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CONVERGENCE RATE ANALYSIS
OF AN ASYNCHRONOUS SPACE DECOMPOSITION METHOD
FOR CONVEX MINIMIZATION

XUE-CHENG TAI AND PAUL TSENG

ABSTRACT. We analyze the convergence rate of an asynchronous space decom-
position method for constrained convex minimization in a reflexive Banach
space. This method includes as special cases parallel domain decomposition
methods and multigrid methods for solving elliptic partial differential equa-
tions. In particular, the method generalizes the additive Schwarz domain de-
composition methods to allow for asynchronous updates. It also generalizes
the BPX multigrid method to allow for use as solvers instead of as precon-
ditioners, possibly with asynchronous updates, and is applicable to nonlinear
problems. Applications to an overlapping domain decomposition for obstacle
problems are also studied. The method of this work is also closely related to
relaxation methods for nonlinear network flow. Accordingly, we specialize our
convergence rate results to the above methods. The asynchronous method is
implementable in a multiprocessor system, allowing for communication and
computation delays among the processors.

1. INTRODUCTION

With the advent of multiprocessor computing systems, there has been much
work in the design and analysis of iterative methods that can take advantage of
the parallelism to solve large linear and nonlinear algebraic problems. In these
methods, the computation per iteration is distributed over the processors and each
processor communicates the result of its computation to the other processors. In
some systems, the activities of the processors are highly synchronized (possibly via
a central processor), while in other systems (typically those with many processors),
the processors may experience communication or computation delays. The latter
lack of synchronization makes the analysis of the methods much more difficult. To
aid in this analysis, Chazan and Miranker [16] proposed a model of asynchronous
computation that allows for communication and computation delays among pro-
cessors, and they showed that the Jacobi method for solving a diagonally dominant
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system of linear equations converges under this model of asynchronous computa-
tion. Subsequently, there has been extensive study of asynchronous methods based
on such a model (see [5, 6] and references therein). For these methods, convergence
typically requires the algorithmic mapping to be either isotone or nonexpansive
with respect to the L°-norm or gradient-like. However, aside from the easy case
where the algorithmic mapping is a contraction with respect to the L°°-norm, there
have been few studies of the convergence rate of these methods. One such study
was done in [55] for an asynchronous gradient-projection method.

In this paper, we study the convergence rate of asynchronous Jacobi and Gauss-

Seidel type methods for finite- or infinite-dimensional convex minimization of the
form

m
® et ().

where each K; is a nonempty closed convex set in a real reflexive Banach space
V and F is a real-valued lower semicontinuous Gateau-differentiable function that
is strongly convex on Y ', K;. Our interest in these methods stems from their
close connection to relaxation methods for nonlinear network flow (see [4, 5, 56]
and references therein) and to domain decomposition (DD) and multigrid (MG)
methods for solving elliptic partial differential equations (see [7, 8, 9, 14, 18, 19,
33, 40, 45, 52, 53, 57 and references therein). For example, the additive and the
multiplicative Schwarz methods may be viewed as Jacobi and Gauss-Seidel type
methods applied to linear elliptic partial differential equations reformulated as (1)
[9, 57). DD and MG methods are also useful as preconditioners and it can be
shown that such preconditioning improves the condition number of the discrete
approximation [7, 8, 10, 9, 14, 33, 40, 45, 57]. In addition, DD and MG meth-
ods are well suited for parallel implementation, for which both synchronous and
asynchronous versions have been proposed. Of the work on asynchronous methods
[21, 22, 27, 38, 37, 39, 46], we especially mention the numerical tests by From-
mer et al. [22] which showed that, through improved load balancing, asynchronous
methods can be advantageous in solving even simple linear equations. Although
these tests did not use the coarse mesh in its implementation of the DD method,
it is plausible that the asynchronous method would still be advantageous when the
coarse mesh is used. However, the convergence rate analysis of the above asynchro-
nous methods seems still missing from the literature. In the case where the equation
is linear (corresponding to F' being quadratic and Kj, ... , K, being suitable sub-
spaces of V) or almost linear, this issue has been much studied for synchronous
methods (see see [7, 8, 9, 14, 18, 19, 33, 40, 45, 52, 53, 57| and references therein)
but little studied for asynchronous methods. In the case where the equation is
generally nonlinear (corresponding to Kj, ... , K, being suitable subspaces of V),
there are some convergence studies for synchronous methods [15, 18, 44, 52, 53],
and none for asynchronous methods. In the case where Ki,...,K,, are not all
subspaces, there are various convergence studies for synchronous methods (see
[1, 12, 23, 25, 28, 29, 30, 31, 34, 35, 36, 47, 50] and references therein) but, again,
none for asynchronous methods.
The contributions of the present work are two-fold.

e We consider an asynchronous version of Jacobi and Gauss-Seidel methods
for solving (1), and we show that, under a Lipschitzian assumption on the
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Géteau derivative F’ and a norm equivalence assumption on the product
of Ki,...,K,, and their sum (see (5) and (6)), this asynchronous method
attains a global linear rate of convergence with a convergence factor that can
be explicitly estimated (see Theorem 1). This provides a unified convergence
and convergence rate analysis for such asynchronous methods.

We apply the above convergence result to (finite-dimensional) linearly con-
strained convex programs and, in particular, nonlinear network flow prob-
lems. This yields convergence rate results for some asynchronous network
relaxation methods (see Section 6). Previous work studied the convergence
of these methods, but no rate of convergence result was obtained. We also
apply the above convergence result to certain nonlinear elliptic partial differ-
ential equations. This yields convergence rate results for some asynchronous
parallel DD and MG methods for solving these equations and, in particular,
the convergence factor is shown not to depend on the mesh parameters (see
Section 7). When implementing multigrid methods on parallel processors, the
nodal basis is often organized into different groups. The computation within
each group can be sequential while the computation in different groups could
be done in parallel. The asynchronous convergence rate analysis provides a
convergence rate estimate when computation in different groups is not fully
synchronized. Lastly, application to an overlapping DD method for obstacle
problems is studied. We show that the method attains a linear rate of conver-
gence with a convergence factor depending on the overlapping size, but not
on the mesh size or the number of subdomains.

We note that alternative approaches such as Newton-type methods have also
been applied to develop synchronous DD and MG methods for nonlinear partial
differential equations without constraints [2, 3, 11, 26, 41, 58, 59]. However, these
methods use the traditional DD and MG approach or use a special two-grid treat-

ment. Our approach is different even for nonlinear partial differential equations
without constraints.

2. PROBLEM DESCRIPTION AND SPACE DECOMPOSITION

Let V be a real reflexive Banach space with norm || - || and let V' be its dual
space, i.e., the space of all real-valued linear continuous functionals on V. The
value of f € V' at v € V will be denoted by (f,v), i.e., {-,-) is the duality pairing
of V and V’'. We wish to solve the minimization problem
(2) min F(v) ,
where K is a nonempty closed (in the strong topology) convex set in V and
F :V — Ris a lower semicontinuous convex Gateau-differentiable function.
We assume F' is strongly convex on K or, equivalently, its Gateau derivative
lim; o (F (v +tw) — F(v))/t, which is a well-defined linear continuous functional of
w denoted by F'(v) (so F' : V — V'), is strongly monotone on K, i.e.,

(3) (F'(u) — F'(v),u —v) > ollu—vl|]*, Yu,v €K,

where o > 0. It is known that, under the above assumptions, (2) has a unique
solution @ [24, p. 23].
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We assume that the constraint set K can be decomposed as the Minkowski sum
m
(4) K=Y K
i=1

for some nonempty closed convex sets K; in V, i =1,...,m. This means that, for
any v € K, we can find v; € K;, not necessarily unique, satisfying 2?;1 v; = v and,
conversely, for any v; € K;, i =1... ,m, we have ) ", v; € K. Following Xu [57],
we call (4) a space decomposition of K, with the term “space” used loosely here.
Then we may reformulate (2) as the minimization problem (1), with (@1,...,%m)
being a solution (not necessarily unique) of (1) if and only if @; € K; fori=1,... ,m
and ", @; = @. As was noted earlier, the reformulated problem (1) is of interest
because methods such as DD and MG methods may be viewed as Jacobi and Gauss-
Seidel methods for its solution. The method we study will be an asynchronous
version of these methods. The above reformulation was proposed in [9, 57] (for
the case where F' is quadratic and K = V) to give a unified analysis of DD and
MG methods for linear elliptic partial differential equations. The general case was
treated in [47, 50] (also see [48, 52] for the case of K = V).

For the above space decomposition, we will assume that there is a constant
C1 > 0 such that for any v; € K;,i = 1,...,m, there exists @; € K; satisfying

m m % m
(5) 0= Zai and (Z la; — Uz‘||2> <Gyl — Zvi
i=1 i=1 =1

(see [14, p. 95], [50, 52], [57, Lemma 7.1] for similar assumptions). We will also
assume F’ has a weak Lipschitzian property in the sense that there is a constant
Cs > 0 such that

© 1 1
S S g )~ Fltwg)nd < Ca Y ) (X Il
i=1 j j=1 """ i=1

i=1j=1
Vwi; € K,ugg € K90 € K2, i, =1,...,m,

where we define the set difference K = {u —v : u,v € K;} C V. The above

assumption generalizes those in [50, 52, 53] for the case of K; being a subspace, for
which KP = K.

Furthermore, we will paint each of the sets K,... , K,, one of ¢ colors, with the
colors numbered from 1 up to ¢, such that sets painted the same color k € {1,... ,c}
are orthogonal in the sense that

2
(7) Swll = >0 Il Ve K7, i€ I(k),
iel(k) i€I(k)
(8) <F’ <u + ) v) > v¢> < D> (F(utv),vi),
iel(k) iel(k) il (k)

Vu € K, v; € KZ, i€ I(k),

where I(k) = {i € {1,... ,m} : K; is painted color k} (see [14, §4.1], [53] for similar
orthogonal decompositions in the case K; is a subspace). Thus I(1),...,I(c) are
disjoint subsets of {1,...,m} whose union is {1,...,m} and I(k) comprises the
indexes of the sets painted the color k. Although ¢ = m is always a valid choice, in
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some of the applications that we will consider, it is essential that ¢ be independent
of m. In the context of a network flow problem, each set K; may correspond to
a node of the network and sets are painted different colors if their corresponding
nodes are joined by an arc. In the context of a partial differential equation defined
on a domain  C R?, each set K; may correspond to a subdomain of ) and sets are

painted different colors if their corresponding subdomains intersect (see Sections 6
and 7 for details).

Remark 1. It can be seen that condition (6) is implied by the following strengthened
Cauchy-Schwarz inequality (also see [45, p. 155], [57] for the case of quadratic F

and subspace K;):
(F'(wij +uig) = F'(wig), vi) < eigllugllloill,  Vwi; € K uig € K30 € K2,
with Cy being the spectral radius of the matrix £ = [eij];'szl, assumed to be

symmetric.

Remark 2. For locally strongly convex problems, the constants o, Ci, Co may
depend on u, v, v;, w;j, us;. In this case, the subsequent analysis should be viewed as
being local in nature, i.e., it is valid when the iterated solutions lie in a neighborhood
of the true solution (see Section 7).

3. AN ASYNCHRONOUS SPACE DECOMPOSITION METHOD

Since F' is lower semicontinuous and strongly convex, for each (uy,...,un) €
Ky x -+ x K, and each 7 € {1,... ,m}, there exists a unique w; € K; satisfying
(9) F(Zu]—sz) SF(ZU]'—F’W), Y, € K;

J#i J#i

(see [24, p. 23]). Let mi(ui,...,un) denote this w;. Then (my,...,7y) may
be viewed as the algorithmic mapping associated with the block Jacobi method
for solving (1). Consider an asynchronous version of the block Jacobi method,
parameterized by a stepsize v € (0,1], which for simplicity we assume to be

fixed, that generates a sequence of iterates (ui(t),...,um(t)), t =0,1,..., with
(u1(0), ... ,um(0)) € K1 x --- x K, given, according to the updating formula,
(10) wit+1) = w(t)+ys:(t), i=1,...,m,

where we define

(11) si(t) = { Bui(t) —uilt) ftflfrglse

(12) wi(t) = m (i), um(m (1))

and T* is some subset of {0,1,...} and each 7}(t) is some nonnegative integer not
exceeding t. Since each Kj; is convex and v € (0, 1], an induction argument shows
that (uy(t),... ,um(t)) € Ky X --- x K, forallt=0,1,....

We will assume that the iterates are updated in a partially asynchronous manner
[5, Chap. 7], i.e., there exists an integer B > 1 such that

(13) {t,t+1,...,t+B—1}NT" # 0, t=0,1,..., Vi
(14) 0<t-7i(t)<B-1 and 7/(t)=t, VteT’, Vi,j
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We say that a color k € {1,...,c} is active at time ¢ if there exists an 7 € I(k) such
that ¢t € T°. Recall that I(k) indexes those sets painted the color k. Denoting by
¢; the total number of colors that are active at time ¢, we will also assume that

o 1
15 <mind ——, =%, t=0,1,....
) vemin{ o)
Notice that v does not depend on m nor on Cy. Although (15) may give a very
conservative value of v, this can be remedied by starting with a larger v and de-

creasing v whenever “sufficient progress” (defined in any reasonable way) is not
made and (15) is not satisfied.

Remark 3. The above asynchronous method models a situation in which compu-
tation is distributed over m processors with the ith processor being responsible for
updating u; and communicating the updated value to the other processors. T* is
the set of “times” at which w; is updated by processor ¢ (by applying m; to its
current copy of (U1, ... ,Un)); u;(t) is the value of u; known to processor ¢ at time
t; and T;f (t) is the time at which the value of u; used by processor i at time t is
generated by processor j, so t — T;: (t) is the communication delay from processor j
to processor ¢ at time ¢t. Thus, the processors need not wait for each other when
updating (u;)™,, and the values used in the computation may be out-of-date.

Remark 4. The assumption that 7¢(¢) = t can perhaps be removed through a more
careful analysis, though this seems to be a reasonable assumption in practice. In-
tuitively, (13) says that each component u; is updated at least once every B time
units, and (14) says that the information used by processor i from processor j
should not be out-of-date by more than B time units. This assumption of bounded
communication and computation delay is needed for a convergence rate analysis.

4. CONVERGENCE RATE OF THE ASYNCHRONOUS METHOD

In this section we prove that the iterates (ui(t),...,um(t)), t =0,1,..., gener-
ated by the asynchronous method (10)—(15) attain linear rate of convergence, with
a factor that depends on o,C1,C5, ¢ and B,~ only (see Theorem 1). While parts
of our proof use ideas from the analysis of asynchronous gradient-like methods [5,
§7.5], [55], a number of new proof ideas are introduced to account for different prob-
lem assumptions and different natures of the Jacobi and Gauss-Seidel algorithmic
mappings. To simplify the notation in our analysis, define

(16) u(t) =Y ui(t),  a(t) =Y ui(rit),
j=1 j=1

for all i and t. If t € T%, then the definition (12) of w;(t) and the fact that 7{(t) = ¢
and F is Gateau-differentiable imply w;(t) satisfy the optimality condition

(17) <FI (Zi(t) + wi(t) — ’U@(f)) , Ui — wz(t)> >0, Ve K;.
Our analysis will be based on estimates given in the following two key lemmas.
Lemma 1 (Descent estimate). Let A; and Ay be defined by

2 2
_ 5B A =

o
1 A —
(18) 2 o 4

- ’)’214.2.
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Fort=0,1,..., we have

m t+B—-1

Flu(t+B)) < Flu(t)) =vA1 Y Y llsi(nIP +7°42 Z (Bl

j=1 7=t j=171=t—B+1

Proof. Fix any time t € {0,1,...}. Recall that ¢; is the total number of colors
active at time ¢ and, without loss of generality, we assume that the first ¢; colors
are active. Then s;(t) = 0 for all ¢ € I(k) and k > ¢, so by defining

er(t) = Y si(t)
icl(k)

and using (16), (10) and the convexity of F, we have

Flu(t+1)) = F(u(t)+7isi(t))
:F((l—ct'y +ZV )+ exlt >
< Q-anF +7§:F )+ ex(?))
(19) = —}—’yZ( t) + er(t)) — F(u(t))).

Since u(t) € K and u(t) + ex(t) € K, the strong monotonicity of F/ on K given in
(3) implies

(20) F(u(t)) = F (u(t) +ex(t)) — (F' (u(t) + ex(t)) , ex(t)) + %Ilek(t)||2-
Define

65t =S un(ri®) + Y w(t), j=0,1,...,m.

Then ¢ (t) = u(t) and @i, (t) = z(t) and
¢5(t) = &1 (1) = uy (T3 (1)) —u;(t) € K2, j=1,...,m.

If t € T", then setting v; = u;(t) in (17) and noting that s;(t) = w;(t) — u;(t) (see
(11)), we obtain that

0 < —(F'(a(t) + (1)), si(1))
= —<F'( i(8) + s:(t) = F'(u(t) + si(t)), 5i(8)) — (F"(u(t) + 55(t)), 5(t))

—ZFWZ+&»-F@4@HNmMW
%M(mexm
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If t ¢ T?, then s;(t) = 0 and the above inequality holds trivially. Combining the
above inequality with (7) and (9) and (20), we obtain that

(21)

Ct

3 (F(u(t) +er(t) - F (U(t))>

k=1
<3N (Fu() + sit) ——Z > lsi®)l?

k=14cI(k) k=1:cI(k)
= Y {F () + s:(0), sil %Z Jsi(8)]®
i=1 i=1
<= 3D UFGH(0) + si(t) = F (85 4(8) + si(0) si(8)) — —Z Jss 011
i=1 j=1

1

- a3 s bt - 0) (E o)
—ryzzusz 12

Since t — B+ 1 < 7(t) <t for all i and j, we also have from (10) and the triangle
inequality that

-1 2 t—1
(23) g (r5(1) — s (B)]* <+ ( > HSj(T)H) <¥B Y syl
T=t—B+1 T=t—B+1
Combining (22) and (23) yields

Flut +1)) < Fu(t))

+fv202\/§<i S syir ||2> (Znsz ||2)

j=17=t—B+1

Q;wz Ol
C m t—1
SF)+7° =223 > ls(r |I2—74ZI|& Ol

j=1r=t—B+1

where the second inequality uses the identity ab < (a2 + b?)/2 with a and b being
the two square-root terms multiplied and divided, respectively, by BY/4\/2vCs /0.
Applying the above argument successively to ¢t,t +1,... ,t + B — 1, we obtain

Fu(t+ B)) = F(u(t))

—
)
=

S~—

| Q

o 2C2B2 m t+B-—1 C2 m
< (5-T2E)Y. Y sty S sl
j=1 7=t j=17=t—B+1

This proves the lemma. O
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The next key lemma estimates the optimality gap F(u(t + B)) — F(@), where @
is the unique solution of (2).

Lemma 2 (Optimality gap estimate). Let Az and A4 be defined by
_ ;B2 n 8C2C2B

2,12
(25) Ay TR S RS
2 o 2 o
Fort=0,1,..., we have
F(u(t+B)) - F(m) < (1-7)(F(ul) - F))
m t+B-—1 m t—1
+ oA > s M+ A > s
j=1 7=t j=17=t—B+1

Proof. Fix any t € {0,1,...}. For each i € {1,... ,m}, let t* denote the greatest
element of T less than ¢t + B. Then we have from (11) and (17) that

(26) <F, (Zi(ti) + si(ti)),vi — wi(ti)> >0, W €K;.
We also have from (10) and (16) that
ui(t+B) = ui(t') +ysi(t),

WEEB) = Soult 1) = Sut) > s(e),
=1 i=1 i=1

For notational simplicity, define

wt) =Y wit),  at)=> ut).
i=1 =1

By assumption, there exists 4; € K;, i = 1,... ,m, such that (5) holds with v; =
w;(t), ie.,

(27) a=>a and <Z lw; (1) — ai||2> <Oyt — ).
=1 =1

Then (@1, ... ,Um) is a solution of the convex program (1) and, by F being Gateau-
differentiable, it satisfies the optimality condition

m
(28) S (F' (@), v — 1) 20, Vo, € Ky i=1,...,m.
i=1
Defining
¢ 1) = wet®) + Y w(ri(t), §=0,1,...,m,
k=1 k=j+1

we have that ¢ (t) = z;(t') and ¢¢,(t) = w(t) and

(29) ¢5(t) = ¢5_1(t) = wy(t) —uy(rj(¢) € K7, j=1,...,m.
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Setting v; = 4; in (26) and v; = w;(t*) in (28), we obtain that

(7 (w00) = 000059 5 (w19 w10 -5)
< :Zl <F’ (w > F’ (zl (%) 4 s4(t )),wi(ti) - 17,Z>

<F’ (w > F’ <zl (t) > w; (1Y) —ﬂ¢>

i <F’ (zz ) F (zz(t’) +sl(tl)> i(t) —ai>

1=

= S 0) ~ PO wt) — )
+ 27::1 <F' (Zi(ti)> - F (Zz'(ti) + Si(ti)>awi(ti) - al>
< 0o 32 o las(ri) — s u?) (Z (e - uz||2>

_|_

j=1
AT u?) (an @) - o)’
l_nlz t4+B—2 A 3
AT sy )17 + 2y I7) ) ) -
j=1 T=t—B+1
(30) G IR o) - al.

where the third inequality uses (6) and (29); the fourth inequality uses (27) and
the fact that

(75 (£)) = w; (¢ |2 lutj (75 (8)) = s (#) = ()]
2lju; (T} (t7)) — uy ()] + 2lls; ()]
t+B—2

272( S nsjmn) T2l () 2

T=t—B+1

IA

IA

t+B—2

4°B Y s+ 2]s5 ()]

T=t—B+1

IA

(see (10), (11), (13), (14)). Also, the strong monotonicity (3) of F’ on K implies

(F'(w(t)) = F' (), w(t) — @) > ofw(t) — ull?,
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which together with (30) yields

o)~ a] < 0102(2( WY I+ 2s@))

=1 T=t—B+1

N[

1

31 o D)

Next, since F’(w(t)) is a subgradient of F' at w(t) 20, p. 23|, we have
F(w(t)) — F(a) < (F'(w(t), w(t) - a),
so putting v; = @; in (26) and adding it to the above inequality yields
Fw(t)) — F(a)

< Z P (a4t + s:(8), s (1) — )
2 ~2 m t+B-2 %
(32 < 4% <(Z(4%B S sl + 2l 1) )
j=1 r=t—B+1

" (gﬂsi(ti)l'Q)%)?
§2Cic22< 2B§: Hiz lls; (7 ||2+3gllsi(ti)“2)’

j=11=t—B+1

where the second inequality uses (30) and (31) and the last inequality follows from
the identity (a + b)? < 2(a? + b?).

Next we estimate F((t)) — F(u(t)). Let £ = max;=1,.. mt" and, for each i €
{1,...,m} and 7 € {t,... ,t}, define

(33) @3 (1) = ug(min{r, t'}), u(r) = Z (7).

Then, for each i € {1,...,m} and 7 € {t,... ,t — 1}, either %;(7 + 1) = () so
that

(F' (z:(7) + 84(7)) , 0i(7) — Us(7+ 1)) =0
or @;(T 4+ 1) # @;(7) so that 7 € T and 7 < t*, implying by (11) and (17) that
(F' (z(7) + 84(7)) , ui(7) —wi(7)) > 0
and hence, by (33), that
(F'(zi(7) + 5:(7)) 0s(7) —@i(r +1)) = (F'(2i(7) + 8:(7)) ,ua(7) — wi(r + 1))
YEF' (z:(7) + 8i(7)) yui (1) —wi(7)) > 0.

Using this and defining

gir) =S an(r+ 1)+ Y wlri(r), i=0,1,...,m,

k=1 k=j+1



1116 XUE-CHENG TAI AND PAUL TSENG

we obtain that
(34)

IA

S
A/ |
INgE

.

LE

. 1654(7) - ||2) (an T+1>||2)1
+C2<izrlr}§§mils ) (an —um+1>u?)l
<1Ca( 32 g, I+ 1) = ) (S tete )

+vczzllsz )?

m 741

sac(2BY 3 ||sg-<v>n?) (Znsz u?) +’szZ||sz P

j=lv=r—B+1

4ChB . R 3C.
<7 TZ Z 5 ()I1? + 22” (1%,
=lv=7—B+1

where the first inequality uses the subgradient property of F'(u(r +1)) [20, p. 23];
the third inequality uses (6); the fourth and fifth inequalities use (33) and (10) and
an inequality analogous to (23); the last inequality uses the identity ab < (a®+452)/2
with a and b being the two square-root terms. Summing the above inequality over
T=t,t+1,...,t—1 and observing that u(¢) = 4(t) and 4(t) = u(t), we then have

m t—1 T+1 m t—1

Fa®) - Fu@) < ¥EENS 3 i@ a5 S Y s
j=l1=tv=r—B+1 i=1 1=t
302B2 m t+B-—1 m t+B-—1

(35)

SOY st I|2+’v30222 i) 2.

j=l7=t—B+1
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Finally, using the convexity of F' and v € [0, 1], we see from (11) and (32) and
(35) that

(6(8)) — F(@)) + +(Fw(t) — F())
< (1—9)(F(ult) - F(a))
9 m  t+B-1 m t+B-1
Y T l|2+73022 S s

j=171=t—B+1 T=t
2 t+B—2
38010 B

6C2C3
Z Z l[s;(r ||2 +y—= ZH Si “2
j=171=t—B+1
Using v < 1 then proves the lemma. O

We will now use Lemmas 1 and 2 to prove our convergence rate result. To
simplify the notations, define

m kB-1
ax = F(u(kB)) — F(a), =3 > lsi(MI% k=12,....
j=1r=kB—B
By Lemmas 1 and 2, we have
(36) ak < agp—1 — YA1bg + 72 Agby_1,
(37) ar < (1 —7)ar—1 + yAsby, +7° Asbr 1,

where Ay, Ag, A3, Ay are given by (18) and (25). By (15), we have A; > 0. Choose
~ sufficiently small so that

(38)

A1A4)),A1_1(’)/1/2+’Y2A2)}
3

_ A 1 A]_ 3/2
g—max{(l—l-;l;) (l-f—(l—fy)A—B-}—’y (A +
<1
Also, define a = max{a;,v%/2b,}/0. We claim that
(39) - max{an,v*/?b,} < ag”

for n =1,2,.... We prove this by induction on n. Clearly (39) holds for n =1 by
our definition of a. Suppose (39) holds for n = k — 1, where & > 1. Multiplying
(37) by A1 /A3 and adding it to (36) gives

A A A A
(14 o) < (1 +(1 —’Y)A—;) ak-1 + 7% (A + A34) (+*/%br-1),
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which together with the inductive hypothesis max{ay_1,v*/?by_1} < ao®~' and
(38) yields

Ay 1 Ay 3/2 A Ay k—1 k
< - — - < .
ak—(1+A3) (l-l-(l 7)A3+7 (A2 + P ))ag < ag
Similarly, (36) and ay > 0 give

V32 Arby < 4 2ap_1 + 42 Aa (VP Pbi 1),
which together with max{ax_1,7*/?bp_1} < ag®! and (38) yields
73/2bk S Al—l(,yl/Q +72A2)agk_1 S G,Qk.

This shows that (39) holds for n = k, completing our induction proof.

Thus, we have shown linear rate of convergence (in the root sense) for both
an, and b,, with a factor of g. The latter implies u;(t), t = 0,1,..., is a Cauchy
sequence for each i and hence it converges strongly. This is summarized in the
theorem below.

Theorem 1. Consider the minimization problem (2) and the space decomposition
(4) of Section 2 (see (3), (5)—(9)). Let (u1(t),... ,um(t)), t=0,1,..., be generated
by the asynchronous space decomposition method of Section 3 (see (10)—(12) and
(13), (14)) with stepsize v satisfying (15), (38). Then, there exist a > 0 and p €
(0,1), depending on o,C1,C2 and B,~ only, such that

F(u(nB))— F(z) <ao", n=1,2...,

where u(t) is given by (16) and @ denotes the unique solution of (2). Moreover,

u(t) converges strongly to @ and, for each i € {1,... ,m}, u;(t) converges strongly
ast — oo.

5. CONVERGENCE RATE
OF THE SYNCHRONOUS SEQUENTIAL AND PARALLEL ALGORITHMS

It is readily seen that the following Jacobi version of the method is a special case
of the asynchronous space decomposition method (10)-(12) with 7% = {0,1,...}
and 7i(t) =t for all 4,5,¢ (so B =1 and ¢; = ¢). Thus, Theorem 1 can be applied
to establish its linear convergence and obtain an estimate of the factor ¢ under the
assumptions of Section 2. Moreover, by observing that in this case the left-hand
side of (23) is zero so that Lemma 1 holds with Ay = 0, the stepsize restriction (15)
can be relaxed to v < 1/¢;.

Algorithm 1.
Step 1. Choose initial values u;(0) € K;, i =1,... ,m, and stepsize v = 1/c, where
c is defined as in Section 2.

Step 2. For each t = 0,1,..., find w;(t) € K; in parallel fori = 1,... ,m that
satisfies

FAS @) +wilt) | <F S uilt)+vi |, Vo €Ky
J#i J#i
Step 3. Set
ui(t+1) = u(t) + y(wit) —wi(?) ,

and go to the next iteration.
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The following Gauss-Seidel version of the method is also a special case of
the asynchronous space decomposition method (10)-(12) with v = 1, T% =
{i =1+ km}r=o,,. and 7/(t) = ¢ for all 4,5,t (so B = m and ¢; = 1), Here
Theorem 1 cannot be directly applied due to v = 1 possibly violating (15). How-
ever, by observing that in this case the left-hand side of (23) is again zero so that
Lemma 1 holds with A = 0, the proof of the theorem can be easily modified to
establish linear convergence of this method under the assumptions of Section 2,
with factor ¢ depending on m, o, Cq,Cy only. Moreover, by grouping sets of the

same color into one set, we can ensure that m = ¢, where ¢ is defined as in Section
2.

Algorithm 2.
Step 1. Choose initial values u;(0) € K;, i =1,... ,m.

Step 2. For eacht =0,1,..., find u;(t + 1) € K; sequentially fori=1,... ,m that
satisfies

FAY u(t+ 1) +u(t+1)+ > uy(t)

j<i J>i

SF> ut+1) +vi+Y u(t) |, ek,
j<i j>i

Step 3. Go to the next iteration.

The above two methods for solving (2) were studied in [47] (also see [48, 49, 50]),
where convergence of the methods was proved under weaker assumptions. However,
no rate of convergence result was given. In [52], a linear rate of convergence for
the above two methods was proved for the unconstrained case of K = V. In the
finite-dimensional case of K =V = R", the literature concerning the linear rate of
convergence is very rich. However, the study for linear convergence rate for general
convex sets K; is very sparse. The linear rate of convergence for the Gauss-Seidel
method for general convex sets K; can also be inferred from the results in [34, 35]
and references therein, but our estimate of the convergence factor is new.

In [52], the minimization subproblem at each iteration is solved inexactly. We
can do likewise in the constrained case. In particular, the proof of Theorem 1 (see

(21) and (26)) suggests that the exact minimization condition (17) can be relaxed

to the inexact minimization condition
(F" (2i(t) +wi(t) — uslt)) , vi — wi(t)) = —%O‘sz‘(t) —u (8%, Vui € K,

with 0 < o¢ < 0. However, o would need to be known explicitly and both v and g
would depend on oy.

6. APPLICATIONS TO CONVEX PROGRAMMING

In this section we consider the Euclidean space V = V' = ", which is the space
of n-dimensional real column vectors with duality pairing (f,z) = f7= and norm
|z = VaTz, where 7 denotes transpose of z. We will discuss choices of the space
decomposition (4) and the corresponding estimates for C1, Ca, ¢ in (5), (6), (7). In

the case of nonlinear network flow, we will also relate our asynchronous method to
those studied in [5, §7.2.3], [56].
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6.1. Primal applications. Consider the problem (2), where F' : R — R is a
differentiable convex function and K is a nonempty polyhedral set in ™. Then F'
is continuous [42, p. 82] and continuously differentiable [42, p. 246]. We assume
that the gradient F’ = (gTFj)?:l is strongly monotone and Lipschitz continuous on
K, and we choose a space decomposition (4) such that each K; is a polyhedral set.
Since each K is a polyhedral set, a result of Hoffman on the Lipschitzian behavior
of solutions of a linear system with respect to the right-hand side (see [13]) implies
that, for any v; € K;, i = 1,...,m, there exists 4; € K; satisfying (5), where the
constant C; depends on m and certain condition numbers for K;, i =1,... ,m. In
cases where each K; has a simple structure, such as the Cartesian product of closed
intervals, C; may be estimated explicitly. For a coloring of the sets, if K; and K
are not orthogonal, i.e., (v;)Tv; # 0 for some v; € K;,v; € K, then we paint them
different colors. Let ¢ be the maximum number of sets K; that are not orthogonal
to an arbitrary set K;. Then an analysis similar to that used in subsection 7.1.3
shows that (6) holds with Cy = Lé, where L is the Lipschitz constant for F’.

6.2. Dual applications. Consider the linearly constrained convex program
(40) minimize G(z) subject to Az >0,

where G : ®" — R is a strictly convex differentiable function, b € R™, and A €
R™X™ has nonzero rows. We assume there exists £ € R™ satisfying Az = b. By

attaching Lagrange multipliers A € R™ to the inequalities Az > b in (40), we obtain
the Lagrangian dual problem

(41) min  G*(AT)) = bT ),

AERT
where R denotes the nonnegative orthant in ™, and G* is the convex conjugate
(also called Legendre-Fenchel transform) of G defined by

G*(u) = mseug%)n {u"z - G(z)}

(see [24, 42]). The convex programs (40) and (41) are dual in the sense that one has
a solution if and only if the other does, and these solutions satisfies G’(z) = AT

[42, Cor. 28.3.1 and 28.4.1]. Using b = AZ, we can rewrite the dual problem (41)
in the form of (2) with

F(u) = G*(u) — 3T u, K ={ue®R":u= A"\ for some X € RT}.
We assume that (G*)" is strongly monotone and Lipschitz continuous on R", so
that F satisfies (3) for some o > 0. If G is twice differentiable, this assumption
essentially amounts to G’ having bounded eigenvalues and the Hessian (G”)~!

having bounded entries on R™. Let @ denote the unique solution of (2) and let A,
denote the ith row of A.

We can decompose K in the form (4) with
K, = {ui eR™ : u; = A;T/\Z for some \; € §R+}

First we show that, for any v; € K;, 1 = 1,... ,m, there exists @; € K; satisfying
(5), where
(42) Ch

= D_lB BTD—QB -1
@;éfcr??f,m}” 1 Br(Br D" Br) |,

with D; being the diagonal matrix with diagonal entries |AT||, i € I, and B;
being a submatrix of A; = [A;]ier comprising linearly independent columns of
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A; spanning the column space of A;. To see this, notice that % = AT\ for some
N R and v; = AT,uZ for some p; € N4. Moreover, u;, € K;,i=1,... ,m, satisfies
> u; = 4 if and only if u; = AT); and AT = AT for some A = (\;)%; € RT.

Thus, minimizing Y i, |Ju; —v;||? subject to u; € K; and > i, u; = @ is equivalent
to minimizing

ZIIATA — AT ||? = ZIIATII i = wil® = IDO = )|
i=1

subject to ATA = ATX, XA > 0, where p = (p;)™,. By making the variable
substitution £ = X\ — p and letting » = AT(\ — p), this in turn is equivalent to

(43) minimize ||D¢|| subject to ATE =7, £€> —p.

Since p > 0, the optimal value of (43) equals zero if r = 0. Suppose instead that
r # 0. Since p > 0, the optimal value of (43) is below that of

minimize | Dé¢|| subject to ATE =1, £ >0.

The latter has a unique solution, which we denote by €= (El)zil Since r # 0, then

€#0. Let I = {i € {1,...,m}: & # 0}. Then, & = (&)ics solves the reduced
problem

minimize || Dr&;|| subject to BT ¢ =g,

where 7y is the subvector of r corresponding to the columns of By. This yields
& = D;?Bi(BYD;?Br)~'ry, and hence

optimal value of (43) < | D:&;||
1D} B1(Bf Dy *Br) " 'r]|

< Cifrall
< Gl
= CiAT(A =)l
m
= Cl u— Zvi .
i=1
Since K; and Kj lie in orthogonal subspaces if AiAf =0, we can color Ky,..., K,

as discussed in subsection 6.1 and show that (6) holds with Cy = Lé, where L is
the Lipschitz constant for (G*)" and ¢ is the maximum number of rows A; that are
not orthogonal to an arbitrary row A,.

If we replace the inequality Az > bin (40) by an equation Az = b, the constraint
A € R in (41) would be replaced accordingly by A € R™ and it suffices to fix

= {1,...,m} in the estimate (42). This estimate further simplifies if A has
full row rank, in which case By is square and invertible. If A does not have full
row rank, we could remove the redundant rows, but our experience with network
flow problems suggests that this removal can slow the convergence of Gauss-Seidel
methods on the problem [56].

In the case of a nonlinear network flow problem [43], where A is the node-arc
incidence matrix for a connected diagraph with m nodes and n arcs (i.e., every
column of A has one 1 and one —1 in two of its rows, and a 0 in the remaining
rows), we can estimate C explicitly in terms of m and n as follows: For any v; € K,
i=1,...,m, we have & = ATA = (\y — \)7_ () for some A = (\;)7%; € R
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and v; = AT, for some p; € Ry, where k ~ (4,7) means that column k has a
1 in row 7 and a —1 in row j or, equivalently, arc k is directed from node i to
node j. Choose any spanning tree for the diagraph and choose a node 7 such that
X; = min; A;. Let \; = i + + (A — ;) and u; = AT \; for all nodes i in the network.
Since p; > 0 and i > X;, we have \; > 0 for all nodes i. Since each node i can be

reached from 7 via a sunple path P; in the spanning tree, we also have

A = = ‘— S Ck—m—NAFm+ D, Ok —Mk—>\1+uz)\
(k)P (k,\)eP;
= \— 2 (M = N — g + ) + Z (j‘k_j\l—ﬂk“'/ll)‘
(klyeP; (k,yeP,
< Z Ak = A — i+
(k1)EP;
< \/E( > |5\k—/_\z—uk+m|2>
(k,1)EP;
nooo_ 3
< \/?7/_1< > =N —uk+ﬂl|2>
=1
i~ (k,l)
= \/71_1 U — va )
p=1

where Pj’ and P, denote the set of forward arcs and backward arcs in P; and h;
denotes the number of arcs in P;. Thus,

Znuz—vzn? ZHAT O = )P
—ZnATn A —uz|2<zdh u—z

where d; is the number of arcs incident to node i. This shows that (5) holds with

= /> v, d;h;. Notice that Y ", d; = 2n and h; is at most the diameter of the
spanning tree. Since the choice of the spanning tree is arbitrary, we can choose it
to minimize C7. Also, AiAf = 0 if and only if nodes 7 and j are not joined by an
arc, so ¢ = max{ds,... ,d,} and the coloring of K1, ..., K,, is equivalent to graph
coloring on the diagraph.

In the above case of a nonlinear network flow problem, if G is also separable
in the sense that G(z) = °7_) Gj(z;) for all z = (2;)7_; and G : R = R, then
i (U1, - - ., Um) given by (9) depends on only those uy for which node k is a neighbor
of node 7 and the asynchronous method (10)—(12) reduces to the asynchronous
network relaxation method studied in [5, §7.2.3] and [56]. It is known that iterates
generated by this method converge for any stepsize v € (0,1), assuming G* is
convex differentiable and (41) has a solution (G need not be defined everywhere on
R"™ and (G*)" need not be strongly monotone or Lipschitz continuous). However,
no rate of convergence result was known. By applying Theorem 1, we obtain that
this method has a linear rate of convergence, assuming (G*)’ is strongly monotone
and Lipschitz continuous and the stepsize is sufficiently small.

2
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7. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS
WITHOUT CONSTRAINTS

In this section we consider the Sobolev space V = Hj(Q2) = {v € H*(Q) :
v = 0on 0N} with duality pairing (u,v) = fQ(Zle O;ud;v + uv)dz and norm
ol = lvllaie) = (v,v)2, where ) is an open, bounded, and connected subset
of ¢ with Lipschitz continuous boundary 9Q, HY(Q) = {v € L*(Q) : dv €
L3(Q),i=1,...,d}, and d;v is the locally Lebesgue integrable real function defined
on Q satisfying [, div ¢ dx = —vaa%% dz for all ¢ € C§°(Q) = {¢p € C=(NQ) :
¢ has compact support} [17, pp. 10-13]. We will consider two nonlinear elliptic
partial differential equations formulated as the minimization problem (2) and, for
each, we will consider the space decomposition (4) corresponding to, respectively,
DD and MG methods, and we will develop corresponding estimates for C; in (5),
for Cy in (6) and for ¢ in (7)~(9). Throughout, we denote |z| = (Zle xf)% for any
r=(x;)L, € R

The first partial differential equation corresponds to the minimization problem
(2) with

d

(44) K = H}(Q), (F'(u),v) = / <z ai(x,u, Vu)ov + ap(z, u, Vu)v — fv) dz,
2 \4=1

where f € L2(Q2) and Vu = (9;u)?_, is the gradient of u [18, p. 302]. It is assumed

that each nonlinear coefficient a;(z, p) is a real-valued function of & = (x;)%_, and

b= (Pk)%zo and is sufficiently smooth in the sense that

(45) a; € CH(Q x RIFL),
804' 8ai
) — - <
(46) j_:l;{f%,’f.d {!az(w,p)l, 7z, (x,p)‘,lapk (w,p)‘} <L

for all (z,p) € Q@ x R and i = 0,1,...,d, with L a constant. In addition, the

d
matrix [g;: (z, p)] is assumed to be uniformly positive definite, i.e.,
: i,k=0

d d d
(47) ZZS;“ (z.p)6ikk 20 ) €, VEER, i=01,....d,
=0 k=0

k ;
=0
for all (z,p) € Q x R4 with ¢ > 0 a constant. Under these assumptions, the
problem (2), which has the equation formulation

(48) (F'(w),v) =0, Yoe HLQ),

is well posed and has a unique solution u € HE(Q) (see [18, p. 302] and [32]).
Moreover, straightforward calculation shows that
(F'(u) = F'(v),u—v) = ofu—olf
(49) (F'(u) = F'(v),w) < L(d+1)]u—vllwl,
for all u,v,w € H*(), so F’ is strongly monotone and Lipschitz continuous.

The second partial differential equation corresponds to the minimization problem
(2) with

(50) K=HNQ), Fl)= /Q (%IWIZ + %qﬂ - fv) da,
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where f € L2(Q) and d € {2,3}. The corresponding equation is the simplified
Ginzburg-Landau equation for superconductivity:

—Au+u® = f in Q
(51) v = 0 on 09,
where u is the wave function which is valid in the absence of internal magnetic field
[54], and Au = Zle 0;(0;u) denotes the Laplacian of u. Notice that F” has the

form (44), with ag(z,p) = p3 and a;(z,p) = p;, i = 1,... ,d, which does not satisfy
(47). Nevertheless, straightforward calculation shows

(F'(u) — F'(v),u —v) = /Q |Vu — Vol 4+ (u® — v®)(u — v)dz

i\

/Q |Vu — VolPde = Ju — |7 g,

for all u,v € H'(Q). Since the semi-norm | - |1 o is equivalent to the norm | - || on
H(Q) [17, p. 12], this shows F” is strongly monotone on Hg (£2).

In subsections 7.1 and 7.2 below, we will study asynchronous DD and MG meth-
ods for solving the above two equations (48) and (51). We will analyze the con-
vergence rate of the methods by estimating the constants C;, Cs and c for the
corresponding space decomposition of the finite element approximation subspace
and then applying Theorem 1. In particular, we will show that the above two equa-
tions can be solved in parallel with a convergence factor that is independent of the
finite element mesh size h, i.e., the number of iterations to reach a desired solution
accuracy is independent of h.

7.1. Domain decomposition methods.

7.1.1. Decomposition of the domain €. In DD methods, the domain € is decom-
posed into the disjoint union of subdomains €;, i = 1,... ,m, and their boundary,
le, QUIN = J,(Q; UY) and Q; N, = 0 for i # j. This is illustrated
in Figure 1 where a rectangular-shaped domain in ®? is decomposed into the dis-
joint union of m = 25 rectangular-shaped subdomains and their boundary. The
subdomains, which are assumed to form a regular quasi-uniform division (see p.
124 and Eq. (3.2.28) of [17] for definitions) with a specified maximum diameter
of H, are the finite elements of the coarse mesh. To form the fine mesh for the
finite element approximations, we further divide each €); into finite elements of
size (i.e., maximum diameter) h such that all the fine-mesh elements together form
a regular finite element division of 2. We denote this fine division by 7;. For
each Q;, we consider an enlarged subdomain Q¢ = {e € Tj, : dist(e,Q;) < 6},
where dist(e, ;) = mingee yeq, |z — y|. The union of Q% i =1,...,m, covers
Q with overlap proportional to 6. Let Ko C H}(2) and K C H}(S) denote the
continuous, piecewise rth-order polynomial (r > 1) finite element subspaces, with
zero trace on Of), over the H-level and h-level subdivisions of €2, respectively. For
1=1,...,m, let K; denote the continuous, piecewise rth-order polynomial finite
element subspace with zero trace on the boundary 89? and extended to have zero
value outside Qf U 8(2;5. Then Kie = K; fori =0,1,... ,m, and it can be shown
that
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a) The global fine mesh b) Color 0: the coarse mesh c) Color 1 subdomains
d) Color 2 subdomains e) Color 3 subdomains f) Color 4 subdomains
e
|

FIGURE 1. Decomposition of a rectangular-shaped domain in R?2.

Thus the space decomposition (4), with summation index from 0 to m, holds. We
assume that the overlapping subdomains are chosen such that each subdomain 9
and its corresponding finite element subspace K; can be painted one of n. colors
(numbered from 1 to n.), with subdomains painted the same color being pairwise
nonintersecting. The coarse mesh and its corresponding subspace Ky are painted
the color 0. Moreover, n. should be independent of h. For general domain €, finding
overlapping subdomains with such property is nontrivial. If  is the Cartesian
product of intervals, we can easily find overlapping subdomains with n, = 2 if
d=1,and n. < 4ifd =2, and n, < 6 if d = 3. For the example of Figure 1,
d =2 and n. = 4. Then the total number of colors needed for (7) and (9) to hold
isc=n,+ 1.

7.1.2. Estimating Cy for equations (48) and (51). Let {6;}7, be a smooth partition
of unity with respect to {4}, i.e., §; € C() with 6, > 0, 8§, = 0 outside of
Q;, and Y.", 6; = 1. Let I be the finite element interpolation mapping onto K
which uses the function values at the h-level nodes. For any v € K, let vg be the
projection in the L2-norm of v onto Ko, i.e., vo € Ko and [,(vo — v)¢ dz = 0 for
all ¢ € Ky, and let v; = Ip(6;(v — vg)). Then, it can be seen that v; € K; for
i =0,1,...,m and satisfy v = > ", v; [45, pp. 163-165], [57, p. 607]. Moreover,
by further choosing 8; so that |V6;| has a certain boundedness property, it was
recently shown in [53, Lem. 4.1} that, for any s > 1,

(ﬁ; uwnsf <o <1+ <§)> ol
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where C is a constant independent of the mesh parameters and m. Taking s = 2 and
using the subspace nature of K;, we obtain that, for any v; € K;, 1 =0,1,... ,m,
there exists @; € K; satisfying (5) (with summation index from 0 to m), where

oy (1+ (%))

(also see [14, Thm. 16] and a work of Dryja and Widlund cited therein for related
results). By choosing the overlapping size § proportional to the coarse-mesh size

H, the constant C7 will be independent of the mesh parameters and the number of
subdomains m.

7.1.3. Estimating Co for equations (48) and (51). Consider F' given by (50), asso-
ciated with the equation (51). By the mean value theorem, for any u € ®,v € R, we
have |u® — 03| = 3]0u+ (1 — 0)v|?|u — v| < 3(Ju| +|v])?|u — v| < 6(|ul? + |[v|*)|u—v|
for some 6 € [0,1]. Thus, using the continuous embedding of H'(Q) in LP(f)
for p < 2d/(d —2) and d = 2,3 (see [17, p. 114], [24, p. 21]), we have for any
u,v € H1(Q) and any subdomain Q' of Q that u,v € L*(Q) and

//(u?’ —v¥w dz

IN

6 / s — ol + o2} — o] ] da

< </\ul4dac /\v\4daz ) / fu— of?hofdz i

6 (Ilullo(gvy + 01 er) ) Il = ol (o ol s e

IN

< C (Julldgay + 100y ) e = ol o oll i @y,
where C' depends only on the embedding constant. Also, define Q2§ = Q for conve-
nience, so that every v € K; vanishes outside of Q¢ (i = 0,1,... ,m). Then, for F
given by (50), we have from the above inequality that, for i,7 = 0,1,... ,m,

aij = (F'(wij + uij) — F'(wij), vq)

= /5 (Vuig) TVt wigui + ((wig + uig)® — wi)v; da
Q7N

(1 + Cllwij + il snqs) + Cllwz‘j”?p(ﬂfﬁﬂ;‘->>

(52) ’ ”Uij||H1(anQ§)||%”H1 (Q3n02)s
for any w;; € K, ui; € Kj, vy € K;, with a;; = 0 whenever Qf N Q‘; = (. Assume

there exists a constant a > 0 such that ||w;; + u; ||Hl Qinas) + ||w¢j”§p(mmm) <
k3 J

for 4,5 = 0,1,...,m. Also, for 4,5 = 1,...,m, let e;; = 0 if Q3 N Q% = 0 and
otherwise let €;; = 1. Let ¢ be the smallest integer such that every subdomain
intersects at most ¢ other subdomains. It is not difficult to show that the symmetric
matrix £ = [€;]]%_; has the following estimate of its spectral radius (see [53,
Corollary 4.1] for a proof):
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This together with the estimate (52) yields

NN ay < (1+Ca) YD eiglussll vl

i=1 j=1 i=1 j—l

1+CO( ZZQ] max Huljll ”’UZH

=1 j=1

IN

m

mo\
(1+Ca c<zi e ||uwu2) (X tle)
” i=1

Next, by using the fact Qj, j € I(k), are disjoint subsets of ) for k=1,... ,c, the
estimate (52) yields

(53)

m
ZCLOj < (1+CO‘>Z”UOJ‘“””0HH1(Q§?)
j=1 j=1
m % m 1
< <1+Ca><2||u0jn2) <ZHUOH§11(Q§)>
j=1 j=1 !
1
2
<

(1 Capa( S lusl?) ol Y € K, Voo € Ko

Similar to the above argument, the estimate (52) gives

San < (1+Ca)d ] fuiollm sl
=1 i=1
m bom o\
< o) ( S tuallpn) (L Iul?) . v € Ko, o Ko
i=1 i=1

We combine these estimates to obtain

Zzazg = a00+za03 +ZZGJ1] +Za10

=0 j=0 =1 j=1

< (1+ Ca)luolllvoll + (1 + Ca) Ve <Z [[wo; ll2> vl

(14 Ca) <z o sl?) (f}uvzn?)
(14 Ca) (z ol aty) (i ||viu2)2
< C”z(,;:&*}%??,m ) (> n:in?)%
5 (14 Ca) (Z ol ) (i |lw\|2>%,

with Cy a constant depending on Ca,c,é only. Compared with (6) (with i,j =
0,1,...,m), we see that (54) has an extra term on the right-hand side. In the
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appendix, we will show that this extra term does not affect the convergence rate
result of Section 4. In particular, we will show that Lemmas 1 and 2 hold with
Cy = Cy + (14 Ca)y/c, so that Theorem 1 is still valid.

For F specified by (44) and associated with the equation (48), it can be similarly
proved using (49) that (54) holds, possibly with different constants C' and «.

Upon applying the asynchronous method (10)-(12) with the above choice of
space decomposition and under the assumptions (13)-(14), we obtain a parallel
DD method for (48) and (51) whose convergence factor, according to Theorem
1 and the above estimates of C; and Cs and assuming the overlapping size § is
proportional to the coarse mesh size H, is independent of the mesh parameters and
the number of the subdomains.

7.2. Multigrid methods.

7.2.1. Construction of the multigrid subspaces. In MG methods, € is divided into
a finite element triangulation 7 by a successive refinement process. More precisely,
we have 7 = 7, for some J > 1, where 7y, k = 1,...,J, is a nested sequence of
regular quasi-uniform triangulation, i.e., 7 is a collection of simplexes 7} = {le}
of size (i.e., maximum diameter) hy, such that Q = J, 7/ and for which the quasi-
uniformity constants are independent of k [17, Eq. (3.2.28)] and with each simplex
in 7;_1 being the union of simplexes in 7. We further assume that there is a
constant r < 1, independent of k, such that hy, is proportional to r2*.

For example, in the two-dimensional case of d = 2, if we construct 7; by con-
necting the midpoints of the edges of the triangles of 7j_;, with 773 being the
given coarsest initial triangulation, the resulting sequence of triangulation is quasi-
uniform and r = 1/4/2 (see Figure 2). Corresponding to each triangulation 73, we
define the finite element subspace:

M ={ve H}(Q) : v, €Pi(r), VT€ETL},

1 N
Levelk=1 K, k=1, i=1

0.5

-0

00
Level k=2

0.5

-0

00
Level k=3

F1GURE 2. The multigrid mesh and basis functions.
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where P1(7) denotes the space of real-valued linear functions of d real variables
defined on 7. We associate with M), a nodal basis, denoted by {¢F}"* , that
satisfies ¢F € My and

ok (ac;c ) =05, the Kronecker function,

where {z¥}7* is the set of all interior nodes of the triangulation 7. For each such
nodal basis function, we define the one-dimensional subspace

K = span (¢5).
Then, (KF)® = KF and we have the space decomposition

J ng

K=Y > Kf with K=M,.

k=11i=1

On each level k, we color the nodes of 7 so that neighboring nodes are always
of a different color. The number of colors needed for a regular mesh is a constant
independent of the mesh parameters, which we denote by n.. Then the total number

of colors needed for (7) and (9) (with summation indices adjusted accordingly) to
hold is ¢ = n.J.

7.2.2. Estimating Cy for equations (48) and (51). Let Qj be the projection in the
L2-norm onto the subspace My, which is well defined on H(Q) C L?(Q). For any

veE K, let v* = (Qr — Qr_1)v, k=1,...,J. Then, by Prop. 8.6 in [57, p. 611], we
have

J
P < Golloll?,
k=1

where Cy is a constant independent of the mesh parameters and J. By further
decomposing each v* as

[ R

Nk
P = va with  oF = o*(2F) ¢F
i=1
the above estimate can be refined to show that

J ng J ng
v=>_> vf and Y ¥ of| < Clol?,
k=1i=1 k=1i=1
where C' is a constant independent of the mesh parameters and the number of
levels J [53, §4.2]. Thus, for any vF € KF, i = 1,... ,ng, k = 1,...,J, there
exists u¥ € KF satisfying (5) (with summation indices adjusted accordingly), where

Clz\/é.

7.2.3. Estimating Cy for equations (48) and (51). Let A¥ denote the support set
of the basis function ¢¥, for all i and k. Also, recall the constant r < 1 defined
earlier. Then, for any k <l and 1 <i < ny,1 < j < ny, the following estimate

lull frrarnaty < Cor®™™™Mul, Vue K},
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can be shown, where Cj is a constant independent of the mesh parameters and J
[53, Eq. (49)]. Then, for F given by (50), we obtain as in (52) that
(55)
(F'(w+u) — F'(w),v)
< (14 Cllw + ulld sy + Ol sy ) Tl asnasy lollar asnasy
s (1 + Cllw + u”Hl(A’;ﬁAé) + C”w“HI(Aan;)) Cor™=jul| |,
Vwe K, ue Kf, ve K},

where C' is the embedding constant. For any 1, j, k, [, defining
Rl _ { Coy¥=H,if supp(¢F) N supp(¢}) # 0;

0,

tJ otherwise.

Assuming there exists a constant o > 0 such that Iwa]l + uleH2 + ||wf]l||2 < a for
all 4,7, k,1, the estimate (55) then yields

Nk

J
> ZZ (Wi +ull) = F'(wi), of)

k=11i=1 =1 j=1

< Col1+Ca) 30 S bt b [

i7k ])l

J np J ng
Kl k,l
<Co(1+Ca) D Y D > e mae [l | - o,
k=1i=1 I=1 j=1 ’
vujl € Ki, wof € KF.

With proper ordering of the indices, the matrix £ = [ef]l] is symmetric and its
spectral radius p(£) has been shown to be less than a constant independent of the

mesh parameters and the number of levels [45, pp. 182-184]. Therefore,

J
kil okl k.l
ZZ <F/(wi,j + ui,j) - F/(wi,j)avz]’6>

J n i J nk L
< o1+ Capo(e)( 10 maxluf1?) (S0P
I=1j=1 " k=11i=1
which shows that (6) holds, with the constant Cy = Cy(1 + Ca)p(€) independent
of the mesh parameters and the number of levels for the MG approximation.

For F' specified by (44), it can be similarly proved that (6) holds with Cy some
constant independent of the mesh parameters and the number of levels.

Upon applying the asynchronous method (10)—(12) with the above choice of
space decomposition and under the assumptions (13)—(14), we obtain a parallel
MG method for (48) and (51) whose convergence factor, according to the above
estimates of C; and C3 and Theorem 1, is independent of the mesh parameters.
This method generalizes the BPX multigrid method proposed in [10], which was
used as a preconditioner for linear elliptic problems. Here, the parallel MG method
is used as a solver and is applicable not only to linear, but also to nonlinear elliptic
problems. And it further allows for asynchronous updates.
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8. APPLICATIONS TO OBSTACLE PROBLEMS

In this section, we will apply our asynchronous algorithm to the obstacle problem
—Au>finQ, uw>yinQ, wu=0on 0,

where f € L?(Q) and ¢ € H?(Q) satisfies ¢» < 0 on 9€2. This problem is equivalent
to (2) with

K={veH}Q) : v>dae in Q}, F(v) :/ (%NUF - fv)daz.
Q

We will use the overlapping domain decomposition without the coarse mesh. If a
coarse mesh is added, it is not known how the coarse mesh obstacle can be chosen to
obtain an algorithm whose convergence factor is independent of mesh parameters.

Let Q¢ be defined as in subsection 7.1, i = 1,...,m. Let 6; be the partition of
unity with respect to ¢ as described in subsection 7.1.2. Accordingly, let v; =
I, (0;4) for all ¢ and let 1) = > | 1;, where I, is the interpolation operator using
the h-level nodal values. Thus, the obstacle function 1 is replaced by its finite-
element interpolation. Defining

K,={ve H&(Qf) ©v >y, vle € Pi(e), Ye€ T},

and also assuming that K has been replaced by its finite-element analog, it is easy
to see that (4) holds. Suppose we apply the asynchronous algorithm with the initial

values u;(0) € K; chosen to satisfy Zzl u;(0) < 4. Then, it can be shown (see,
e.g., [1] and [51, §4]) that

dwi(t)<u,  VE>1,
=1

where w;(+) is defined by (12) and #* denotes the greatest element of T less than
t + B. Thus (27) remains valid if we assume there exist @; € K; satisfying (5)
only for those v; € K; satisfying Y ., v; < @. Since (27) is the only point in the
proofs of Lemmas 1 and 2 where (5) is used, these lemmas and Theorem 1 would
remain valid. Under the condition that Y /", v; < 4, the constant C in (5) can be
estimated by choosing the partition of unity 6; to satisfy |V6;| < C/§ and setting

ﬂizvi—l-ei(ﬂ—ivj).

Jj=1

Then, it is straightforward to show that u; € K; and

Sowi=a, Y |-l <C1+57?)
1=1

=1

2

)

m
u — E ’Uj
i=1

with the constant C' being independent of u, v;, the mesh size h, the overlapping
size §, and the number of subdomains m (cf. subsection 7.1.2). The above estimate
shows that (5) holds with C; = v/C'\/1 4 1/62. Also, by dropping the coarse mesh
and taking into account the difference between the above F' and the F' given by
(50), we see from the proof of (53) that (6) holds with Cy = (1 + C)é, with C' an
embedding constant. Assuming that B is bounded by a given constant and + is
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bounded by a constant less than 1, we then obtain from the definitions in Lemmas
1 and 2 that

1
pSAsD A<D, As<D(+67), %<D

for some D > 0 independent of h, § and m. Then, the convergence factor given by
(38) can be estimated by

0 = max{l—__—l__l——— 3/2(A2+A1A4_/1As)
1+ A Ay 1+ A1 A;

AT+ 73/2A2A1_1)}

~
1- — 5
max{ 1+ D%(1+672)

Y 3/2 1/2
1l ——————< D D
max{ D1(1+6_2) +’7 2,7 2},

where we let Dy = 1+ D? and Dy = D 4+ D?. Thus, for
v < min{ (D Do(1+672))7%, D},

we have p < 1, independent of h and m. Finally, we note that the convergence factor
for some synchronous overlapping domain decomposition without the coarse mesh
has been studied in [1, 60]. The schemes obtained from our algorithms are different
from those of [1, 60] in the treatment of the subproblem obstacles. The algorithms
of [1, 60] use the global obstacle for the subdomain problems. In our algorithms,
the subdomain obstacles can be updated dynamically during the iterations.

IN

+7%%(D + D*),y"*(D + Dz)}

IN

9. APPENDIX

In this appendix, we show that (54) can be used in place of (6) to prove Lemmas 1
and 2 for the DD method of subsection 7.1. Here, the indices ¢ and j are understood
to always range over 0,1,...,m, instead of 1,... ,m.

First, we note that condition (6) is used only to show (22), (30) and (34) in the
proofs. For (22), if we use condition (54) instead of (6), then (22) would have Cs
in place of Cy and would have the following extra term on its right-hand side:

E = (1+Ca) (ZnuO To(t) - o<t>llzl(gg)>%(insiu)lﬁ)%

Correspondingly, (24) would have Cs in place of Cy and would have the above extra
term on its right-hand side. Using (23) and the fact that Q¢, i € I(k), are disjoint
subsets of Q2 for k =1,...,c, we see that

B < <1+0a>wﬁ(:2m§ﬂ||so<r>||%p<gg))%(insan?)%
< <1+0a>72v’B_c(T:§muso T>nz) (Zu& u2)

which implies that (24) holds with Cy = Co + (1 4+ Ca)y/c. The remainder of the
proof of Lemma 1 then proceeds as before.

For (30) and (34), a similar argument can be applied to show that Lemma 2
holds with the above choice of Cs.
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