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APPROXIMATION OF THE HILBERT TRANSFORM
ON THE REAL LINE USING HERMITE ZEROS

M. C. DE BONIS, B. DELLA VECCHIA, AND G. MASTROIANNI

ABSTRACT. The authors study the Hilbert Transform on the real line. They
introduce some polynomial approximations and some algorithms for its nu-
merical evaluation. Error estimates in uniform norm are given.

1. INTRODUCTION
Let us consider the integral

(1.1) H(G,t) :=/§@d:c= lim/ G(x)dm

RT— t e—0t |z—t|>e T —1

)

where t € R. If we assume that the limit on the right-hand side exists, then H
is called Hilbert Transform. It appears in several mathematical problems and,
essentially, it is the main part of the singular integral equations on R [28]. Therefore
approximations and numerical evaluations of H(G,t) are of great interest.

It is well known that H is a bounded map in the L? spaces, 1 < p < 00, and that
it is usually considered in the L? spaces where 7' H is an isometric isomorphism
[1]. In the space of the continuous functions equipped with the uniform metric, the
Hilbert Transform is an unbounded operator.

However, if we assume that the Dini type condition

1
/ Mdu<oo
0 U

holds, where w is the ordinary modulus of smoothness on R, then H(G,t) is a
continuous function on R [14, Theorem 2.24, p. 218].

In the last decade several papers have dealt with the numerical approximation
of the Hilbert Transform in the case of bounded intervals and the reader can refer
to [4], [5], [6], [7], [13] [18], [20], [25] and [26]. The algorithms proposed in these
papers are mainly two: Gauss-type quadrature rules and product quadrature rules.
The first ones subtract the singularity and apply an ordinary Gauss quadrature rule
using an additional algorithm to control the term of the quadrature sum containing
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the knot closest to the singularity [4], [13], [27]. The second ones consist in sub-
stituting the integrand function by its interpolating polynomial having Lebesgue
constants of order logm.

On the other hand the literature concerning the numerical integration on un-
bounded intervals is by far poorer than the one on bounded intervals. For instance,
in the case of integral transforms with continuous or weakly singular kernels, the
convergence of some product quadrature rules has been proved in [19], [29], [33]
and [34]. Estimates of the quadrature error have been recently proved in [21], [22],
[23] and [27]. The case of the Hilbert Transform has been considered very little
and the reader can consult [3], [9], [15], [16], [35], [36], [37], [38] and the references
given there.

In particular in [16] the authors assume that the function G is analytic in the
strip {C : |Sz| < d}, in which case they show that the series

2. G(t+vh)
2 ) ——,

v=—00
v#even

converges to H(G,t) at the rate O(e™# ) as h — 0. Successively they approximate
H(G,t) by a partial sum of the above series. Obviously the error depends on the
decay to +oo of the function G.

In [3] the author replaces the above series with the following one

o

T G(t+kh+12)
k+3

k=—o00
for a suitable choice of the step h — 0. Proceeding as in [16] and making suitable
transformations (Sinc Method), this procedure can be used for piece-wise analytic
functions (see [35], [36], [37], [38]) which frequently appear in the applications.

In this paper we propose to approximate H(G,t) by using the zeros of Hermite
polynomials. More precisely, we write G(z) = [G(:c)e(pf'“‘)z]e_(p”)2 = f(a:)e_(pz)z,
p # 0, and we assume the function f belonging to suitable Sobolev spaces and such
that, for r > 1 and |z| > zo > 0,]f(") (m)e_(pz)2| decays to oo algebraically. Since
the zeros of the polynomial H,,(z) are in the interval [—py/2m, p\/%], taking into
account the decay of | f (") (2)e~ ™|, the computation of H(G, ) is reduced to the
computation of an analogous integral on a finite interval (depending on m). This
circumstance allows us to use the procedures proposed in [4], [5], [6], [7], [13], [18],
[20], [25] and [26].

In Section 3 we propose a Gauss-type quadrature rule and a product quadrature
rule.

The Gauss-type quadrature rule is useful because it has the computational cost of
an ordinary Gaussian formula and it controls the term of the formula containing the
zero closest to the singularity. This circumstance requires additional information
on the distance of the zeros of two consecutive Hermite polynomials (see Lemma
2.1).

The product quadrature rules have not been studied till now, because interpola-
tion processes having Lebesgue constants (in W§°) of order log m were not available.
Using an idea by J. Szabados [39], we construct a simple interpolating Lagrange
polynomial and we prove that it is optimal in W§° (see Theorem 2.2). Subsequently
we approximate H(G,t) by replacing f with the above-mentioned polynomial. We
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obtain a formula having greater computational cost than the one of the Gauss-type
formula, but it proves to be more useful in collocation methods for solving singu-
lar integral equations on R. In Theorem 3.2, we establish convergence conditions
for this procedure. In the same section we propose a simple algorithm when the
parameter ¢ is “large”.

Extensive numerical testing and comparisons with other procedures have been
performed and all the results confirm our theoretical estimates. Finally, in Section
5 we show some significant examples.

2. PRELIMINARY RESULTS

Functional spaces. In the following C denotes a positive constant which may
assume different values in different formulas. In the sequel, C # C(a,b,...) means
that C is independent of a, b, ... . Moreover we write A ~ B, for A, B > 0, iff there
exist two positive constants M;, My, independent of A and B, such that

+1
M, < (%) < Mo,.

As we have already announced in the introduction, the main aim of this paper
is the numerical approximation of the integral

G

/ —@dx, teR,
RT— t

by using Hermite zeros. In order to do this, we write the function G as G(z) =

[G(:v)e(f””)z]e_(m)2 = f(z)e=®” p £ 0, and we successively construct the

weighted polynomial approximation of the function f. To this end the following
preliminary results are useful.

With respect to wp(z) = e~#2)” Jet us consider the following set of locally
continuous functions

(2.1) W5© = W5 (wp) = {f € CLoc(R) : s wy(x) f(z) = 0}
which, equipped with the norm
I Fllwse = [ fwplloo = max |f(2)wp(z)],

is a Banach space. For smoother functions we consider the usual Sobolev space
W2, r > 1, given by

(2.2) W= {f € W5 (1P wplloo < o0},

with the norm

I llwes ==l Fwplloo + 1F 7 wplo-
For all f € W§° we define the following weighted modulus of smoothness
(2.3) (£, w00 == sup max |A} f(x)|wy(z),
0<h<t|z|<%

where k£ > 1 and
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Moreover, we consider the error of best weighted approximation of the function
f given by
Em(f)wp,oo = (f - P)wp”ooa

where P, denotes the set of all algebraic polynomials of degree at most m. Then
[11, p. 185]

inf ||
PeEPy

1
77w (f ) w, oo
(2.4) Eo(f)uny o0 < c/f %_dt
0
and
(2:5) O, Dpioo <C 3 i3 B (o0
1<i<h

hold. The first inequality is a weaker version of the Jackson theorem; the second
one is a Stechkin-type inequality. In particular, if f € W;°, then we have

(2.6) By 00 < c”—f((—\;—%%”ﬁ‘i

In the sequel we will denote by WT"O the space of the functions f belonging to
Wee,r > 0, such that, for some z¢ > 0, we have

, f(r)w o
(2.7) |F") (@)w, ()| < C%, A>1, x| > xo.

Such functions frequently appear in the applications and sometimes |z|'** is re-
placed by el (see for example [3], [16]).

Orthonormal polynomials. Since we have to recall some properties of the Her-
2

mite polynomials, we assume wy(z) = w(z) := e~ * (ie., p = 1), but we remark

that the same properties can be easily extended by dilation in the more general

case wp(z) = e~ with p # 0. Let {pm(w)}men be the sequence of the Hermite
orthonormal polynomials with positive leading coeflicient, i.e.,

P (W) = Y (W)™ + ..., Ym(w) > 0,
/pm(w,x)pn(w,x)w(:c)d:c = .-
R

The zeros zy := Ty k(w), k =1,...,m, of pp(w) satisfy

—v2m=x0<:c1<...<xm<xm+1=v2m.

-1
Furthermore, setting ¢, (z) := <\/2m —x2 + (2m)%> , then

1
(2.8) A:Ek =Tkl — T~ ¢m($k) ~NY—_ k= 0, e ,Mm,

w/2m—a:%’
and
(2'9) ¢m($k) ~ ¢m(€) ~ ¢m(fck+l)> § S [xk,:ck+1], k= 0,...,m,

hold uniformly with respect to m and k. The previous relations can be easily de-
duced from [17] and [39]. The following lemma is new and will be useful in the
sequel.
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Lemma 2.1. Let Tpq1 6,k =1,... ,m+ 1, be the zeros of pmi1(w). Then
1

Tm+1,k+1 — Tm,k

3
Scm2¢72n(xm+l,k+l)7 k= 17 y Ty
holds uniformly with respect to m and k.

Consequently, if Zy41 k41, Tmkx € (—0v2m, 0v/2m), with 0 < 6 < 1 fixed, then
(2.10) ! < cvm.

Tm+1,k+1 — Tm,k

The Christoffel functions Ay, (w, z) are defined by

m—1 -1
Am(w’m) = [Z p?('w,l’):l
1=0

and Ap(w) = Ay k(W) = A\ (w, zk), k = 1,... ,m, are the Christoffel numbers. In
the sequel we will use the well-known estimates [17]:

(2.11) Am (W, ) ~ €™ ()
and
e~k
(2.12) Ae(w) ~ Azpe "k,

Wl

\/Zm — 22 + (2m)

where the constants in “ ~ 7 are independent of m, z and k.

Lagrange interpolation. Let us denote by Ly,q2(w, f), f € W§°, the Lagrange
polynomial based on the m + 2 knots

—V2m =20 <71 < ... < Ty < Typy1 = V2,

where zy 1= 2 5 (w),k = 1,...,m, are the zeros of p,,(w). For this interpolation
process we can state the following

Theorem 2.2. For all f € WS°, the estimate
(2.13) ILf = Ltz (w, HlVwlleo < CEmt1(f) /.00 logm
holds, where C is a positive constant independent of m and f.

Theorem 2.2 is a simple but useful modification of a previous result by J. Szaba-
dos [39]. In Section 4 we will give the proof of this theorem not only for complete-
ness, but also because we can deduce a slightly more general estimate. In fact, for

wp(z) = e_(m)z,p # 0, we have {pm (wp, ) }m = {/D Pm(w,px)}m and

Tk
P (Wp, 25) =0 & 2 = s k=1,...,m.

If we denote by Lpyo(wp, f) the Lagrange polynomial based on the knots
{zk/p}k=01,... m+1, then, from Theorem 2.2, we can easily deduce the estimate

(2.14) ILf = Lint2(wp, ))ly/Wplloo < CEmy1(f) jwy,00 logm,

where C is a positive constant independent of m and f.
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Finally, we want to state a simple proposition that will be useful in the sequel.
Let f € W, r > 0, and define f, as follows

Ty (-2, r< —¥2m
(2.15) f(@) = @), jaf < 22,
Tr—l(@)a z 2 @’

where T,,_1 and Th_ 1 are the Taylor polynomials of f of degree r — 1 with starting
points ——Vim and Y2m p , respectively.

Obviously f. € W and the next proposition holds.
Proposition 2.3. Forall f € Woo and v/2m > o, we have

f) = fr(x) £ wp oo
/ .’E—t p(.’l?)dil]' SCW,

where A > 1 and C is a positive constant independent of m, f and t.

(2.16) sup
] <2m

If the decay condition (2.7) in the definition of W,E’O is replaced by the following

|f(7“)( (z)] <c“f(r)wp”oo

PEI |z| > o,

then the quantity (y/m)” on the right-hand side of (2.16) is replaced by o(e™V™).
Now we are able to establish the main results of this paper.

3. MAIN RESULTS

Pointwise approximation of H(fw,t). In this subsection we introduce some
simple procedures useful for the numerical computation of H(fw,t), w(z) = e,
Following an idea in [13], let us consider the following identity

(3.1) H(fw,t) :f(t)/R;_—;der/Rwe_zzdw

To compute the first integral on the right-hand side, the reader can consult [31].
For the second one we apply the Gauss quadrature rule

(3.2) / Fz)e™ da = Z Ak(w) f(zk),  Vf € Pomy,

where z,k = 1,...,m, are the Hermlte zeros and A\g(w),k = 1,...,m, are the

Christoffel numbers. After some simple computations we obtain the following for-
mula

e_z2 m m
(g = 10| [ - 2 S K
(3'3) = ®m(f'w)t)+"’m(fa t),
where t # zx, k=1,...,m, and r,,(f) is the remainder term. ®,,(fw) is a Gauss-

type quadrature rule and it has degree of exactness 2m (i.e., 7 (f,t) = 0,Vf €
Py, ). Unfortunately the relation t # x, kK =1,...,m, is not always verified. But
even when t # zx, k = 1,...,m, the point t could be too close to one of the
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Hermite zeros and this produces numerical instability. On the other hand the only
term in (3.3) causing numerical instability is

flwa) = £0)

.Td—t

d(w))

where z4 is the zero closest to t. Following an argument in [27], we now introduce
an algorithm in order to control this term.
For every fixed t, choose mo = mg(t) € N such that, for m > mg, we have 2, ¢ <
t < @ 441 for some d € {1,2,...,m—1}.

Moreover, because of the interlacing properties of the zeros zmi1k,k
1,...,m+1, of ppy1(w), we have

° @ o ® S - T

Tm,d—1  Tmi1,d Tm,d Tm+1,d+1 Tm,d+1

Thus, two cases are possible:
(@) Tmt1,d+1 <t <Zmayr or  (b) Tpma <t < Tpg1atr
In case (a),
ift < E—’”*L‘HEM, then we use the quadrature rule ®,,(fw);
if ¢ > Smtldslfmdil then we use the quadrature rule @41 (fw).
Similarly in case (b). Thus, for every fixed ¢, we have defined the numerical sequence
{ @ (fw, t)}’ m* € {m,m+ 1}'

Moreover the algorithm for the choice of m* is based on Lemma 2.1 and it assures
us that the knot of ®,,«(fw) closest to ¢ is sufficiently far from t. In fact, for m
sufficiently large, |t| < 6v/2m, with 0 < @ < 1 fixed, we have

C
ICEm*’d — tl > \/—a
The next theorem deals with the convergence of the numerical sequence

{®Pp+ (fw,t)}. We assume [ € Wroo,r > 0, but, with minor effort, we can estimate
the error for different classes of functions.

Theorem 3.1. Let t be fized on R and let m be such that |t| < 0v2m, with 0 <
0 < 1. Then, for all f € W°,r > 0, we have

B (01 = Hw,) ~ e ()] < = bog

where C is a positive constant independent of m and f.

Theorem 3.1 shows also that, for any fixed ¢ on R, the numerical sequence
{ P (fw,t)} converges to H(fw,t). In particular, if ¢ = 0, then it is easy to
see that @« (fw,0) = Py, (fw,0). More generally, if for any m we choose

T+ Tp41
2 )
then we can evaluate H(fw,t)) with the required accuracy and we can reconstruct

the function H(fw,t), in the interval (—6v/2m,6v/2m), by means of suitable inter-
polating splines.

t =1 = k:l,...,m—l,
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Numerical considerations Theorem 3.1 holds under the condition |t| < 6+/2m,
i.e., since t is fixed, for m > £ ( 0) . Thus, when t is “large” (but not too large), then
the computation of the Chrlstoffel numbers and of the function f on the zeros of
pm(w) is too expensive and sometimes impossible (for example, if £ = 100, then we

need m > 5000). When this happens, i.e., t is “large”, we propose to approximate
H(fw,t) by the formula

(3.5) H(fw,t) = w) + pm(f, 1),
k=1
where 1 < z,,, <t —1 and pn,(f,t) is the remainder term.
Moreover, in [10] it has been proved that, for all f € W°, we have
c
< k)
lpm (£, )] (\/ﬁ)r 0<k< Hf Wl oo

So, using (3.3) together with (3.5), we obtain an efficient procedure for the
computation of H(fw,t), for different domains of ¢. Obviously (3.3) and (3.5) can
also be used after making suitable transformations in order to regularise the density
function f.

Uniform approximation of H(fw,t). In order to construct a uniform approxi-
mation of H(fw) by means of algebraic polynomials, we recall that, at the present
time, the only polynomial processes convergent in W§° are the de la Vallée Poussin
means [30]. Obviously, the computation of the Fourier coefficients does not allow
us to use such polynomials. Then, taking into account the estimate (2.14), with
p = /2, it seems natural to replace f by Lyyo(w?, f) in H(fw,t) and to define

the sequence {H,,(fw,t)}men, where
Hm(fw’t) = H(Lm+2(w2, f)w’t)'
We can also write H,,(fw,t) as
_ fv/m) f(=vm)
) = 57 ST~ S )
LY | I

A

) w
2/ mp (w 2,\/_) w’n%pm(w?,—m)}q’"( °?)
+Zf‘”’“ A1 szw  x)[tA; + Bi)

i=0

T () A (w?) (12 — m)
k=1 ko i=0

where  A; = [, pi(w?, 2)w(z)dr, ¢(w,t) = H(pi(w?)w,t), i = 0,...,m, and
B; = [ api(w? 2)w(x)dz,i =0,... ,m — 1. The coefficients A;,i = 0,...,m, and
B;,i = 0,...,m — 1, can be computed by using (3.2). To compute ¢;(w,t),i =

0,...,m, we can use the following recurrence relation:
e’ 21 h
21 _ -0
wlw,?) = ho/M_tdx, a(w,t) = h—l\/?+2f2thlqo(w,t),
gi(w,t) = —1(w, t)—2(z—1) gi_o2(w,t), 1=2,...,m
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-1
where h; = (x/ﬁQii!) ,1=0,1,...,m. To compute go(w, t) some good routines
are available (see for instance [31]).
The convergence and the estimate of the approximation error e, (f,t) :=
H(fw,t) —H,,(fw,t) are shown by the following

Theorem 3.2. For all f € Wﬁx’,r > 0, we have

(3.6) s en(0)] < c”{(}% log? m,

where /2m > xg and C is a positive constant independent of m and f.

Theorem 3.2 shows also that H,,(fw,t) is a stable approximation of H(fw,t)
(except for a log®m factor) and, even if it has a greater computational cost than
the previous procedure, it can be used for the computation of H(fw,t).

On the other hand H.,, (fw,t) can prove to be useful for another kind of problem.
In fact, as already mentioned in the Introduction, sometimes H(fw,t) appears as
the main part of the singular integral equations and, if we use a collocation method,
then H(fw,t) can be replaced by Hp,(fw,t). In this case we have to compute f(z;)
(Jz;| < 4/m) by a linear system. Thus, Theorem 3.2 is essential for the stability
and the well-conditioning of the matrix of the resulting linear system.

4. PROOFS

Proof of Lemma 2.1.  Let Qom+1(2) = pmt1(w, x)pm(w, z). Since the zeros of
pm(w) interlace with the zeros of pryi(w), then Qg i(Tmi1e) > 0,
Qi1 (Tm k) <0 and

0 < Qi1 (@mi1h41) — Qomi1 (@mk) = (Tms1,k+1 — Tmk) Qoms1 (k)
where T g < & < Tm+1,k+1. Consequently

o/ SVOY(:N)]

Trmg Lkl — Tmk Qb1 (Tmaiks1)

It is easily seen that

Qi1 (Er) < Cy/m(m + 1)pk, (w, &)

Ym41 1 ~ L
On the other hand, by (2.12) and 24+ = Voo~ v we get

Y41 1
Ym Am1kt1(w)

1 \/2(m +1) - y572n+1,1c+1

Q/2m+1 (Tmt1,k+1) =

> 7
2(m+1) e Tmt1,kt1
Thus
2
1 e Tm+1,k+1
<Cmvm+1 pfn(u% k).

Tongl,k+1 — Tk \/g(m + -2
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Moreover, taking into account (4.4), we obtain

1 m3/?
(4.1) <C 5 ,
Tm+1,k+1 ~ Tm,k 2m — 2 g pa

which proves Lemma 2.1.

We recall some equivalences that are useful in the sequel:

(4.2) Ww(ze)ph, (w,zx)| ~ y/2m — 22 +m3s, k=1,...,m

(4:3) max |/ w(@)pm (w,2) {/2m — 22 +m| ~ 1
and
r—X 2
(4.4) w(x)pil(w,x)\/m ~ <—d>
Td — Td+1

|z| < v/2m. The first two equivalences follow by [8, Lemma 4.2 (4.6) and (4.11), p
266]; the third is equivalent to

w(zw)
Mlm,d( )~1

where x4 is the zero of p,,,(w) closest to ¢, i.e.,
[.’Ed - t| = min |t — xk(
k=1,...,m

and

B P (W, )
i) = o m ) wa)

Proof of Theorem 2.2.  Now, for |z| < v/2m, we can write
Lo, )o@ = V2m o) Vw@pm(w o)/ (-v2m)

2\/—pm _\/—m)
+\/_Z 2m—$2m7j1;(]%))f(33k)
\/——I—x YW (E)pm (w, ) f(v/2m)
2\/_pm(w,\/—)
(4.5) = A+B+C.

We recall that, from the Rahmanov-Mhaskar-Saff identity, we have

max Lo (w, fio)Vw(e)l = max _|Liga(w, f;2)Vw(@)|

z€[—v2m,v/2m|
and from (4.3) we get

P (w, 2)/w(x)| < Cm~ 72

Moreover, from (4.4) with z = £v/2m (i.e., £q4 = T, or x1), we can also deduce

[P (10, £V 2w/ 2m)| > Cm .
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Therefore
/0P (1) oo
Al +10] < umﬂuw{
[V2mA/w(=vV2m)pm (w, —V/2m))|
(46) . |/ ()lloc }
V2m (v 2m)pm (0, v/Z0)

< CllfvVwlloo-

Now we estimate B. By (4.3), we have

|V 2m = a2 /w(z)pm(w, z)| < C

and by (4.2) and (2.8) we get

[v/2m — 22/ w(zk)pl, (w, zk)] < Clay — et = CA .

Recalling that |1y, 4(z)| ~ 1 and 22= 2.~ 1, we deduce
d

(47) 1B| < Cllfvirleo {Hz(zm‘”z) ,Al”“ }

T —

We have only to prove that the sum on the right-hand side of (4.7) is dominated
by logm. But it has been proved in [39].

Finally, substituting (4.6) and (4.7) into (4.5), for |z| < v/2m, we obtain

(4.8) \Lin+2(w, f;2)v/w(@)] < Cllfvw]le logm

and, from the Rahmanov-Mhaskar-Saff identity, it follows that

[ Lm+2(w, f)vwleo < Cllf Vwlloologm, € #C(m, f).
Then the inequality (2.13) easily follows. O

Proof of Proposition 2.3. By the definition of f,, we have

_2m
. /; ) =@, dw}
(4.9) =1+ I;

Taking into account that

x _ r—1
1) - @l < [ S wln
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we get
L < /2m £ () \/:owp x;i‘)t " dedu
< C mlf(r) I/:o wy(z)(z — u)"~2dadu
< C @|f$_<1)lwp(u)du
(4.10) ¢

< Wllf(”wplloo.

Analogously, we can prove that

C
B S G
(411) Il S (\/2_)7’4-)\—1 “f wPHOO
Substituting (4.10) and (4.11) into (4.9), we get (2.16). O

In order to prove Theorems 3.1 and 3.2 we need the following lemmas.

Lemma 4.1. If —a < —d' <t <d <a, a>0, we have

1
a ,"‘/ Q(f’u)w’oodu},
—a 0 U

where C is o positive constant independent of f,a and t. Obviously we assume that
the integral on the right-hand side exists.

(4.12) ’ f—(_:%w(:c)dx <C {wau[_a’a] log -

T

Proof.  Letting € := (a—;‘ﬁ, we use the following decomposition

j:(—)t {/ /tt+€ ‘/t;} %w(w)dm

(4.13) = htlp+Is
We have
(4.14)
|11|§/:6'f< )wix)l de < wan[_a,t_dlog” < | fwlli—aa 1og2—(“—fa‘#).
Analogously
(4.15) 5] < 1wl log 2220,

—a'

About Iy, letting G(z) := f(x)e_"“'Q, we can write

[ Bl P R R NET

|I2| =
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If 2¢ < 1, then we let the second integral on the right-hand side equal zero. Applying
the deﬁmtlon (2.3), we obtain

(fa )w %) ! A%w(t)
o o< [ Ay, wrlulon [ |t |
+ Cllwa [~a,a]
(4.16) < [ U Doy g,
Finally, combining (4.14), (4.16) and (4.15) with (4.13), we deduce (4.12). d

Lemma 4.2. For any f € W and for P € P,, the polynomial of best approzima-
tion of the function f, we have

1
(417 [ A e < L Ou e togm,

where C is a positive constant independent of m, f and P.

Proof.  We can write

/01 Q(f~i,u)w’oodu . {/OﬁJF/;R}Q(f—J;,u)wmdu

75 Qf = Py t)woo
u

(4.18) < C|lIf = Plw||o logm + du.
0

By using (2.5) and proceeding as in [24, Proof of Proposition 4.2, pp. 280-281], we
get

1 L Ar
/‘/m Q(f - P, u)w,oo du S C/ﬁ Q (fa u)w,oo du.
0 U 0

u
On the other hand by (2.4) we deduce

u

1
vm Q" f,u w,00
I = Puf s ¢ [77 EU ooy,
0
Finally, taking into account

O (f, w0 < ClIF D w]ou,

we get (4.17). O
We recall that if a function g is such that ¢ (z) > 0,7 =0,1,...,2m 1,m>1,
for x € (—o00,z4],d=2,... ,m, then
d—1 oy d
(4.19) > nwlgle) < [ gleul@ids < 3 Mg,
i=1 —oo i=1

If (-1)'¢D(2) >0,i=0,1,... ,.2m—1,m > 1, forz € [zg,00),d=1,...,m —1,
then

(4.20) > Ni(w)g(x) < /

i=d+1 d i=d
(see [8, Proof of Lemma 5.1 (b), pp. 271-272]).

o



1182 M. C. DE BONIS, B. DELLA VECCHIA, AND G. MASTROIANNI

Letting

we can prove the following

Lemma 4.3. Let [t| < 0v/2m, with 0 < 0 <1, then

(4.21) An(t) <Ce

and

(4.22) M < Ce"a < Ce
[T ,a — t]

hold, where C is a positive constant independent of m and f and m* € {m,m+1}.

Proof.  Consider the case #q—1 < zq <t < Tg41, d € {2,...,m —1}. By using
(4.19) and (4.20), we have

Td+1 —z?
Am(t) < Ad_l(w)Jr/ £ dx

t—Tg—1 g T t
(4.23) = A+B.
Since t — 241 > (zqg — T4—1) = Azq_1, by (2.8) and (2.12), we deduce
|A] < Cem a1,

Taking into account that 2 —z2_; = (t —zq1)(t + Ta-1) < %———— V\%”__@ < C, we get

(4.24) |A] < Ce " vi1 < ce”

To estimate B, we note that

Td+1 —a? _ —t2 Td+1 dz
B - / f_—e—dx+e—t2/
Ta_1 T —1 S T—1
Fd+1 Tl — 1t
< 2/ 616_52 dz + et log —4HL—~
Tg—1 t— Td—1
' Tt —t
< 2$d+1€_w§‘1($€d+1 —x4-1)+ e lo t—dj;—d—l
< Cv 2me_w§~1 (t — (Ed_l) + Ce_tz
(4.25) < Ce .

Thus, replacing (4.24) and (4.25) into (4.23), we prove (4.21).
To prove (4.22), we note that
lxm*,d - t\ > C‘xm*—i—l,d—i—l - ‘rm*,d\'

Thus, applying Lemma 2.1 and (2.12), we obtain

)\d (w)

2
3
m
AW < e _) <cei<ce e T < cet,
| T q — ] 2m—x3—|— (2m)3

that is the thesis. O
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Proof of Theorem 3.1.  Let p,,, € P, be the polynomial of best approximation of
the function f,. Recalling definition (2 15) we note that

(4.26) / f x—t w(z)dx + 1o (fryt),

where
ralet) = [ ) = Pnl®) )4
— Ue®) = PO (6) + 1) — pm(] 222
)~ o) 21 - 5 TPl s
(4.27) = h+L+I3+ 1+ 15

We can write

o ([ [

(4.28) = A1+ Ay + As.
Since |t| < 0v/2m, then © — ¢ > (1 — 8)+/2m. Therefore, we have

4o < # [ 1) = pa(@ua)ds

< 4o F / (@)~ ()0 ()da.
Finally, by (2.6) we get

L ) C
4.29 Asl < / "N )w(x)|dze < 7w -
Analogously we can prove that
C
4.30 Al < ——— 1w 0o

About As, applying Lemma 4.1, with a = v2m and o/ = 0v/2m, we get
1
Q(fr — pm,u w,00
sl < € {1 = pmpu + [ A= Pmtdmen |
0

u
Moreover, taking into account Lemma 4.2 and (2.6), we get

C
4.31 Azl < (M| o log m.

Substituting (4.30), (4.29), (4.31) into (4.28), we obtain

€ o
(4.32) || < (\/Fn—)T“f W[ oo log m.

Applying Lemma 4.3 and (2.6), we obtain

(4.33) \Ia| + | T3] + | 14| < C|\(fr 1wl oo

C
= Pm)Wlloo < W;
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Moreover, taking into account (2.12) we get

i A:c
15| < Cl[(fr = pm wnooz| :
k;’:d

Since it is easy to see that

m

Z

< Clogm,

applying (2.6), we have

C

4.34 Is| < ——— || wl|o log m.
(430 51 < e 1
Combining (4.32), (4.33) and (4.34) with (4.27), we get

C
(4.35) P (fry 1) < ———|If P w]|oo log m.

Ut = Ty

Finally, substituting (4.35) into (4.26) and applying Proposition 2.3, with p = 1,
we deduce (3.4). O
Proof of Theorem 3.2.  We can write
where
em(fryt)

_ / fr — m+2( ’fT’x)w(az)daz

Vom-1 oo V2m+1
= fr(x) m+2( af’r‘, )
{/;oo +‘/\/ﬁ+1+'/‘—m—l} T —t 'LU($)d£B

= A+ Ay + As.

Now, we can proceed analogously to the proof of (4.28), replacing pn, by
Lys2(w?, fr). The only difference consists in the evaluation of As, for which we
apply Lemma 4.1 with a = v/2m + 1 and o/ = v/2m. Thus, we obtain

(4.37) lem(frnt)] < WC_T),uf%noo log m.

Substituting (4.37) into (4.36) and applying Proposition 2.3, with p = 1, (3.6)
follows. O

5. NUMERICAL EVALUATIONS

In this section we show some approximate values for the integral H(fw,t),t € R,
obtained by using the algorithm described in Section 3.

The density functions we choose are representatives of the functional spaces (e.g.,
Sobolev spaces) on which we want to test our method, i.e., we do not exclude the
integrals that could be better calculated otherwise.

Since in the following examples the exact values of the integrals are not known,
the results on the last line of our tables are thought to be exact to the number of
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TABLE 1
m (I)m
t=0.1 t=5 t=10
8 |-0.261315425408 -0.470154 -0.2293312798
16 | -0.261315425408597 | -0.47015461500803 | -0.2293312798756

TABLE 2
m Hm
t=0.1 t=25 t=10
8 1-0.26131 -0.47015461 -0.2293312798
16 | -0.261315425408 -0.4701546150080 | -0.2293312798
32 | -0.261315425408597 | -0.47015461500803 | -0.229331279875

TABLE 3

t m 's‘rlz?m m | Om

0.1 32 -0.26131542540859 | 63 | -0.26131542540859
5 132 |-0.47015461500803 | 113 | -0.47015461500803
10 | 64 | -0.22933127987563 | 163 | -0.2293312798756

figures shown. Moreover, in all the tables we have reported only the digits which
are correct according to these exact values.

Example 1. We want to evaluate the following integral

oo
coshx _ 2
/ ——e % dz.

oo Tt

Since the function f(z) = coshx = ez+26_z is an analytic function with an exponen-
tial growth, we obtain very accurate results. In Table 1 we can see that, for different
values of the parameter ¢, we need only 16 points to obtain machine precision.

In Table 2 we show the corresponding results obtained by using the quadrature
formula H,,.

We can note that the two formulas ®,,, and H,, give results almost comparable,
but H,, has a more expensive computational cost than ®,,.

In Table 3 we compare our results with the ones obtained by using the quadrature
rules proposed in [16] and [3]. We denote by

0w — i G(t+kh+1)

h )
b k+ 5
where h = %nﬁ, the quadrature rule proposed in [3], and by
m
G(t+vh)
m=2 3> SN,

v#even

where h = 0.1, the quadrature rule proposed in [16].
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TABLE 4

t=0.25 t=10.3 t=15
m | ., m | O, m | ®p
9 | -480. 9 | -470.1 8 | -229.
19 | -480.4897 19 | -470.1335 17 | -229.2247
39 | -480.489721 38 | -470.133527 35 | -229.224743
78 | -480.48972131 76 | -470.13352728 71 | -229.22474324
157 | -480.4897213129 | 153 | -470.1335272874 143 | -229.2247432478
314 | -480.48972131296 | 307 | -470.133527287461 | 286 | -229.224743247854

TABLE 5. o =2

t=-15 t=5 t=15
m | D, m | P, m | .,
32 | 1.1711 32 1-0.3 32 [-0.105
65 | 1.17112 65 |-0.32 64 | -0.1051
131 | 1.171126 | 131 | -0.3253 | 128 | -0.1051
262 | 1.1711263 | 262 | -0.32531 | 257 | -0.105179

TABLE 6. a=3

t=20.5 t=28 t=18
m | ®,, m | P, m | &,
37 | -1.77814 32 1 -0.14 32 | -6.551

74 | -1.77814144 65 | -0.14 64 | -6.5517
149 | -1.77814144 131 | -0.148 | 128 | -6.55177
298 | -1.7781414419 | 262 | -0.1480 | 257 | -6.55177

Example 2. Now we consider the following integral

T 9 9
[t I (O

r—1

— 00

z 9 9 .
Since f(z) = la: - %lz lx - %P |z — %| 2 € W$°, the theoretical error is m ™2 log m.
The results shown in Table 4 confirm that we have to increase m to reach significant
digits.

Example 3. Finally we evaluate the following integral
2

/‘X’ e® e dz 93
a=23.
o (L +a2)> z—t ’

(E2 g
If @ = 2, then the function f(z) = Tz € W5° and the theoretical error is

12 ~
m™2 logm; if @ = 3, then the function f(z) = Tz € Wi and the theoretical
error is m~2logm. In Tables 5 and 6 we can see that the numerical results agree
with the theoretical ones.

All the computations were done in Double Precision Arithmetic on the Digital
Ultimate Workstation 533au?.
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