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THREE-POINT FINITE-DIFFERENCE SCHEMES,
PADE AND THE SPECTRAL GALERKIN METHOD. I.
ONE-SIDED IMPEDANCE APPROXIMATION

VLADIMIR DRUSKIN AND SHARI MOSKOW

ABSTRACT. A method for calculating special grid placement for three-point
schemes which yields exponential superconvergence of the Neumann to Dirich-
let map has been suggested earlier. Here we show that such a grid place-
ment can yield impedance which is equivalent to that of a spectral Galerkin
method, or more generally to that of a spectral Galerkin-Petrov method. In
fact we show that for every stable Galerkin-Petrov method there is a three-
point scheme which yields the same solution at the boundary. We discuss
the application of this result to partial differential equations and give numer-
ical examples. We also show equivalence at one corner of a two-dimensional
optimal grid with a spectral Galerkin method.

1. INTRODUCTION

The connection between the spectral Galerkin method and finite-difference
schemes is well known—it is the essence of the pseudospectral method (for ex-
ample, see [11]). In the pseudospectral method, one constructs a finite-difference
scheme which is equivalent to a Galerkin method for some subspace, for exam-
ple, a set of algebraic or trigonometric polynomials. Usually such schemes are
equivalent to the corresponding Galerkin method in all finite-difference nodes, and
exponential convergence can be achieved (for regular enough problems) provided
the finite-difference stencil (or the matrix of the resulting linear system) is full.
Recently in [7, 8, 9] the authors described a method for choosing the placement of
the grid points so that by using a three-point scheme one can achieve exponential
superconvergence at an endpoint of the interval.® It is known that spectral Galerkin
methods can yield sparse matrices [4]; however, the sparsity structures depend on
the choice of the subspace. In our approach, the matrix is tridiagonal regardless
of the subspace. In other words, we sacrifice spectral convergence everywhere to
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obtain spectral convergence only at prespecified points with a three-term approx-
imation of second derivatives. In many applications, such as oil exploration, one
cares only about convergence at the receiver locations.

One can view this idea as an extension of Gaussian quadrature to second-order
finite-difference schemes. A Gaussian k-point quadrature rule for numerical inte-
gration is chosen to be exact for 2k polynomials, and we choose our k-node grid
so that some 2k functionals of the solution are exact. The implementation of our
finite-difference spectral rules is somehow similar to the implementation of the con-
ventional quadrature rules for numerical integration. It is based on precomputed
tables of the grids obtained for problems with constant coefficients. In some cases
the tabulation is not even needed because the optimal grid can be computed via a
simple analytic formula [14]. Then, as was suggested in [2, 9] for wave and elliptic
problems with piecewise constant coefficients and rectangular interfaces, the tables
are used for the grid generation within every homogeneous subdomain. Another
approach is to use a grid which is optimal for constant coefficients for problems with
variable coefficients. Such an approach would not produce spectral convergence in
a strict sense, but it yields spectral convergence for singular components of the
solution [14] which are the most difficult for conventional finite-differences. Thus,
at no cost this grid optimization approach can be implemented for quite general
linear partial differential equations (PDEs). However, at this point it is not clear
if it is applicable to nonlinear problems.

Though the grid optimization algorithm and its implementation for some prac-
tically interesting problems were covered in the above-mentioned papers [7, 8, 2, 9],
the authors used results on rational approximations of Stieltjes functions. Since
this approach is not standard in the numerical PDE community, we analyse here
the optimal grid technique from the point of view of common variational methods.

e We show that for every stable Galerkin (or more generally Galerkin-Petrov)
approximation there is a stable three-point finite-difference scheme which gen-
erates the same solution at the boundary.

e In particular, we show that the three-point finite-difference scheme based on
the simple Padé approximant is equivalent to a polynomial Galerkin method,
and also find an equivalent Galerkin-Petrov formulation for the Gaussian dif-
ference rules based on the (more efficient) multipoint Padé approximant.

What makes this approach different from the standard high-order approaches is
that we do not match the approximation for every grid node, but only for the Neu-
mann to Dirichlet map (also known as the Poincaré-Steklov operator or impedance).
This operator is an important tool in the theory and numerical analysis of elliptic
PDEs, because it completely describes the coupling of the domain with its neigh-
bours. Using the impedance operator, a large computational domain can be par-
titioned in simpler subdomains as in the spectral element or multidomain spectral
methods [16]. Due to the equivalency of the finite-difference and spectral Galerkin
impedance maps, the convergence results for the multidomain spectral method will
automatically hold for the finite-difference method at the subsets where these two
methods are equivalent. For one-dimensional problems, such subsets are just the
boundaries of the subintervals.

By taking the tensor product of optimal grids, one can extend this approach
to two or more spatial dimensions, provided the computational domain can be
partitioned (by Cartesian interfaces) into rectangular subdomains such that within
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every subdomain the variables can be separated. In this case, the subsets where
we will have equivalence to a spectral Galerkin method will be the corners of the
subdomains. We will discuss this in a second part to this paper [10]. It will
provide a rigorous foundation to the implementation of the multidomain optimal
grid approach given in [9, 2].

This paper is organized as follows. First we present the model problem in one
dimension in Section 2. Then in Section 3 we discuss the optimal grid approach from
the point of view of Padé approximation. Section 4 contains a proof that two of the
three approaches discussed in Section 3 are equivalent (in terms of an impedance)
to conventional Galerkin methods using trigonometric and polynomial subspaces.
We also show that every Galerkin approximation has a three-point finite-difference
counterpart with the same impedance. In Section 5 we show that the more efficient
multipoint Padé approximation has an impedance which is equivalent to a stable
Galerkin-Petrov impedance. It is multipoint Padé which is currently being used in
applications. In Section 6 we illustrate the application of optimal grids to solving
partial differential equations on simple model problems. First we show how one
can use one-dimensional optimal grids to greatly improve efficiency for Laplace’s
equation on a strip and a one-dimensional wave equation. Some of these and other
examples have been demonstrated numerically in [2, 14]. Next we prove that by
taking the tensor product of a one-dimensional optimal grid with itself, one can
obtain a two-dimensional five-point scheme with convergence equivalent to a two
dimensional spectral Galerkin method at one corner. Finally, the appendix shows
how one could transform the finite-difference solution to the equivalent Galerkin-
Petrov solution globally.

In the forthcoming second part to this paper we will use results of the first part
along with new results about two-sided impedance approximation to show Galerkin
equivalence for some nontrivial two-dimensional problems.

2. MODEL PROBLEM

We consider the one-dimensional problem

(1) u'(z) = du=0
on the interval [0,1], with boundary conditions
—u/(0) =1
and
u(l) = 0.

(We also include the limit case | = o0.) Let us approximate the solution u to
(1) by a staggered three-point finite-difference scheme. In a staggered scheme, the
numerical solution is defined at “potential” nodes

iy, t=1,...,k+1
with
1 =0
and

Ti+1 > T,
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and the finite-difference derivatives are defined at “derivative” nodes

T, ’iZO,...,k,

with
We denote the step sizes by
and

and solve the finite-difference problem

1 fwipr —w;  wy — w1 )
2 = - - i =Y, =2,...,Fk,
(2) P ( > o > w; =0 ) k

with boundary conditions
Wo — W1 1
—— ) =AWy = —
( ha ) ' hy

wgy1 = 0.

=
= _

and

Note that the first boundary condition is consistent with the differential equation
since it is the same as creating a dummy node wyg, allowing ¢ = 1 in (2) and setting

w1 — Wo

=1.
ho

We express the linear system (2) for w in shorthand by

(3) (L — Nw = -—%el,

1

where ey is the unit vector with support in the first component. The continuous,
or true, impedance function f(\) is defined by

fA) = u(0),
and the discrete, or approximate, impedance function fj(\) is defined by
fk;(A) = W1q.

Our objective is to choose the placement of the grid points so that the discrete
impedance function fi()\) is an accurate approximation to f(\) on some interval

of possible frequencies A. We will a priori require that the step sizes h; and h; be
positive to ensure the stability of (2).
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3. PADE APPROACH

Suppose we approximate the solution to (1) by the finite difference solution to
(3). Then, as the next lemma shows us, we can represent the discrete impedance
in terms of the eigenpairs of the matrix Lj. Note that Lj is not symmetric in the

standard sense, but is symmetric with respect to the inner product with weights
hia

k
<:I:) y>;} = Z h’ixiyia
i=1
that is
(Lnz,y);, = (z, Lay),
for any z,y € R*. In addition, for any nontrivial z,
(Lpz,x); < 0.

Hence, Ly has a real eigendecomposition with negative eigenvalues.

Lemma 1. Let z;,0; be the eigenvectors and eigenvalues, respectively, of the matriz
Ly, normalized with respect to the inner product (,);. Then the discrete impedance
function can be written as

_ Yi
(4) fk(A>—;A_9i,

where

Yi = (zz)f

Proof. Since the eigenvectors z; form an h orthonormal basis for Rk, we can de-
compose the finite-difference solution w into

k
w = Z(wa zi)ﬁzi
=1
so that its first component (or the discrete impedance) is
k
(5) wy = Z(w,zi)h(zi)l.
i=1

Now, using the fact that (z;,6;) is an eigenpair of Ly,

(w,2i)5, = (w, @Lhzz%}
= 9—i<Lhw,Zi>;L.
Due to (3), we further calculate that
1,1
(w, zi);, = 6—i</\w,zz‘>;l - —<ﬁ;€1,2i>g

| =

1
= (\w,2); ~ E(Zi)l,

>
=
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which implies that

(zi)1
A—08;
(

(w, z)j, =
The lemma follows from inserting this into (5). |

Lemma 1 says that for any stable finite-difference scheme the impedance function
can be represented as (4) with negative poles and positive residues, i.e., it states a
necessary condition for a rational function of the form (4) to be a finite-difference

impedance function. The following lemma shows that this condition is also suffi-
cient.

Lemma 2 (Stieltjes, Kac-Krein). Any rational function of the form (4) with nega-
tive noncoinciding poles and positive residues is the impedance function of a k-node
finite-difference scheme with positive steps.

The well-known mechanical equivalent of the finite-difference scheme is the string
of point masses h; connected by weightless springs with stiffnesses h;, and for such
a string the proof of the lemma can be found in [15] (see also [3, Theorem 5.1.2,

Corollary 2]). The proof is based on the Stieltjes continued fraction representation
of fi, that is

(6) fe(A) =
hiX+

hi +

hod+ ...

hipA + I

Given an impedance function of the form (4), from parameters y; and §; we
can obtain the step sizes h; and h; by equating (4) to (6) and using the Euclid
polynomial division algorithm. Stable excecution can be done with the help of
the Lanczos method with reorthogonalization, which results in O(k?®) arithmetical
operations (see [17, 9] for the details of this process). As was mentioned in the
introduction, the grids are computed only once a priori and one just uses their
tables when actually computing PDE solutions. Thus the grid generation does not
add to the cost of the implementation. The idea of [7] was to choose these poles and
residues (y; and 6;) so that (4) is an accurate approximation to the true impedance
function f(A), and then to find the step sizes h; and h; that correspond to this
approximation fi ().

Since there is a one-to-one correspondence between finite-difference approxima-
tions with positive steps (2) and rational sums (4) with noncoinciding nonpositive
poles ; and positive residues y; [15], we need to impose corresponding constraints
on the poles and the residues when we find an approximation to f(A). We will call
the approximants satisfying these constraints “stable” since they provide stability
of the underlying finite-difference scheme. All the approximants considered below
will automatically satisfy these constraints.
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Solving (1) analytically, we obtain the formula for the true impedance function

F) = 7““};(%@.

This function, as well as the stable finite-difference impedance fi, are Stieltjes
functions? of X. That is, they can be written as

FO) = / (A=)t do(y),

—0o0

where () is some positive (spectral) measure on (—o0,0] such that the integral
converges. For the finite-difference impedance fj we have that

d k
EXU(A) = ;yﬂs(x —6;).

For the true impedance on bounded intervals (I < 00), the spectral measure is also
discrete,

d 2
E):O'(/\) = 7 ;5(A —wi),

where

are the eigenvalues of (1). If the interval is unbounded (I = oo), the spectrum of
the true impedance is continuous. The measure is given by

o(\) = =271V =\

We will therefore attempt to apply the well-developed theory of Padé approximants
to Stieltjes functions (see, for example, [3, 13]). That is, since f()) is a Stieltjes
function, we will choose residues and poles y;, 6; such that the discrete impedance
Jr(XN) is a Padé approximant to f(\).

Before discussing the Padé approximants in more detail, we should note that
for the case of the bounded interval we could approximate the true impedance by
simply truncating its multipole expansion

=T
i=1 g

That is, we could take

k
g BV =73 5

)\—wi'

This approach yields only algebraic convergence, but it can be useful in combination
with a Padé approximant for wave problems. We will use (7) to partially eliminate
the spectrum.

We will now discuss two main types of Padé approximants:

2More precisely, they are Markov functions of \; however, since any Markov function can be
transformed to a more familiar Stieltjes form, we will refer to f as a Stieltjes function.
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1. Simple Padé approximant

d’ )
(8) — [fe(N) = F (V)] =0, i=0,...,2k—1,
dA? A=b
for some b outside the spectrum of (1).
2. Multipoint Padé approximant

9) o) = fMlhazp, =0, i =150, 2k,

where by < by < --- < by, are outside of the spectrum of (1).

We may use either of the above Padé approximants (8) or (9) to define fi(}),
and in either case fi(\) will converge to f()) at least exponentially in k for A
outside of the spectrum of (1). In addition, both approximants will produce (4)
with noncoinciding negative 6; and positive y; [3, 13]. One can view this idea as
an extension of Gaussian quadrature to second-order finite-difference schemes. A
Gaussian k-point quadrature rule for numerical integration is chosen to be exact
for 2k polynomials, and we chose our k-node grid so that the impedance satisfies
2k matching equations (8) or (9). Thus the Gaussian finite-difference rules yield
exponential superconvergence at the boundary for the solution of (2).

Remark. The convergence rates of fi to f for the Padé approximants depend on the
points b or b; and the logarithmical capacity of the spectrum of (1) [3]. For | < oo,
the spectral measure is discrete and hence has logarithmical capacity zero, so the
convergence is actually superexponential. If [ = oo, the spectrum is continuous with
a bounded positive logarithmical capacity, and the convergence will be exponential.
The approximation error of (8) grows rapidly away from b, so the multipoint Padé
approximants with a proper choice of b; have better approximation properties for A
on an interval of the real axis, i.e., A € [A1, Az]. For example, in the Padé-Chebyshev
approximant, fi is defined by the conditions

A2
(10) A MN(feN) = FO)) p(NdA =0 for i=0,...,2k—1,

1
— /2
X (ot A1)
p(A) = (1 [ o ] )

is the Chebyshev spectral weight adjusted to [A1, A2]. Condition (10) is equivalent to
(9) where the b; are close to the Chebyshev spectral nodes of degree 2k —1 (see [3]).
This is the Padé approximation which was implemented in [2]. Generally, provided
the parameters of the both approximants are chosen properly, the approximation
error of a simple Padé approximant on a spectral interval [A1, A2] with a large
condition number k = Ay/A; is bounded by Ce */V% while the error for the
Padé-Chebyshev approximant is bounded by Ce 4%/ V7 [3],

where

4. GALERKIN FORMULATION

Now we show that the Padé approximant approach (8) to construct f; is very
much related to a Galerkin method. In fact, the Padé approximant (8) is exactly
the same as the discrete impedance function obtained from a spectral Galerkin
method for (1) with a polynomial subspace.
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First we consider the bounded case and for simplicity assume that [ = 1. Let us
define for any v € H'[0, 1] and positive A the variational functional

() = (ol B,y — 20(0),
where
HUHQE[O,l] = “U/“%"’[O,l] + >‘HU“%2[0,1]

is the energy norm. If w is a solution of (1) with A > 0, then by integration by
parts we can see that

(11) f) == (u).

Suppose L is some subspace of H'[0,1]. Define the discrete Galerkin impedance
function by

(12) fr(N) = - Qi (v).

min
veL, v(1)=0

Let (w,v)g be the energy inner product

1 1
(w,v)E:/ w’v’+/\/ wo.
0 0

Then if v = uy, is the minimizer in (12), it also satisfies the variational equation
(13) (v,ur)E = v(0)

for any v € L. So just as in the continuous case, the impedance function satisfies
the energy equality

(14) fo(A) = ur(0).
From the variational equalities we obtain the identity
(15) Q(ur) = A (w) = lu —urlzp -

The identities (11), (14) and (15) combine to give us

Lemma 3. Let u be the solution to (1) and ur be the Galerkin solution to (13).
The corresponding impedance functions f(X) and fr(\) then satisfy

FON) = fL(N) = [lu— ULHQE[O,1]~

We also need the next lemma which states that the discrete Galerkin impedance
fr(A) could actually be used to generate finite-difference grid steps.

Lemma 4. The discrete Galerkin impedance f1,(X) produced by variational formu-

lation (12) can be written in the form (4) with positive y; and negative noncoinciding
0; with k < dim(L).

The proof is similar to the proof of Lemma 1. In Lemma 4 the poles 6; and
the residues y; are, respectively, equal to the Galerkin eigenvalues and the squared
values of the Galerkin eigenfunctions at = 0. From Lemmas 2 and 4 we have

Corollary 1. For any k-dimensional Galerkin approzimation there exists a stable

three-point finite-difference scheme with no more than k nodes which has the same
impedance function.
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Given a Galerkin approximation, one can obtain the equivalent finite difference
scheme in two main steps:

(1) Use the Galerkin eigendecomposition to write fr, in the form (4).
(2) Use the algorithm given in [8] to obtain its equivalent representation of the
form (6).
Remark. The converse of Corollary 1 is not true. From the variational definition
of fr, it follows that fr(\) < f(X\) for all nonnegative A\. multipoint Padé error

changes sign for positive A [13, 3], so it cannot be equal to an impedance function
for a Galerkin approximation.

Since the finite-difference system will have the same spectrum as the Galerkin
system, the condition number and the stability limitations will be exactly the same
for the two methods. Let us first consider the case of the truncated sum (7), which
is equivalent to the Fourier method in terms of impedance.

Proposition 1. Let f.(\) be the Galerkin impedance corresponding to
L = span{cos(0.57x), cos(1.57x), ... ,cos[(k — 1/2)mx]},
and let fi be the approzimation obtained from (7). Then
Je(X) = fL(N).

Proof. In this case L is exactly the span of the first k eigenfunctions of (1). These
functions are also the Galerkin eigenfunctions corresponding to eigenvalues

w; = —m2(i —1/2)%

If we normalize this basis by dividing by +/0.5, we use the proof of Lemma 1 to
obtain that

k
F1(0) = eos(O)/VOTP Y =
i=1 *
Hence,
T
i=1 g
which is just (7). O

It is well known that the Galerkin solution of Proposition 1 does not converge
exponentially to the solution of the nonperiodic two-point problem (1). If instead
we were to use polynomial subspaces, we would obtain exponential convergence
everywhere on the domain [0,1], and hence for fr(A\). The following proposition
shows that (8) is equivalent to a polynomial Galerkin method in terms of impedance.

Proposition 2. Let
L = span [:v —1,(x—123,... (z— 1)2k+1] ,

let fr(N\) be the Galerkin impedance corresponding to L, and let fi be the approzi-
mation obtained from (8) with b= 0. Then

feN) = fr(N).
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Proof. Solving (1) explicity, we obtain that
sinhv/\(z — 1)
u(z) = —————.
v Acoshv/ A
Direct calculation shows that
W AZOEL for +=0,...,k—1,

which means that the Maclaurin series expansion of u with respect to A,

k=1 4 ;

d’ A
Uk = —,L’U/ -,
; axi|, il

also belongs to L. So if v = ur, solves (12), then

lu —urllEpy < lu—ukllEp1-
For small A obviously

lu = uill = O(A®).
Therefore,
[u—url = O").
Hence, by Lemma 3, we obtain that
FO) = fL() = O(N*F).
Also, by Lemma 4, fr(}\) is of the form (4). But by the uniqueness of the Padé

approximant, there is only one function of the form (4) which is an O(\?*) approx-
imation to f(A) [3, Theorem 1.4.3]. Therefore,

fe(N) = fr(A).
O

For the case | = co, the Padé approximant (8) with b = 0 does not exist since
A = 0 is in the spectrum of (1). However, it will surely exist for positive b, in which
case the Padé approximation will be equivalent to the impedance of the Galerkin
solution corresponding to a subspace L consisting of the scaled Laguerre functions
e~V p(z), where p(z) is a polynomial.

5. GALERKIN-PETROV FORMULATION

As follows from (15), the Galerkin impedance function f; cannot be smaller
than the exact impedance f. However, the error function fir — f of the optimal
(on an interval) rational approximant should change sign 2k — 1 times on this
interval. Obviously, near optimal approximants, for example, the Padé-Chebyshev
approximant [12, 8], also retain this property. Generally such approximants can be
described by the multipoint Padé approximant (9), which unlike the simple Padé
approximant, cannot be expressed as a Galerkin impedance function. We can,
though, express (8) in terms of a variational equality with different trial and test
spaces. Suppose we have the test and trial subspaces V and U, respectively. Define
the Galerkin-Petrov solution uy,y to be in U and satisfy the equation

(16) (v,up,v)E = v(0)
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for any v € V, assuming such a solution exists. Then the Galerkin-Petrov impedance
function can be defined as

foy = uvy(0).
One may verify that

foyv = fvu
and

fr=rrr.
Proposition 3. Let fi.(\) be given by (9), and define a test space

U = span|qi,... ,qx]
and trial space
V' = span [@r+1, - - - 5 q2k) 5
with
ai(z) = u(z)|r=b,,

where the b; come from (9). Then the Galerkin-Petrov impedance function fyv(X)
ezists, s unique, and

TN = fuv(A).

Proof. When A = b; for i = 1,...,k, U contains the exact solutions. Hence, for
these spectral points,

uyy = u
and
fuyv = f.

Similarly, V' consists of the exact solutions for the remaining spectral points, so
when A=b; fori=k+1,...,2k,

Uy =u
and
fviu = 1.
But, since
fvu = fuv,

we have that
fov (b)) = f(b;) for i=1,...,2k,

that is, it satisfies (9). Also, by construction, fyy can be written in the form (4).

So the proposition follows from the existence and uniqueness of the multipoint Padé
approximant. O

Lemma 4 with positive residues and negative poles does not generally hold for the
Galerkin-Petrov method, but due to the stability of the multipoint Padé approxi-
mant [13], the Galerkin-Petrov method of Proposition 3 will be stable.
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6. AprprLiCATIONS TO PDESs

Note that if one has a solution to a partial differential equation of the form
0%u
da?

where L is some constant coefficient differential or difference operator in another
spatial or temporal variable (or both of them), after taking its (continuous or dis-
crete) Fourier transform in these variables we obtain an equation of the form (1).

It is for this reason that the results of the previous sections are directly applicable
to the approximation of such PDEs.

— Lu =0,

6.1. The Laplace equation. Let us first consider Laplace’s equation on the semi-
infinite strip

0 =10,00] x [0, 1]
given by

_Pw(z,y)  OPw(z,y)

(17) Oy? Ox?

=0

with boundary conditions

ow
% o - —go(y), w|m=+00 - O)

w(x,0) =0, w(z,1)=0.

We will assume that ¢ € H~/2([0,1]), so we have that w € H*(Q). Our goal is
to compute the Dirichlet data w|,—o € H/?([0,1]). We discretize (17) on a set

of k straight lines parallel to the y-axis and solve the semidiscrete finite-difference
equation

2w, wig1(y) — w; w;(y) — wi—
(18) 0 8;2@) _21; [ i1(y) —wily)  wily) —w 1(1/)] _o

h; hit
for ¢ =2,...,k with

— ~ 2’LU
(wz(mhlwl(y)) 2 3;2@ = —¢(v)

and

wit1(y) =0

serving as the boundary conditions. Let the grid correspond to the Galerkin-Petrov
formulation discussed in the previous section, where we will specify U and V later.
We define a semidiscrete Galerkin-Petrov solution wy,v (x,y) of (17) to be in U for

every fixed y, and to satisfy the exact boundary and infinity conditions from (17)
and the equation

ov awU,V 82wU1V

(19) <%, e ) — (v, TyQ> =v(0)p(y)

for any v € V, if the solution exists. (Here (,) denotes the standard L,[0, co| inner
product.) Decomposing the solutions of (18) and (19) into their Fourier series in y,
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we obtain (2) and (16), respectively, with A = (iry)®. Hence, from Proposition 3
we have that

wy,v (0,y) = wi(y).
Note that conventional polynomial-based subspaces, for example, the Laguerre
functions (which, as mentioned above correspond to the standard Padé approxi-
mant with a positive b) would not yield exponential convergence of the Galerkin
method for nonsmooth H!-solutions. However, the ph-element method with opti-
mal refinement yields O (e”c‘/z> error with ¢ > 0 for two-dimensional problems
with H' singularities [19]. In principle, then, we could take the Galerkin subspaces

from this method and apply Corollary 1 to generate the grid for the impedance-
equivalent three-point scheme.

Here we demonstrate another approach based on rational approximation theory.
Recall that for this problem [ = oo, so
FO) =712,

We will estimate the finite-difference impedance error

lw(0,y) — w1 (W)l r,00,1
by minimizing
AT — (V)
in the sense of some weighted L> norm on (1, 00) (see [14] for details). That is, we
would like to find the grid which is optimal in this sense. There is a simple solution
[18] which is close to optimal. We could define the grid by the multipoint Padé
approximant (9) with

(i—1)m
bi — e 2vEk

)

so the corresponding U and V' will be as in Proposition 3. From Newman’s min-
max estimate (well known in rational approximation theory [18]) it follows that the
grid based on this multipoint Padé approximant yields for w(z,y) € H*(Q),

(20) w(0,4) = wi(@llzapoy = O (7°VF)

(see [14]). The actual computational results seem to be even better (see [2] for a
numerical example where the solution belongs only to H'~¢(Q), yet the convergence
is asymptotically faster than the estimate (20)). It is also interesting to note here
that the grid happens to be very close to the geometric progression

(i—k)m ]
hi=e vk | i=1,...,k,

hy = hy/ (1 +€2J_‘/E) ;
and

hi = \/hi_1hi,  i=2,...,k
See [14] for more details and results about the locations of these optimal grid points.
The optimal geometric grid described here is derived only for H' solutions of
the Laplace equation, but it can be useful for some elliptic equations and systems
with variable coefficients and singular solutions. This is because significant parts
of the singularities are solutions of Laplace’s equation. For example, scientists at



THREE-POINT SCHEMES, PADE AND GALERKIN 1009

the international oil services company, Schlumberger, applied this optimal grid to a
three-dimensional Maxwell system in inhomogeneous anisotropic media (induction
logging problem). The size of the finite-difference scheme was dramatically reduced
compared to the ad hoc grids used previously.

6.2. The wave equation. Let us now consider the initial value problem for the
one-dimensional wave equation on [0, ] x [0, T,

0?u(z,t)  O%u(z,t)
1 ) _ ) —
(21) ot? Ox? 0
with boundary conditions
ou
an. = _(p(t)> u(l>t> =0,
ox|,_,
u(z,0) =0, QB =0.
ot 1o
One may approximate u by the method of lines
(22> dei(t) . 71~ ’LUZ'_H(t) — wz(t) _ wz(t) — wi_l(t) -0
dt? h; h; hi_1
for ¢ = 2,...,k with the boundary conditions
wa(t) —wi(t)  dPwi(t); _
wk+1(t> =0,
dwi
wz(()) - Oa dt o - 07

where the spatial grid is computed according to one of the Padé methods considered
above. For example, let this grid correspond to the Galerkin-Petrov formulation
discussed in the previous section. Define the the semidiscrete Galerkin-Petrov solu-

tion up v (x,t) of (21) to be in U for every fixed ¢, to have the same initial condition
as u, and to satisfy the equation

2y

(23) (B2 U0V 1o, I — (ayo(0)

for any v € V, assuming such a solution exists. (Here (,) denotes the standard
L?(0,1) inner product.) Equations (22) and (23) can be Fourier transformed to (2)
and (16), respectively, so from Proposition 3 we obtain that

up,v (0,t) = wi(t).

For good subspaces, e.g., polynomial, and regular enough ¢(t), the Galerkin-Petrov
solution converges exponentially; therefore, the component w; (t) of the semidiscrete
finite-difference solution also converges exponentially.

Let us consider a numerical example which was given in [2] for the problem (21)
where

Q=10,1] x [0, 5]
with
99(t)

T
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where ¢(t) is a wavelet which is close to the Gaussian pulse

_ _ 2
o~ 27(t-0.225)

The exact solution of this problem is
0 .
u=glx—t)+» (-Diglz—t+i+1)+g(z+t—i-1).
i=1

Of course, we could simply construct a grid based on the Galerkin polynomial
method from Proposition 2. This would be much better than a standard equidistant
grid, but we could use the available information about the solution even more
efficiently. We can map (21) to (1) by a Fourier transform. Applying the same
transform to the wavelet g(\), we find that the spectrum lies mainly in {—8100, 0],
so we want to choose a grid with the best approximating properties for A from that
interval. The eigenvalues of (1), i.e., the poles of f, are given by

w; = —[m(i —1/2))%

Note that the first 28 of them are located in our approximation interval, and this
complicates the implimentation of the multipoint Padé approximant. In all previous
discussions we wanted to approximate f for A away from its poles.

To circumvent this problem, we use the algorithm proposed in [9]. That is,
first we exactly match those poles as in (7). Next we use the remaining degrees
of freedom to match the impedance at points b; located close to the roots of a

10 '

1 0 1 | 1 1 1 L L L
9000 8000 7000 6000 5000 4000 3000 2000 1000 0 1000
lambda

FIGURE 1. The finite-difference impedance error.
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FIGURE 2. Grid, & = 35, “dots” are x;, “crosses” are ;.

Chebyshev polynomial. We can then combine Propositions 1 and 3 to obtain the
equivalent Galerkin-Petrov subspaces. So in addition to

w(z)[r=b;,

the subspaces consist of the eigenfunctions
cos[m(i — 1/2)x]

corresponding to the exactly matched poles. Similar combined subspaces have been
used in the framework of the conventional spectral method (see for example [6]).
Thus, the size k of the grid should at least be equal to the number of those poles
which lie in the spectral interval which we would like to approximate. This corre-

sponds to the famous Nyquist (lower) limit of two points per minimal wavelength
for spectral methods.

% 0.5

0.4

0.3

0.2

0.1

FIGURE 3. The optimal grid finite-difference solution in x — ¢ co-
ordinates. After every reflection the numerical dispersion is re-
versed.
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In Figure 1, we considered a grid with & = 35, and plotted the absolute value
of the impedance error f — f; as a function of A. The lower spikes of the curve
correspond to the points b; for which the impedance was matched exactly. The
upper spikes indicate the locations of the the matched poles w;. As we see, the
approximation error is very small within the targeted spectral interval. The grid
is shown in Figure 2. Note its staggeredness (potential and derivative points al-
ternate), which was not imposed a priori on the grid generation algorithm. Note
also the gradual refinement toward z = 0, which is similar, but not exactly equal
to, the Legendre-Gauss-Lobatto points. The grid has about 2.5 grid points per
minimal wavelength of the signal on average, but some steps are larger by far than
the wavelet size. According to the numerical experiments presented in [2, Table 1],
the minimal grid steps (and so the stability CFL conditions) for such grids are just
insignificantly smaller (about 10%) than the step size of the equidistant grid which
has the same approximation error.

We computed a finite-difference solution of this hyperbolic problem by using
the standard explicit FDTD with equal time steps. A two-dimensional plot of the
finite-difference solution @ is presented in Figure 3. Due to the grid coarsening,
the wavelet becomes greatly distorted when it moves away from x = 0, but the
distortion is almost completely reversed when the wave moves back after it hits the
opposite boundary. Such behaviour is counterintuitive because usually the finite-
difference errors of hyperbolic equations propagate along characteristics. However,
our finite-difference solution at « = 0 (and only at that point) is equivalent to the
Galerkin-Petrov solution on well-chosen trigonometric subspaces. This is why we do

1.5F T x=0
- = = x=0.495

0.5

solution
o

vl [
l: \1 ( ! \\; Vot
! L
0. 5 i
\l

v

2 | L 1 L | ! | 1 I
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
t

FIGURE 4. The finite-difference solution at x = 0 compared to z
in the center of the interval.
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not observe a finite-difference dispersion error at that point. We should point out
that the grid constructed from a Galerkin polynomial method (i.e., simple Padé)
would give qualitatively similar results but would require about twice as many grid
points for the same accuracy. We plotted separately the slices of the finite-difference
solution at the targeted boundary and at the center of the interval in Figure 4.

The numerical dispersion at the target does not exceed 1%. The finite-difference
solution here almost exactly coincides with the properly shifted and superimposed
wavelet. However, the error at the center of the spatial interval is larger than 50%
of the maximal signal and greatly distorts the shape of the wavelet.

Finally, for comparison, we add to the optimal grid one potential node and one
derivative node at the points (z34 + x35)/2 and (&34 + &35)/2, respectively. This
halves the maximal grid step and apparently the local finite-difference truncation
error. One would expect that this would decrease the numerical dispersion, but
according to Figure 5 this is not the case. Apparently, these additional nodes
destroy the delicate equivalence of the finite-difference scheme to the Galerkin-
Petrov approximation. We should point out, however, that adding or deleting
nodes in close proximity to the origin does not affect the accuracy so much. A

theoretical analysis of the grid sensitivity could be an interesting topic for future
research.

i i

i i il

i . i - o
R L HE I kiR
e §%§§§§§§! % HEL T §E§§i§%§i§§§§1§l
e e s
E g§§§§i§Ei‘égggiéi§E§EEiiiii?‘?gﬁﬁggiiglﬁﬁﬁﬁm i
E§i§§§i§§§§%§§5§§§§§3§§ }Eéi?%g L |

.
i

M
B

i
i

0.5 1 15 2 2.5 35 4 45

Ficure 5. The finite-difference solution in & — ¢ coordinates, the
optimal grid unbalanced by additional nodes. The numerical dis-
persion grows monotonically with time.
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6.3. Discretization in two dimensions. In higher-dimensional problems for
which the domain can be partitioned into rectangular subdomains, (such that
within every subdomain the variables can be separated), one can apply this op-
timal grid method. In [9] the authors implemented this approach and observed
exponential convergence at the subdomain corners. Here we give an example of a
two-dimensional problem on one rectangle, and show that the method is equivalent
to a spectral Galerkin method at one corner. We must remark, though, that the
following example is not scientifically interesting in itself since the true solution is
undefined at this corner where the two methods give the same value. However,
the result found here shows equivalence for more interesting time dependent prob-
lems. Also it will provide a theoretical basis for the multidomain two-dimensional
applications we discuss in [10].
Consider the Helmholtz problem where the domain

Q=(0,1) x (0,1)
with

00 = 00N ({x1 = 0} U {zy = 0}),

00y =00 N ({z1 =1} U {xs =1}),
and u is the solution to

Au—Au=0 on

ou
% = 6(070) on an,

u=0 on 0%,

where §(q,0) is the Dirac delta function at the origin, i.e., we consider the problem
with a point source at the corner. Note that the solution u is infinite at the origin,
but our goal at the moment is to show equivalence of two methods at this corner,
not to prove convergence of either. Let us first describe the optimal grid finite-
difference approach to this problem. We use the simple Padé approximant (8) to
compute a one-dimensional optimal grid for the problem

(24) P’ —\P =0,
—P'(0) =1,
P(1) =0,

for some b outside the spectrum (note that this is the same as (1)). That is, the
one-dimensional difference solution P would satisfy

- - 1
LhP — AP = — €1,
h1
where e; is the unit vector with support in the first component. Next we take the
tensor product of this grid with itself to obtain a two-dimensional Cartesian grid
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on €2, and solve the five-point difference problem

1 <’wz'+1,j — Wiy Wiy~ wz‘—l,j>
h; h; hi—1

(25) 1 <’wz‘,j+1 — Wi Wi~ Wi

+ = - - /\wz =0
hj hj hj‘“l ) X

fori,j=1,...,k

with boundary conditions

Wy k+1 = 0, Wi41,; =0
and
Wiy —woy Oy _Win — Wi 01i
hO ill ’ hO ill '

In short, the difference equation for w would be

1

(26) (Mh—)\)w = —z—e1 ey,
hi

where M), is defined on tensor products of vectors by

Mp(z ®y) = (Lnr) @y + 2 @ (Lny).
Define the discrete impedance function from this difference method by
(27) Fk()\) = w11

We will need the following lemma which says that this difference equation is sepa-
rable in the same way as the differential equation.

Lemma 5. Let 2,,,0,, and z,,0, be eigenpairs of the one-dimensional difference
operator Ly. Then the tensor product of these vectors

(Zm'l‘b)ij = (2m); (zn)j
is an eigenvector of the two-dimensional difference operator My with eigenvalue

O, = O + Ony,.

The proof of this lemma follows immediately by substituting z, into (25).

Now consider a variational approach to this problem. Define the energy inner
product

Ex(u,v) = / Vu - V'U+)\/ uv
Q Q
so that the true solution u solves
EA(U,’U) = ’U(0,0)

for any smooth v. For a finite dimensional space U, define the Galerkin solution to
be uy € U such that

EL\(”LI,U7 ’U) = ’U(O7 O)
for any v € U, with the corresponding impedance approximation

FU = UU(0,0).
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Let P(x,\) be the solution to the one-dimensional problem (24), and define

9
L = span [8/\ P(z,\) )\:bz’ = 1...2k] .
We will say that 4 is a Galerkin eigenvector with eigenvalue p if w € U and
E,(u,v) =0

for any v € U.

Lemma 6. Let ™ and 4" be L?-normalized eigenvectors to the one-dimensional
Galerkin problem with Galerkin subspace L corresponding to eigenvalues p, and
L, Tespectively. Then the tensor product of these vectors

4" = 4" (@) u" (22)

is an eigenvector of the two-dimensional Galerkin problem with
U=L®L =span|p(z1)q(z2) : p,q € L]
corresponding to the eigenvalue fpmpn = tm + -

The proof can be obtained from direct calculations.

Proposition 4. Let Fj(\) be the discrete impedance (27) where the one-dimen-
sional grid was generated from (8). Define

U=L®L=span[p(z1)q(z2) : p,qg € L].
If Fiy () is the Galerkin impedance, then

Fy(\) = Fu(\).

Proof. Note that Mj, is symmetric with respect to the weighted inner product h,
that is, where the ijth component is weighted by h; h Then, by the same proof

as in Lemma 1, we can write the finite-difference 1mpedance F as the rational
function of A,

(Zmn)il
Fe(N) =2y

m,n

where the z,,, are the h-normalized eigenvectors of M. From Lemma 5, this is
just

A—06,,—06,’

m,n

where the z; are just the h-normalized one-dimensional eigenvectors. Hence

 Ym¥n
Z X— (Om + 0)’

m,n=1

where the y;,0; are the same as in the one-dimensional impedance approximation
(4). At the same time, also by the proof of Lemma 1, the Galerkin solution can
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be decomposed in terms of the Galerkin eigenvectors, and the impedance can be
written as

k
mn 0’0 2
R - Y SO0
m,n=1 mn

where [, are the Galerkin eigenvalues. Thus, by Lemma 6,

4™(0)%4™(0)2
Fo) =23 ~((A)Lm +(M) )

Recall that the one-dimensional Galerkin impedance can also be expressed in terms
of its eigendecomposition

k ui(0)2
oy =3 L

but Proposition 2 tells us that fr(\) is exactly the same as

k
SN = 75
i=1 v

which implies that each

W'(0)? = y;
and

pi = ;.
Hence,

Fy(\) = Fp(\).
0

As we already mentioned, the example considered is not scientifically interesting in
itself since the true solution of the Helmholtz equation is undefined at this corner
where the two methods give the same value. However, the Helmholtz problem and
its approximations can be Laplace-transiormed into a three-dimensional problem
and its approximations, respectively. Let it be, for example, the heat equation on

Qx(0,7)

with zero initial conditions and the instantaneous point source d(g,0)(z)do(t). For
positive times the solution of the latter problem exists at the corner and it is regular
enough for the spectral Galerkin method. Proposition 4 would then imply spectral

superconvergence of the finite-difference approximation of the heat problem at this
corner for ¢t > 0.

APPENDIX A. POSTPROCESSING FOR ACCURATE COMPUTATION OF THE
SOLUTION ON THE ENTIRE DOMAIN

We can use the above connection to actually transform the finite difference so-
lution to the equivalent Galerkin-Petrov solution. This could be useful since the
finite-difference solution is exponentially converging only at a priori selected points,

while the variational one is converging exponentially everywhere on the computa-
tional domain.
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First, let us consider the one-dimensional problem from Section 2. Let @; € U and
U; € V Dbe trial and test bi-orthonormal Galerkin-Petrov eigenvectors, respectively,

ie.,
(i, 05) 12001 = i
and
(Ds,05) m1j0,1] = 0305,
where §; ; is the Kronecker symbol. For this bi-orthogonal system to be unique, we
additionally impose that

;(0) = 0;(0).

Then the corresponding impedance function fy y can be written in the form (4)
with

yi = 0;(0);(0).

Now, let w = (w1, ... ,wy) be the finite-difference solution corresponding to fv v,

and let

{ziti=1,... k
be an orthonormal set of eigenvectors of the finite-difference operator (2) with
weight h;. Then the corresponding impedance fi = fu,y is defined as (4) with

Yi = (Zi)%a
and hence

(z)7 = 0:(0);(0).
Decomposing uy,i7, we obtain

uyy(z) = Zﬁi(iﬂ)(@i,uU,VﬁZ[o,l}
k
= Zuxmmmm—ei)-l

-

=1

i)

Recall that

<v > i
is the grid Euclidean inner product with weights h;. Then, using that

(w, 2i)j, = (2)1(A = 0;) 7"

we finally obtain

(28) uy,v ( Z ;i (@) (w, 2i),

Formula (28) transforms the grid solutlon into the equivalent projection solution.

We note here that the transformation (28) is linear and does not depend on A.
That is, one may insert differential or finite-difference operators in place of A\. Hence
it can be applied, for example, to the semidiscretizations discussed in Section 6.
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