking and nauty
to establish that there are precisely 8,716 nonisomorphic set systems.

Next we determined using backtracking all of the partitions of the set systems
into the seven classes detailed above. We observed that a repeated triple cannot
occur in a system which is a projection of a KTS, and further that in the last three
classes, no two blocks can intersect in two elements. This restricted the number
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TABLE 7. Parallel classes in 50,024 KTSs
Orthogonal p.c.’s 0 1 2 3 4 5 6 7 8
# KTS(21)s 12528 11955 10996 7003 3954 2035 860 397 165
Orthogonal p.c.’s 9 10 11 12 13 15 18 20 23
# KTS(21)s 73 32 11 5 4 2 1 2 1
TABLE 8. Underlying STS(21)s

# STSs # KTSs | # STSs # KTSs | # STSs # KTSs

3 11 1 10 1 9

13 8 5 7 25 6

61 5 312 4 758 3

6814 2| 32228 1

of solutions without removing any of the eventual KTSs to be produced. Together
with the seven class partition, we found exactly 788,813 projected K'TSs which are
nonisomorphic.

Again with backtracking, we determined how each pair and singleton could be
extended to a triple by adding one of oog, 001, and cog. Since each fixed element
must appear with each of the different elements from Zg, this selection of fixed
elements to include is quite restrictive. Hence we found that the number of solu-
tions in which the fixed elements are re-introduced drops; indeed, the number of
nonisomorphic solutions is 174,144.

The final phase determines, for each element x of Zg in each block, whether to
associate it with (z,0) or with (z,1). The constraint is that every orbit of 2-subsets
must be represented exactly once. Then applying 7 produces the full KTS(21).
With a final backtrack, we produced exactly 50,024 nonisomorphic KTS(21)s having
an automorphism of order 2.

Of these, 189 have an automorphism group of order 6 and all others admit no
automorphism except for powers of m. The number of KTS(21)s with a group of
order 6 agrees with the result in Table 1, and so the results of this and the preceding
section are consistent.

Once again, none is doubly resolvable. Indeed, each has at least one triple that
occurs in no parallel class orthogonal to the given resolution, so each is in one sense
far from doubly resolvable. Table 7 gives the possible numbers of parallel classes
which are orthogonal to the given resolution, along with the number of KTSs for
which this number arises.

There are 40,221 nonisomorphic STS(21)s underlying the 50,024 systems. The
number of KTS(21)s that each underlies is given in Table 8. Of the 40,221 under-
lying STS(21)s, there are 40,115 with a group of order 2; 8 with a group of order
4; and 98 with a group of order 6.

4. KTS(21)s BY EXCHANGES

Of the 13,280 systems with an automorphism of order 3, exactly 85 already
appear among the 192 KTS(21)s in [4]. None of the 50,024 KTS(21)s having an
automorphism of order 2 appear among the 192 known systems. We produced
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TaBLE 9. KTS(21) Summary

Group Order | [4] | Exchange 82 §3 | Total
1| 56 523 579

2 49835 | 49835

3| 66 13035 13035

5| 48 48

6 189 189 189

7 3 3

91 12 45 45

21 5 5 5
27 4 4
63 2 2 2
total | 192 523 | 13280 | 50024 | 63745

further KT'S(21)s as well as follows. Consider a KTS(21) containing two parallel
classes P and @ for which PUQ is disconnected. Then one component must contain
three blocks each of P and @, and the other component four blocks from each. Let
C contain the six blocks of the smaller component. Then we can exchange to find
a new KTS(21) by replacing the parallel classes P and @ by the parallel classes
(P\C)U(QNC)and (PNC)U(Q\ C). The resulting KTS(21) has the same
underlying STS(21) as the original, but need not have the same automorphism
group.

We found all pairs of parallel classes in the 63,222 KTS(21)s including the 192
known systems, and those with automorphisms of order 2 or 3. We applied this ex-
change procedure to produce all possible KTS(21)s that result from some sequence
of such exchanges: in total, 523 nonisomorphic KTS(21)s that are not among those
generated earlier. None is doubly resolvable, and none is quadrilateral-free. In Ta-
ble 9, we summarize the numbers of KTS(21)s known from [4], §3, §2, and obtained
by exchanges, along with a total which accounts for overlaps among these col-
lections. The web page http://www.public.asu.edu/~ccolbou/src/kts21.txt
gives a list of the 63,745 nonisomorphic systems now known.
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