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ESTIMATES OF 6(z;k,l) FOR LARGE VALUES OF =z

PIERRE DUSART

ABSTRACT. We extend a result of Ramaré and Rumely, 1996, about the Cheby-
shev function 6 in arithmetic progressions. We find a map e(z) such that
| 0(z; k1) — z/p(k) |< ze(z) and e(z) = O (%) (VYa > 0), whereas e(x) is

In@
a constant. Now we are able to show that, for > 1531,

| 6(z;3,1) — 2/2 |< 0.262 ——
Inz
and, for z > 151,

T
33,0 > ——.
(= ) 2Inzx

1. INTRODUCTION

Let R = 9.645908801 and X = /2% Rosser [6] and Schoenfeld [7, Th. 11
p. 342] showed that, for z > 101,

|0(z) — |, | P(2) — 2 [< ze(2),

e(x) =4/ N%Xl/z exp(—X).

We adapt their work to the case of arithmetic progressions. Let us recall the usual
notations for nonnegative real z:

where

O(x; k1) = Z Inp, where p is a prime number,
p=lmodk
p<e®
vz k1) = Z A(n), where A is Von Mangold’s function,
n=lmodk
n<ae

and ¢ is Euler’s function. We show, for z > zo(k) where xo(k) can be easily
computed, that

| 0(z; k1) — z/@(k) [, [ ¢(z;: k1) — 2 /0(k) |< ze(2),

where

k

= e

X2 exp(—X)
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for an explicit constant C;(k). We apply the above results for £ = 3. For small
values, we use Ramaré and Rumely’s results [3]. We show that for = > 1531,

X
(1) | 0(233,0) — 2/2 |< 0.262 .

If we assume that the Generalized Riemann Hypothesis is true, then we can show
that, for x > 1 and k < 432,

(s k1) — 3 pk) |< ;—ﬂmnn.

Let us define, as usual, (z) the number of primes not greater than z. In 1962,
Rosser and Schoenfeld ({5, p. 69]) found a lower bound for (z):

(2) ()

Letting

> — forax>17.
Inx

m(x; k1) = Z 1,

p<Lz, p=lmodk

we show an analogous result in the case of arithmetic progression with k = 3 and
l=1or2,

x
; — > .
m(x;3,1) > e for x > 151

This result, inferred from (1), implies (2) and cannot be proved with Ramaré and
Rumely’s results.
The method used for k = 3 can also be applied for other fixed integers k.

2. PRELIMINARY LEMMAS

Notations. We will always denote by p a nontrivial zero of Dirichlet’s function L,
that is to say a zero such that 0 < Rp < 1. We write p = § + iv. Let p(x) be the
set of the zeros p of the function L(s,x), with 0 < 8 < 1.

For a positive real H, following Ramaré and Rumely, we say that GRH(k,H)
holds! if, for all x modulo k, all the nontrivial zeros of L(s, x) with |y| < H are
such that g = 1/2.

As in Rosser and Schoenfeld (in [6, 7] where the case k = 1 is studied), we must

know the distribution of L(s, x)’s zeros; namely, find a real H such that GRH(k, H)
is satisfied and is a zero-free region.

2.1. Zero-free region.

Theorem 1 (Ramaré and Rumely [3]). If x is a character with conductor k, H >

1000, and p = B+ivy is a zero of L(s,x) with |y| = H, then there exists a computable
constant C1(x, H) such that

1
Rin(kly|/Ci(x, H))

1-5=

INote that our GRH is an acronym for the usual Generalized Riemann Hypothesis.
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Examples. Some examples, extracted from [3, p. 409], appear in the following
table.

Hy, Ci(x, Hy)
545000000 | 38.31
10000 20.92
20 | 2500 56.59

> W

Proof. See Theorem 3.6.3 of Ramaré and Rumely [3, p. 409]. O

Remark. For k> 1 and Hy, > 1000, Cy(x, H) > C1(x0,1000) > 9.14.

As C1(x, H) could be large, we limit C(x, H) up to 327 to make some compu-
tations. So we have in our hypothesis

9.14 < Cy(x, H) < 32r.

From now on,

(3) C1(k) = min( min Ci(x, Hy), 32m).

xmodk

2.2. GRH(k, H) and N(T, ).
)-

Lemma 1 (McCurley [1]). Let Cy = 0.9185 and C3 = 5.512. Write F(y,x) =

Z1n <2k7f’e) and R(y,x) = Caln(ky) + Cs. If x is a character of Dirichlet with

conductor k, if T > 1 is a real number, and if N(T,x) denotes the number of zeros
B+ iy of L(s,x) in the rectangle 0 < 8 < 1, |y| < T, then

Lemma 2 (deduced from [3, Theorem 2.1.1, p. 399] and [9]).

e GRH(1,H) is true for H = 5.45 x 108.
e GRH(k,H) is true for H = 10000 and k < 13
e GRH(k,2500) is true for sets
El = {k < 72}’
E,; = {k < 112,k not prime},
= {116,117, 120,121, 124, 125, 128, 132, 140, 143,
144,156, 163,169, 180, 216, 243, 256, 360, 420, 432}.

2.3. Estimates of |¢(x;k,l) — z/¢(k)| using properties of zeros of L(s,x).
As in Ramaré and Rumely, we remove the zeros with § = 0 and we consider only
primitive L-series by adding small terms. Here we take the version stated in [3,
Theorem 4.3.1] which is deduced from [1].

Theorem 2 (McCurley [1]). Let * > 2 be a real number, m and k two positive
integers, 6 a real number such that 0 < § < z—’f, and T a positive real. Let

(4) —%i( >1+j5m+1
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Assume GRH(k,1). Then

o(k) -
e [U(ys ks, 1) — m‘ < Am52 2) p+1 (p+m)\
X ASRE
()T T A

IvI<T
where 3 denotes the summation over all characters modulo k, R =
e(k)[(f(k)+0.5)Inz + 4Ink + 13.4] and f(k) =2, plT1~
2.4. One more explicit form of estimates. The next lemma can be found
in [3] with the difference that the authors assumed GRH(k,H) but in fact they
used only GRH(k,1). Since we must apply it with 7' > H, we repeat the proof.

Lemma 3. Let x be a character modulo k. Assume GRH(k,1). Then, for any
T > 1, we have

1 ~
Y~ < BT
[vI<T lpl

PEP(X)

with B(T) = & In*(T) + ll1@111(:0 +Cy+2(Lin(5E) + Calnk + Cs).
Proof. For |y| < 1, we have GRH(k 1) and S0

Z m\ Z |1/2+7fy| N x).

[vI<1 lvist
pEP(X) pEP(X)
For |y| > 1,
1 T dN(t T N(t N(T N(1,
|pl 1 t 1 t? T 1
1<vi<T

pEP(X)

Thus,

N(tx) L NI
> e r PV

lvI<T
pEP(X)

We conclude by Lemma 1 that

T
1

T T
_ ! / 1—__n(kt/£2”e))dt+02 / mik Vit + 4 / L
1 1

™ J1 t2
T
_ l[llrg (ET_)]
T |2 2me ) |4
mkt)1" (T 1
+C2{[_¥] +/ t-gdt}+03[—1/t]1T
1 1

| 1
N T+—ln <2—k—> T +Cy <_ n(kT) +lnk—f+1>

s T
+C3(1 —1/T).
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In the same way, we have an upper bound of

NI ien

F(T,x) + R(T, x)
T T

and

N(1,x) with F(1,x) + R(1,x).

Finally, we obtain

—I—C’2+2<lln(£> +021nk+03) _ G
T 27 T

Using the facts that
e if pis a zero of L(s, x) then 7 is zero of L(s,%),
® these zeros are symmetrical with to the line R(z) =1/2,

we obtain Lemma 4 by examining the proof of [3, Lemma 4.1.3].

Lemma 4 ([3]). Let

1 —Inz
5 onl0) = s 0 e

with R = 9.645908801. Let T > H. We have
B
T

.T'B 1
> W+ > MTH@C > () + Va Z —

[y[mFt
IvizT IvizT lvizT IvizT
PEP(X) PEP(X) pEP(x) pEP(X)

Let us rewrite Lemma 7 of [6] to adapt it to the new functions F(y,x) and
R(y, x) which we use.
Lemma 5. Write N(y) = N(y,x), F(y) = F(y,x), and R(y) = R(y,x). Let
1 <ULV and ¢(y) be a positive and differentiable function for U < y < V. Let
W =y)d'(y) 20 for U <y <V, where W does not necessarily belong to [U, V].
Let Y be that one of the numbers U, V,W which is not numerically the least or
greatest (or is the repeated one, if two among U, V, W are equal). Take j = 0 or
1, accordingly as W <V or W > V. Then

|4 |4
> ot [Cowm ()i e [Ty pv,

U<|yIgV

where
Bo(Y,U,V) = 2R(Y)$(Y) + {N(V) — F(V) = R(V)}$(V)
—NW) - F(U) + RU)}o(U),
BV, UV) = {N(V)=F(V)+R(V)}$(V) - {N(U) — F(U) + RU)}o(U).
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Proof. We have

S o) = / H(y)AN(y

U<V

/ N()#' (4)dy + N(V)$(V) - N(U)(U).

e j=1. Wehave W >V and so Y = min(V,W) = V. According to Theorem 1,
N(y) =2 F(y) — R(y)-

.
S o) < () - )+ Rapell + = [ (52 sty

U<|yIgV
\%
- /U R'(y)¢(y)dy
because F'(y) = % (1n (%) + 1> =21l (g—g) Moreover,

—/U R (y)o( dy——C’/ )

e j=0. We have V > W. Take Y = max(U,W). Spht the integral at Y. Then
—¢/(y) <0 fory € [U,Y] and —¢/(y) > 0 for y € [V, V]. Replacing N(y) by
F(y)— R(y) in the first part and by F(y)+ R(y) in the second part, we obtain

S o) < 2 [ m(E)ewars [ s - [ s

U<|yIgV U
+Bo(Y,U, V).
Moreover,
v v
/R’(y)qﬁ(y)dyé(—1)902 W) g,
Y oy
and
Y
- [ Rt <o

O

We want to apply Lemma 5 with ¢ = ¢, defined by (5) and with W = W,
being the root of ¢,. Let

Inz
(©) X=\TF
and, for m > 0,
1) W, = Cl;k) exp(X/vm 1.

Corollary 1 (Corollary from Lemma 5). Under the hypothesis of Lemma 5, if mo-
reover k < U, then

3 () < {1/m+ (-1Y }/ é(y) In(ky/27)dy + B;(Y,U, V),

U<lyIsV

where q(y) = ﬁz’é—z—)
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Proof. The map y — 1/(yIn(ky/2r)) is decreasing if y > 2 /(ke).
e Case (j =0), then Y = max(U, W).

Y ) < Bo(v,U, V) + /¢> ln< )dy+LVR/(y)¢(y)dy-

U<lyIgV

v N V¢<y $y) n(ky/2m) |
/Y R(y)o(y)dy = sz / yln ey /2m) dy

Y In( kY/27r / 9(y) In(ky/2m)dy

e Case (j=1),thenY = V.

v
_/U R (y)o(y)dy < — m/ é(y) In(ky/2m)dy

O

Theorem 3. Let k > 1 an integer, H > 1000 a real number. Assume GRH(k,H).
Let zg > 2 be a real number, m a positive integer, and § a real number such that
0 <8 < (20 —2)/(mzo) and let Y be defined as in Lemma 5. We write

5) Ay = 2 [ on (2 Dayscy [~ ony,

(9) By = By(Y,H, ),

(10) Cy = mlem (ln(i—f)+1/m>,

(11) Dy = (2021n(kH) 3 mcjl>/Hm+1.

Then for all x > xq, we have

28 (i) - st < A, )28 (A + By 4 (Ca+ D)

+ (1 + %6) o(k)E(H)/vx + %5 +R/z.

Remark. We find a version of Theorem 4.3.2 of [3] where zq is replaced by zin A
and B.

Proof. According to Theorem 2,

(k) Y -~
PAR) k) — 2 A(m, 0) T
x 1@32{ 11/)(y ) (p(k’) | < m g pf;m ,0 1 (,0 m)'
IvI>H
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We separately examine the different parts:

o We have
B—1 B—1
> s <Y
— 5o ot - (p+m)] ~ o & Nl
|v|>H \v|>H
By Lemma 4,
B—1 B-1 B-1
T 1 T T
Z Z [y = Z 9 Z [yt + Z [yt
X PEP(X) X pER(X) PEP(X)
\vI>H |vI>H |v|>H
1 1 1
S 52 Z ¢m(’y>+‘ﬁ Z [yt
X IvIZH IvIZH
pER(X) pEP(X)

Using Lemma 5 with U = H, V' = o0, ¢ = bm, and W = Wiy,
S bm(y) < An+ Ba.

IvI=H
pEP(X)

Integration by parts gives

pEp(x)

e By GRH(k, H) we have 8 =1/2 for all [y| < H, and by Lemma 3,

S 2 BIVE

PEP(X) I'Ol
lvI<H

O

92.5. The leading term (Ag). To obtain an upper bound for the leading term,
we proceed like Rosser and Schoenfeld with upper bounds on the integrals. The
next three lemmas are issued directly from [6, p. 251-255].

Lemma 6 (Functions of incomplete Bessel type). Let

1 [o¢]
Koz =5 [ @

where z > 0,u > 0, and

HE(1) = {H(H)} = exp{~5 (0 + 1/}
Further, write K, (2,0) = K, (2). Then

(12 ki) < e (1+2).

7 15 105
< a_ - P .
(13) Ka(z) < 45, oxp(=2) (1 T 128z2>

Lemma 7.

K, (z,2) + K_,(z,x) = K,(2).
Hence, K, (z,2) < K, () (v > 0).
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Lemma 8. Let
xl/-‘rl

If z> 0 and x > 1, then

Ki(z,x) < Q1(z, )
and

Ks(z,z) < (x4 2/2)Q1(z, ).

The term Ay can be expressed using incomplete Bessel functions.

Lemma 9. Let X be defined by (6). Let 2, = 2X\/m = 2¢/m02 gpg [, =
2 () = /B2 ().
- 2Inz E AT
= -5 K. maUm
A (ais) Fotemtm
2 Cy(k) Inz E\™
21 —=——=) K m
ta n( or )V &Em \Cimy) Krlem:Un)

+20 o i m+1K(z Umi1)
2 R(m+1) Cl(k') 1\#m+1y Ym+1)-

Proof. This is by straightforward algebraic manipulation; for example, we write
/ Oy < —Inzx ) dy
1= —a x| s A | —-
woy"t Rln(ky/Ci(k)) ) y

Changing variables:
p o R(m-l—l)ln( ky >7

Inx C1(k)
g = R(m+1) d_y
Inx Y

Now

ox ( —Inz ) C e —Inz
P\B(y/ciky)) = &P PN s

Inax

. (m+1)nzl) —Zm41 1
o (V TR i) TP T
and

m+1 m m—+1 Zm
= (eln) oo (-] - () on )

Inz

Consequently,

I= /O: “y R (cjm)mﬂ o (s I
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2.6. Study of f(k) which appears in the expression of R. Remember that

Lemma 10. For an integer k > 1

Ink
k )
FR) < 35
Proof. We prove by recursion that
Ink
k) < —.
1(k) In2
For k = 1, it is obvious. For k = 2, f(k) = 1 < }"E’z“ Assume f(k) < %

holds for £ < n. Find an upper bound for f(n + 1). If (n + 1) is prime, then
f(n+1)=1/n<Ilnn/In2. If (n+ 1) is not prime, then there exists p < n, which
divides n. If p=2 and 2% || n + 1,

() =r (M) + s
n+1 In(n+1) In2

1+f( 2a>< 2 +1_E

In(n +1)

In2

Fln+ 1)

Ifp>2andp*||n+1,
srn) = f(2 ) = () 4 o)

pOt
1 +1 1 1 1 1
= Lty (It D) _ 2P
-1 P In2 p—1 1In2
1 1 1
M?T;) because]ﬁ lig < 0 for p > 2.

3. THE METHOD WITH m =1

Theorem 4. Let k be an integer, H > 1250, and H > k. Assume GRH(k,H). Let

C1(k) defined by (3). Let x> 1. Write X = /22 and

ke (k)
Ci(k)vm

Ife(@) <02 and X > v2In (), then

max | Y(y; k, 1) — y/p(k) |< ze(z)/o(k).

1<y<Le

e(z) =2 (1 + ——(15/16 +1In(Cy (k) /(2 )))) X3/ exp(—X).

Proof. Take m = 1 in Theorem 3. Assuming X > v/21In ( o (k)) then W7 > H.
In this situation, ¥ = Wy and By < 2R(W1)¢1(Wy). For y > 1, R(y)/Iny is
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decreasing; hence,

BH < 2R(W1)¢1(W1) < 2R(H) ¢1(W1)h’l Wi

= zlféfé) (—\% +In (Clék)» $1(W1)
o RLH) (X (Cl(k)» (/1 (k)2 exp(—2v/2X).

— +1In
V2

Inserting the upper bounds (12) and (13) into the bound for Ay in Lemma 9,
Ag <2 (551{_)) [\/;exp( 2X) ( + 12—5)( - 51120;2) X2/
+ 11 Cl X\/Vexp( 2X) ( 16X>
+0201’(“]j§\/.é, /4ﬁx exp(—2v2X) <1+ E—?)\/TX)} .

1k 15 Cik)\ 1177
\/—%Cl(k)XB/Qexp(—ZX) {1+<16+1 o )5)—(] .

In Lemma 11 below it is shown that

In H

Put

F1 =

- ~ ~ ~ ~ -2
AH+BH+(CH+DH+3E(H))/\/5+RW—) < Fy.

We must choose ¢ to minimize
A(1,6
%—)go(k)Fl +6/2.
Write f = @(k)F1. As A;(8) = (6% + 20 + 2)/6, we must minimize g(J) =
(6/2+1+1/8)f + 6/2. The minimum value here is at § = \/ 2L, and the value

el
thereisg(,/H_f =f+2f(1+f).

It is a simple matter to prove that for 0 < f < 0.202,
FHV2F0+F) <2Vf

As X > Xy :=+2ln (C (k)) then xzg > exp(122.5), and it is obvious that &
meets the hypothesis 0 < § < (zg — 2)/zo in Theorem 3 since

0<8<V2y/F < 06357 < xxgz.
Lemma 11.

~ ~ ~ -~ ~ -2
Ap+ By + (Cy + Dy +3E(H))/\/5+Rm < Fy.



1148 PIERRE DUSART

Proof. First we prove that Ay + By < Fi:

o mk_)_ﬁx?’/%"?x(H(15/16+1H(01(k)/27f))/X

+ (225/1024 + %g In(Cy (k) /27) + ilnz(Cl(k) /2m))/X7),
; B s 15 105 G\ (1, 3
An < GmvEs e (1 *16x T siexe B ( o J\X T T6x7

+ Cza’(kl;L— m exp(—2(\/_2_ -1X)(1/X + 3/(16\/§X2))>’

By < —IC———X3/2eXp(—2X)eXp(—2(\/§—1)X)

VrCy(k)
« {a%‘z-;—ﬁ—ﬁ(cg In(kH) + Cs) (\/% + }’1_@ n(Ch (k) /k))] .
This yields Fy — Ay — By > 0 if
rom g (e (50) 10 (50))
%ﬁ)’“ exp( -2V~ 1)X)

o (Vo)

+ 2<1+1—n—k—;—;%) (1+§1ncllik)>} .

This holds if we can show that
Fy > \/— exp(—2 (\/5—1)X)—1—~16.9
Cl(k) V2X ’
since C1 (k) < 32m, H > 1250, X > +/21n(1250/327), and k < H.
It remains to be proved that
V2C1 (k)
kCoy/7 - 16.9

But for X > Xo :=+v2In (c (k))

(15/1024 + ---) > X*/Z exp(—2(V2 — 1) X).

3/2 NG 3/2 kH —(1+4a)

1 C1(k)\'"T (In®2(kH/Cy (k)
- (%) ( - )

where a = 2\/5(\/_ —1)— 1= 0.17157. The map k — 1—“—312—(%1/0—1@2 reaches its

maximum for k = e3s C‘( ) Hence

3/2
X3/2 exp(—2(\/§ -1HX) < C]ig;) 3/4 (%) /63/2.
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We must compare

NG} 93/4( 3.)3/2
¥ (15/1024+ -+ ) with ———2)
oy 16,9 (15/10244 ) with — o

Since C1(k) > 9.14 (see the remark above (3)) and Cy = 0.9185, it remains to be
proved that

23/4(%)3/2

0.007976 > ~—Ze7—

(~ 0.00776),

which is true since H > 1250.

We show below that the remaining terms (Cy + Dy +3E(H))/\/T + Ra:—(j—k—) are
negligible.

e We will find an upper bound for A(l,d)f%@(C’H + Dy) + %np(k)E\(/g) + R/z.

We assume that X > +/21In (—C%%), hence, X > Xp := v2In (122) ~ 3.5644. It
is straightforward but tedious to check that

- - 2R 1250(In HInk)?  if k # 1,
. kH
Let us consider the case k # 1. As X >+/2In (Cl(k)>,
ex (£> Z ki
"\V2) 7 Gl
This yields
2
Rest < 1250(In Hlnk)? < 1250(-1@19% exp(XV2)
kH
Ci(k)
1 (n1250\°
< 1250CF (k)5 | =5
1 50(3’1(k)62 < 1350 ) exp(XV2)

< Kexp(X\/ﬁ) because C; (k) < 32,
where K := 55.65. Now compare
Kexp(Xﬁ)
NG
with the term involving 1/X? in Fy

1k
X2 Ci(k)ym

We may compute ¢ such that

= Kexp(XV2 — RX?/2)

X3/% exp(—2X).

Lk
X2 Cu(k)y/m
2

X
©c > Ky/32m/mexp(XV2— RX?/2+ 2X) %373

Kexp(Xv2 - RX%/2) < ex X3/% exp(—2X)

sSe o2 07-107% for X > X,.

Thus, the rest is negligible and absorbed by rounding up the constants. O
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4. THE METHOD WITH m = 2
Lemma 12. Let A(m, ) be defined as in formula (4). Write
Ry(6) = (1+ (1 +8)m™H)"
Then
R (9)
gm
Proof. The proof appears in [4, p. 222]. O

A(m,6) <

Theorem 5. Let an integer k > 1. Remember that R = 9.645908801. Let H >
1000. Assume GRH(k,H). Let C1(k) be defined by (3). Let Xo, X1, X2, and X3
be such that

eXo ko(k) e

VXo = 2rnCi(k)" X o,
Xo = KOV (rpll), X = AT

Let X4 = max(lO, Xo,Xl, X2,X3). Write

L
@(k)C1(k)

Then for all real x such that X = \/1% > X4, we have

max [(y; k1) —y/o(k)| < ze (\/%) ,
ax |0(y; k. 1) — y/o(k)| < ze (\/ m%) :

Corollary 2. With the notations and the hypothesis of Theorem 5, let X5 > X4
and c := e(X5). For x > exp(RX2), we have

[W(z;k,0) —z/p(k)l, |0(z;k,1) —z/p(k)| < cz.

Proof. The idea is to judiciously split the integral into two parts, and bound each
part optimally, using an m = 0 estimate in the first part and an m = 2 estimate in
the second part.

We want to split the integral at T, where T' will optimally be chosen later. We
take T in the same form as W, (formula (7)):

Ci(k)
Tk

e(X)=3 X2 exp(—X).

(14) T:= exp(vX),

where v is a parameter.
Assume that T'> H and 1/v/m+1 < v < 1. Hence W,,, < T < Wy. This last
hypothesis is needed to apply Corollary 1.
We use Theorem 2 and split the sums at T
-1

mo 2?1 mé
A9 > p+1 (p+m)|+<1+7>gz Tyt

X PEp(x) PEP(X) 1P1
v [>T lvI<T

HI sl
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Define
81
- T
A= 303
X
~ -1
A= 30 >
— 50 p+1 (p+m)|
|v[>T
Bounding the term Ay, we get
- ;Cﬁ 1
TEEID o] Dyl ) g
X PEP(X) PEP(X) p
IV I<H H<|y|<T
1 z P
= - > %4— > o | by GRH(k, H)
X PEP(X) p PEP(X) p
IvI<H H<|y[<T
aiiv- 20D JECEELS Y D DREAU Sl
\/5 X PEp(x) |'0| 2z X PEP(X) Ipl PEP(X) | |
[vI<H H<|v[<T H<[[<T
1 ~ 1
< = E(H)+ —
NGV PV E O YT
HL|vIST HL|y[<T

by Lemmas 3 and 4

< plk)E( /W+ZZ¢0

PEP(X)
HL|y|LT

Apply Corollary 1 (j = 1,m = 0) for the interval [H,T] with ¢ = ¢y and
W= WO

T
S o) = {1/m — (1)} /H 60(y) In(ky/2m)dy + By (T, H,T).
PER(X)
HL|~v|LT

Moreover, By (T, H,T) < 2R(T)¢o(T).
We want to find an upper bound for

_ %/HT%(ynn (’;—i)d

Write V" = X2/1n (Ol(k ) =X/v=Y"+2X —vX, where Y := X(1-v)2/v.
Write U” = X?2/1n (O 7 ) and T, 2) = [ e™"u*"1du. Now

Joa(E)aoar = [ (2)on(-xim () 2
XHI (=2, V") - T(=2,U")}
+X?%1n (%ﬁ?) {T(=1, V") =T(~1,U")}

Il
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by making the change of variables y = —J—— exp(X?/u). Now if @ < 1 and = > 0,
then (a,z) < 2@ e ldt = x* e ""C Hence,

T
/ In (ki/) o(y)dy < X'V 7™V + X?In <—~—Cl(k)> VeV
H 2m 27
This yields

N

I

If
A= 3= 3]
>.<
[
5
/'\
’z?
NG
>N
i
T
oL
5><
S
~

—-Y” —2X
e (clae)) Go,

where d := In (Césrk)) and Go := (v + d/X). With the help of Corollary 1, we

A <o B v+ 2B Lo oo (0 X6y + 2T}

Bounding the term Ay, we get

~ B
ho= Y Y prn e

X pew(x)
1 T P
" nl| X 3>
2z X pEP(x) |P(,0+1)~-(p+m)| peo () |P(P+1)"'(P+m)|
[>T [7I>T

zP zP

1
< QEZ Z [yt + Z [yl
X PEP(X) pPEP(X)
|v1>T Ivi>T

= Z Z Sm (V) + Ve Z l’Ylm+1

PER(X) PEP(X)
ivi>T [v|>T

by Lemma 4.
By using Corollary 1 (5 = 0) on [U,V] = [T, c0),

S ) < 1+ a()} [ om() Gy + Bo(T T 00).
pEP(X)
Iv[>T

‘We have
Bo(T, T, 00) < 2R(T)pm (T').

Moreover,
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Let us study more precisely

- Lo ()

= (c%:)) (Kg(zm, )+MK1(zm,U )>,

where d = In (%—?) and U' = U, = i—:ln (%) = vy/m. Now, by writing
2z = zy, and using Lemma §,

KQ(,Z,U)"_@K]_( U < (U +2/z+2dm/2)Q1(2,U")

1+dm U'? ot
< vmlv+ e 5U'H1/U")
( mX >Z(U/2—1)

But 2(U" + 1/U") = Xym(vym + 1/(vym)) = mvX + X/v = mvX +
(Y"+2X —vX), where Y = X(1 —v)?/v. Hence

2dm vom T\ ™Y
/ U -Y -1 _—-2X
Ko, U') 4 = (2, U) < Gre™" g as X2 (
where Gy := -1 ———U%il (v+ ——1:&”) because

el/X(m—l) :< kT )m_l
Ci(k)

and ¥ = 1 X1, This yields

I / dm (y) In(ky/2m)dy < ——no Gre™™ & Xe 2= (m=1)
2 " —1 Ci(k)
Let Go Rm(é) (1 +mg(T)). So, by using Lemma 12,

A, O EE 144 [ o) a2

2\ ok) [ G2 kGie™Y” —2X p—(m—1)
<(7) 2{ m-nem }

The results above yield
(1+mb/2)A; + A(m, §) Ay

XGoe2Xe Y o(k) [k Gi ey (2\7
(15) < - (Cl(k) m—lT 5 +GoT ;+r
because 1 +méd/2 < R, (6)/2™ < G2, with

ro= k)1 +md/2)R(T)¢o(T) + A(m, ) (k) R(T)m(T)

4 %((1 + mé/2)B(T) + A(m, 8)(Cr + Dr)/2).

Suppose Go/G1 were independent of v; then the expression between braces
n (15) would be minimized for

(16) T = (G1/Go)m 2.
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With this choice,

G () 2\" +G0T——G1/mG1 1/m?2
m —1 1) m — 5’

and we obtain (G > 1)

= (14 md/2)A1 + A(m, 6)As + 1m6+ E

2k<p(k)
8(m — 1m0y (k)

The expression between braces can be minimized by choosing

1 " R
< §mG2 {Xe_ZXe_Y Gl/mGl 1/m+5}+7’+§

metm v 2ko(k) My
1 5= Gl 1/ Gl/m y”  arP\h) X1/2o-X
4 { N A () ¢
Hence, we write (by replacing the above value of § in (16))

(G 1/2m 20, (k) v H2 12X
(18) T= <G_o> < Fo (k) (m—1)me" /Go X~ %e
and

1/2 ~
1-1/m1/m —Y" 2kp(k) m /2~ R
X —

(19) €1 <Gy <G G; 7C1 (k) — +7’+

The value m = 2 minimizes the expression \/% For the remainder of the
argument, we fix m = 2.
We now have two definitions for 7'. On the one hand (equation (18)),

1/4
r= (%) e [21CR) e

Gj kip(k)
with Y” = X(1 —v)?/v, and on the other hand (equation (14))
T = Cilk) exp(vX).

These two equations are compatible if and only if there exists v such that f(v) =1,
where

/2
_ Cilk)e(k) (G ' —X(1=v)? /v _—2X(1-v)
fv) = py o, Xe e .

Here we have m = 2 and our assumption 1/v/m+1 < v < 1 gives 1/\/3 <r«l
Note that

Go = V(v+d/X),
m—1 U"” 1+dm V2 1+2d
Gi = m U/2_1<"Jr mX >_2u2—1<”+ 2X )

It is easy to check that on the interval 1/v/2 < v < 1, G3/G1 is increasing, and
hence, f(v) is strictly increasing. Moreover, 1'11rnl/_>(1 N f(v)=0and f(1) > 1
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(for all X > W(Zk%(l{)) So there exists a unique v € ]1/v/2, 1] such that f(v) = 1.
For 1/v2 < v < 1, we have (m = 2)
Gy [VEv+d/X)P
H(v):= =2 = 5 < (v+d/X)2
Cr v+ 537

Write, for X > X3 := ﬁ;(‘k?

B 1 Ci(k)p(k)X
Let us study H(vp):

H(l/o)<1 if l/()+d/X<].,

. 1 Ci(k)p(k)X In(Cy(k)/2)
— <
equivalently 1 5% In ( o + X <1,
which holds if X > X, = kC1 (k)
2mp(k)

3\ 1/2
vy = D (g“) X exp(=X (1= v)?/v) exp(~2X (1 - 1)),

replacing vy by (20), we obtain

fw) = (g-f)” exp (- In (%2)—;”7;%> /(4V0X)> :

Assume that vy > 0, then, for X > Xs, f(1p) < 1= f(v) and hence vy < v. We
will require X > Xs.

The assumption T' > H holds if T' > Qlkﬂglexp(uoX ) > H. Using (20), rewrite

ClT(k) exp(toX) = / %kg—(l,gc—)ex‘% X Tet X, satisfy

eXo—%h’lXO — k(p(k) .
27T01(k')

We have T > H provided that X > X,. We will require X 2> Xo.
For X > X3 = C—l%—k’“—)’%@, Vg is an increasing function of X. We will require that
X > max(Xs3,10). Then since Cy(k) < 32m and X > 10, we have

vp > 0.7462413 and vy <v < 1.

The assumption v > 1/4/2 is satisfied.
We want to evaluate

(21) K = GQ(\/ GoGle_Y//)l/Q,
which appears in (19). Again using C; (k) < 327 and X > 10, we find

v 1+2d
GoGr < (1+d/X)2V20_1<1/0+ 2X>
0

< 8.995.

The following results will be needed in later computations.



1156 PIERRE DUSART

1. Since X > X, and exp(X)/VX is increasing for X > 1/2,

kp(k)
27T01 (k)

1

X1/2 -X it
exp(—X) < -

2. Since GoG1 < 9,

ko (k) -
— 4 ~Y'"/2 X1/2 X
1) 2 GOG]_ eXp( / ) 27T01(k) e
< 2V3/H.
In particular, for H > 1000, we have ¢ < 0.00347.
3.
Ry(9)

Gy = —— 52

22 (1 4+ wq(T)) < (1+3.012-6/2)*(1 + mq(T)),

because

R;ga) 3 {(1+52)3 + 1}2

2
= {1+%6(3+36+52)} <<1+§¥5)

since 1+ 4 + 6%/3 < 1.0035.
4. Since T > H,

G
T In(kT/2m)
<
Hn(kH/2m)
But exp(—Y"/2) <1 and H > 1000, so this yields
K < (8.995)Y*Gy

2
0122
< (8.995)1/* <1+ ¢ ) x <1+ ﬂﬁﬂ)

q(T)

1000 1n(1000/(27)) 2 1000
< 1751

Tnserting this upper bound of K (see formula (21) in (19), we obtain

e < 2\/7K ng;xl/zexp(—X)JrrJrE
(22) < 27941 Clék;XWe xp(— X)+r+§

Now we want to bound r and %.

e An upper bound for (k) (1 +8)R(T)po(T) and o (k)A(2,8)R(T")¢2(T). Recall
that

R(T) = Cyln(kT)+Cs,
solT) = g exp (~X2/W(KT/Cr(K)),
bu(l) = Go(T)T"
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Now
60(T) = = exp(=X2/ (X)) = = exp(— = X) < = exp(—X)
0 =T Y =T p o ST p
and
L /2 gp(x) BB (_Go \'* (Go)\'!
7= XX \ T G.)
hence
Coln(kT) + C
R(T)¢o(T) & 2—728 n( T) % exp(—X)
_x [kp(k) Go Go _
X 1/72{ Go\1ja —x
< VXe X A0 [(02 In(kT) + Cs) ( %ey,,) ( G1> e } .
But
Go < 1+1n(01(k)/27T),
X
G() 2 _ _
a < F-1<1 (m=2),
exp(Y") > 1,
In(kT) = vX +In(Ci(k)) < X +In(Cy(k)) < X + In(327).

So, since X > 10 and C4 (k) < 32,

(1+8)p(k) [(C’gln(kT)+Cg)< Co )1/2 (G0>1/4exp(—X)]

2meY” Gy

< (k) <1 + %%) (Co(X + 1n 327) + Cy] \/iﬂ%ﬂ@ exp(—X)

< 0.857p(k) X exp(—X).

Furthermore, if X; is defined by exp(X1)/X1 = 10¢(k), and if we require that
X > Xy, then this term is bounded by 0.0857. Hence, under the hypotheses on X
in Theorem 5, an upper bound for ¢(k)(1+ §)R(T)¢o(T) is

ko(k
0.09 - CfEk;X1/2exp(—X).
Next, by (16)
G1
T= —.
) 2 o
Hence, by Lemma 12
Ry(6) _ Ra(8) Go _ Ra2(9)
2 20 120 o
A(276)/T ~ ((5T)2 ~X 22 Gl X 22

and
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Using 6 < 2v/3/H < 2/3/1000, we get Rg( )/22 1.0147. Under the hypotheses
on X in Theorem 5, an upper bound for ¢(k)A(2,8)R(T)$2(T) is therefore

0.087 - ’/Cl X1/2exp

The sum of the two terms can be bounded by

o(k) 1
23 Xz
(23) 01 W exp(—
e An upper bound for (1 + )E(T)Tk—) + A(2,9) E/_)(CT + D7) + R/z.
For f(k) = pk Ll observe that (Lemma 10)

Ink

< —.

flk) < In2

We can explicitly rewrite for m = 2, H > 1000, and Cy(k) < 327 the following
expressions:

3E(T) = 3(2_1 n’ T + 11n (2’;) InT +Cy

+ 2 <lln (—k—> +Cglnk+03>> ,
T 2me
- 1 kT
CT = _—27TT2 (ln(2 >+1/2>

Dr = (2C3In(kT)+2C3 + C2/3)/T?,
R
o(k)v/z

It is tedious but easy to check that the sum of the above quantities is less than
1000(InTV1Ink)?  for k # 1,
{ 10001n® T for k= 1.

Now we want to find a number ¢ such that

N

[(f(k)+0.5)Inz +4lnk +13.4] /Vz.

1000(In Tv/In k)? (kap(k))l/ 2

A(2,8)(k <cl=ms ) XVPexp(=X
1/2

with X = /2. But A(2,6) < %2 and by (16), T= (&) 2,50

Ry(9) 2 Go

<
R

Moreover, % = exp(—RX?/2), hence
RQ(a) G

1/2
G—0T2 (k)(InTvIn k)? (kw(2)> X2 exp(X — RX?/2).

> 1000

~—

As g—‘l’ <1, T*= o ( ) exp(2vX) < C2(k) exp(2X), hence it suffices to take

Bal0) oo Guicatiy ) + 07

Ci(k)p

(k:) 1/2
> 1000 e ) exp(3X — RX?/2).



ESTIMATES OF 6(z; k,l) FOR LARGE VALUES OF x 1159

But 2% < 1, Ik < 1 and Ry(6) < (1+3.0126/2)% with 6 < 23 < 243, So
ﬁnally, it suffices to take

2
c> wf : (1 " 323}35@) CE(k)(In Cr (k) + X)*/C1 (k)X /2 exp(3X — RX?/2).

Since C (k) < 327 and X > 10, we can take
(24) c=0.643 107187,
In the case k = 1, we can replace the upper bound 2 k2 < 1 by 1, and obtain the

same result. Comblnlng (22), (23), and (24), we obtain the result in Theorem 5;
more precisely, for all X satisfying the conditions of the theorem,

k

z k) —z <2991, [ ——— X% exp(—X).

sk d) 2/ (k) |/ e X exp(- )
We also wish to allow 6 instead of v, which can be done by recalling Theorem 13

of [5]:

0 < (w;k, 1) —O(z; k1) < P(x) — O(x) < 143z for z > 0.
Using X > 10, we find 1.43/z/z < d - 3(kp(k))/C1(k) XY/?exp(—X), where
d=1.17-1072%, This difference is absorbed by rounding up the constants. O

5. APPLICATION FOR k =3
Now we are able to compute xg and ¢ such that, for z > g,
| 0(z;3,1) —x/2 |< cx/Inx.

This would not have been possible if we had used only the results of [3].
According to Theorem 5,

e(X) = o[

for k = 3.

To determine for which x this bound is valid, let us solve for the constants Xg,

X1, X5, X5 in Theorem 5. Noting that Hz = 10000 by the table in Theorem 1, we
need X to satisfy

1
exp(Xo — 3 In X;) > 10000 _ 6 ~ 2136.51.

27 - 20.92
Xo ~ 8.76 works.
Find X3 such that

exp(X; —In X;) > 20.
X1 ~ 4.5 works.

Compute the two other bounds: X, =~ 4.99, X3 ~ 1.22. Thus we can take
X = max(10, Xo, X1, X2, X3) = 10 in Theorem 5.

e For 1“”” > 10, write X = 1“7””, then
e(X)Inz = RX?e(X).
Find the value c such that
e(X) < ¢/In(x).
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For any z such that 4/ me > 10, ¢ < R-10%¢(10) < 0.12. Hence we have for
T > exp(964.59 - - ),

x
; - <0.12—.
16(z;3,0) — /2| <0 121na:

We want to extend the above result for z < exp(964.59 - - ). Olivier Ramaré has
kindly computed some additional values supplementing Table 1 in [3]. We have

|6(x;3,1) —z/2| < ¢c-z/2

with
& = 0.0008464421 for lnz >=400 (m =3, = 0.00042325),
& = 0.0006048271 for Inz >=500 (m = 3,8 = 0.00030250),
é 0.0004190635 for Inz >= 600 (m = 2,§ = 0.00027950).
Hence,

e For 6600 < T < 6964‘59"'

¢ < 0.0004190635 - 964.6/¢(3) < 0.203.

For e400 <z< e600

¢ < 0.0008464421 - 600/ (3) < 0.254.

Using the computations of (3],
For 10100 < g < %00

¢ < 0.001310 - 400/(3) < 0.262.

For 1030 < 2 < 10190

¢ < 0.001813 - 10010 10/p(3) < 0.42/2 < 0.21.

For 1013 < z < 1030

¢ < 0.001951 - 301n10/(3) < 0.14/2 < 0.07.

For 1010 < z < 1013

¢ < 0.002238 - 131n10/¢(3) < 0.067/2 < 0.00335.

For 4403 < < 101°

| 0(x:3,1) — /2 |< 2.072y/z  (Theorem 5.2.1 of Ramaré and Rumely [3])
We choose ¢ = 0.262. We check that this bound is also valid for 1531 < z < 4403.

Theorem 6. For z > 1531,

T
; —x/2(<0.262—.
| 0(z;3,1) —2/21<0.26 o
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6. RESULTS AssuMING GRH(k,00)

Assuming GRH(k,00), we obtain more precise results. Under this hypothesis,
one can show that function ¢ has the following asymptotic behaviour:

Proposition 1 ([8, p. 294]). Assume GRH (k,c0). Then
x
Y3k, 1) = —— + O(Vzln® 2).
(@3k,) = —r5 + OVl 0
Theorem 7. Let x > 10'°. Let k be a positive integer. Assume GRH(k,00).
1) Ifk< %lnw, then
[z k, 1) — W)I < 0.085y/z In’ z.
2) If k < 432, then

x
zk, 1) — —<| < 0.061y/zIn* 2.
wlask, D)~ o]
Proof. Let zg = 10'°. Applying Theorem 2 in the same way as Theorem 3 (assume
that T > 1),
o(k) z
— (s k1) — ——
(k1) "0
~1/2

< AmDY D Ipp+1 (p+m)|

X |y[>T

+(1+ms/2)> Z p| +m5/2+R/a:

X |vI<T

1

Dy = ﬁ(QCgln(kT)+203+Cg/2),

E(T) = w’T+Sl(k/@o)nT+Co+2( () + Conk+ O
= 27Tn 71_n 0 2 = e 2 3/

2R (9)

(26) T=5o4 5



1162 PIERRE DUSART

to minimize in (25) the preponderant terms involving T. So

RO, py — 22+ [m( le(5))>+1

0 Am 752+ 6
w6(2 4+ 9) 2kR1 (6)
o (o (Fatg) 2o )]
(2B = 22wt (FE) + 2mieyem)m (10

+27C5 + 4w <% In(k/(2me)) + Colnk + Cg)] .

With the choice of T, the main terms of ¢ are

(k) 1 . 5 ( 2R1(6)
NG < 5+2>>+

These terms are minimized by choosing

9
2

k) Inz
= ——w\/i .

Now, replacing (26) and (27) in (25), we only have a function of x for fixed k:
er(z) :=ex(z,T,0).

(27)

We simplify expression (25):
Ek (m, T, ) ) -

< Ex(z, T,6
0 k( )
Ry (5 R
=T 6 brypvE @ DE@VEL S+ L
5 zp(k)’
By choosing T = ggﬁg; and ¢ = 71::/””5, €r(z,T,0) became &x(z).
Hence,
- 2+ 2 (2my/x Ri(6) 27y/x Ra(6)
S(@)Ve 4 [l < Inz 246 + 27r I Inz 2496
kvx Ry (5)> Inz 2+6 } Inz R
+21n + — Al + +
(lnx \/—Rl( )( ) 2mp(k) ‘P(k)ﬁ
2+ 6
+ 4+7T (242705 + 47T( In(k/(27¢)) + CaInk + Cs)
with
2]671’\/5 Rl((S)
= . 2 .
A QCglII( o 249 + C3+Cz/2
Let 6; = ;‘:/””i But 121_52) — % =1+ 6;;? <dp=1+4 2+61 because
z > o and 2+5) <1
By direct computation, for all k¥ between 1 and 432 and = > x, of ;E‘é ‘/_ , we

find an upper bound 0.06012.
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)

~—

To obtain 1) in Theorem 7, we will study the sum in brackets for 1 < k < %

[-] = 1lnzm—f—an 2mdy +Inzln 2md, +21In 4lnw In
14 Inz Inx
fin (A2 g4 Lo+ ngad /5)+133(A)
107 g T AR NG

) +1/2+1n(4lnz/(107)))

1 2md
= Lzlnzx—klna:(ln(lz;

27d 41 2mwd 1
—|—ln2<l7:1x1> +2In ( 18;"“’)111(11 1) +In(4d; /5) + %(A)}.

We conclude that

lim —‘—Ek(l’Q)\/E = ia
z—+o00  In“ g 8
which is the same asymptotic bound as Schoenfeld’s [7] for .
The bound ex(z)/7 is an increasing function of k. Choose k = #Inz. Now
ex(z)v/z/In? z is a decreasing function of & bounded by 0.0849229 for = > zg. [

Remark. If we take k = 1 in Theorem 7, our upper bound is twice as bad as the
result of Schoenfeld [7, p. 337]: for z > 73.2,

1
(@) -l < Ve’
These differences are explained by:

e an exact computation of zeros with v < D ~ 158 (the preponderant ones!) in
the sum 3 Ilﬂ’

e a better knowledge of R(T) (k fixed, k =1).
Corollary 3. Assume GRH (k,00). For all k used in Lemma 2 and x > 224,

z 1
k) — ——| < —+yzIn®z.
d}(xa ,l) SO(IC) 471_\/.'5 n x
Proof. We use Theorem 5.2.1 of [3]: for all k noted in Lemma 2 and 224 < z < 1019,
T
Yk, l) — ——| <z
ok ) - ]
and z < /T In? z for = > 35. We conclude by Theorem 7. O

7. ESTIMATES FOR 7(z;3,1)
Definition 1. Let

m(z; k1) 21

p<Lz
p=lmodk

be the number of primes smaller than z which are congruent to [ modulo k.
Our aim is to have bounds for 7(x;3,1). We show that

Theorem 8. Forl=1 or?2,

(i) 5= <m(x;3,1) for x > 151,
(ii) (x 3,1) < 0.55:% for & > 229869,
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From this, we can deduce that for all x > 151,

)

Inx

because
m(z) = m(x;3,1) + m(z;3,2) + 1

7.1. The upper bound. First we give the proof of Theorem 8 (ii).

Lemma 13. Let I, = fam hfi,ft Then I, = 5= — w45 + nlny1. Furthermore,

fora>e, (z—a)/ln"(z)<I,<(z—a)/ln"(a).

Theorem 9 (Ramaré and Rumely [3]). For 1 <z < 10!, for all k < 72, for all ]
relatively prime with k,

)
mex 0(y; k, 1 < 2.072v/z.
a0kt~ s |<

Furthermore, for x > 10'° and k = 3 or 4,

T T
0(z; k, 1) — —= |< 0.002238 ——.
0D = S | o8
Write first
O(z; k1) 0(zo; k,1) / 0(t; k1)
sk, 1) — k) = — dt
m( ) = m(@o ) In(z) In(zg) 20 t1n2¢
Put g := 10°.
Preliminary computations :
0(10°,3,1) = 49753.417198 - - - 7(10°,3,1) = 4784.
6(10°,3,2) = 49930.873458 - - - 7(10°,3,2) = 4807.

Put ¢ := 2002238 and K = max((10°,3,1) — 6(10°,3,1)/In(10°)) = 470.
e For 102 < 2

O k,1)  0(10%k, 1) /”” 0(t; k,1)
. - 5 _ ik, B VR, s vy
W(x,k,l) 7T(10 ’k’l) hl(x) 11’1(105) 105 tlnzt dt

But

T 0(t k, 1) 0% 0t k, 1) VE O(t: &, 1) © 0t k, 1)
oD gt = 200 g+ —olgp 4 | 2Rt
105 tIn?t 105 tln“t 1010 tln“t vz tlnt

and, by Theorem 9

1010 1010 1010
0(t; ke, 1 dt dt
/1 ( Qt)dt < M:zl/go(k:)-/ 4 2.072-

05 tin 105 In?t 105 Viln?t
Ve g(t;3,1 — 1010
[FA, e
1pt0 tln“t In“ 1010

T 0(t;3,1 —
/ ()3;7 )dt < CO‘T 5 \/5
vz tln“t In”\/z
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We compute M = 10381055.54 - - -. Then

vz —-101° -z
In? 1010 * In? \/5>
1020 — 10'%Y\ In10%°
In? 1010 ) 1020 )

m(x;3,1) < coi+K+M+co<
Inz

Inz
< 05452
Inz

< i(CO-i-(K-I-M—FCO

e For 1010 < z < 10%°,

10%° . x .
0(t;3,1) dH/ 0(t:3,0) x
1

m(z;3,l) < K+/ + co—
( ) 105 tln’t oo t In%t 0 Inz
T In Co Co
— — | K —10%° 1
< Iz <c°+ z < M0 121010>+ln21010 nm)
< 0.5468 .
Inx

e For 10° < = < 1010,
/ o(t’k’l)dt < l/ dt —— + 2.072 dt
1 1

o tln%t 2 J1o5 In%t 105 VEIn?t
1/ =z 109 Todt T dt
== —————-1—2] >+2072 .
2 <ln2x In? 105 105 In® 105 VEln?t
_ 2yt
Now, f \/_lnzt - [m] +4f \/_lnst
Therefore
1
r@al) < 2 iognYE ik
2Inzx Inx
+1<w 10° +2/x dt)
2\In?z 1In?10° 105 In®t

2 24/10° z dt
oorp [ 2VE _AC L d
In?z 1n?10° 105 VEIn® ¢

< 055—— forz>6-10°.
Inz

7.2. The lower bound. Let KK = min,(7(10°,3,1) — 6(10°,3,1)/In(10%)) ~ 462
and ¢ = 0498881 = 1=0.002238
e For 1019 < z,

m(z;3,1) > KK+

Ccx

Inz

0(z;3,1) +/m 0(t; k’l)dt
1

Inz 05 tln?t

because
T 0t kD)
05 tln¢

KK >0 and / dt > 0.
1

e For 10° < z < 1019,

Lemma 14 (McCurley [2]). For z > 91807 and cp = 0.49585, we have 0(x;3,1) >
CoX.
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Remark. This bound is better than the one given in Theorem 9 for z < 2.5 - 10°.
0(z; 3,1 0t k, 1
n(z;3,1) > KK + AGE) +/ (—’QJdt.
Inz 105 tln“t
Thus for any zo, z; with 10° < z¢ < z1,

. o
m(z:3,0) > KK+M+/ 9(“"l)dtf x> o
Inz 105 tlnt

o f(t 1
> L(CH(K;H/ ) dt> _> for 20 < 7 < 1.
Inz 108 tIn“ ¢t Z1

Using the previous remark, we find

/e(t;k’l)dt > c2/ dt if 10° < < 2.5-10°
1 1

05 tIn?t o5 In% ¢
and
2.5-10° z
dt t/2 —2.072/1
N CQ/ . +/ W2 20TV o510 <
105 In“¢ 2.5-105 tln“t

We use this to make step by step computations with Maple:

Zo x1
10° | 2- 108
2.10% | 3-107
3-107 | 3-108
3-10% | 3-10°
3-10°| 10

We conclude that m(z;3,1) > 0.499:2 for 10° < z < 10'.

7.3. Small values. We now check whether 0.49888:% < 7(;3,1) < 0.55¢7; for
x < 6-10°. Tt is sufficient to prove that

m(p;3,1) < 0.55L for p =1 mod 3,
Inp
and if

0.49888% < 7(p;3,1) — 1 for p = [ mod 3.
The highest value not satisfying the first inequality is p = 229849, and the highest
value not satisfying the second is p = 151. Furthermore, 7(229869;3,) < 10241 <
055220569 - ~ 10241.0075 and 7(151;3,1) > 16 > 0. 498881;%1 ~ 15.01.
The conclusion is

0.49888%‘ >151 (.'IZ 3, l) z>229869 0. 55_—

Inx

Remark. We cannot show that z/(2Inz) < m(x;3,1) by using the formula 0(z) <
¢+ z. We have obtained other formulas (see Theorem 6) which we will use below.
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7.4. More precise lower bound of 7(z;3,l). Now we will give the proof of
Theorem 8(i).

Classically,
0(x;3,0)  6(10%3,1) / 0(t;3,1)
'3’1_ 15;3,l: ) _ 3Dy 3Dy
m(x;3,1) — m(10%3,1) In(z) In(10°) s tln?t at
Now 6(t;3,1) > 5% (1 _ ﬁ) with a = ¢(3) - 0.262 by use of Theorem 6. So we
write
) 6(10°;3,1)
_ 5. AT
KK = min <7r(10 :3,1) m(105) )
T o 1 ¥ 1-a/lnt
13,0) > J(z,0) = KK + —~— (1- == -
w(z;3,1) > J(z, ) - o(k)Inz ( lnw) + (k) /105 In? ¢

The derivative of J(z,«) with respect to z equals

1 <1~a/lnw+ a)
w(k) Inz n‘z/

Moreover, the derivative of m equals

1 < 1 1 )
p(k) \Inz n’z/’
The inequality

1 (L_ 1 >< 1 (1—a/lnx+ a)
o(k) \Inz In’2x (k) Inz In® z

holds if @ — 1 < &/ Inz; this holds for all z > 1. The only thing to do is to find a
value x1 such that

T

> o(k)Inzy

For z; = 10°, J(10%,0.524) ~ 4607.75 and 51075 ~ 4342.94. We verify by com-
puter that the inequality holds for z < 10° and [ = 1 or 2. We conclude that

J(z1, )

. > .
s < 7w(z;3,1) for x > 151
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