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EVALUATION OF ZETA FUNCTION
OF THE SIMPLEST CUBIC FIELD
AT NEGATIVE ODD INTEGERS

HYUN KWANG KIM AND JUNG SOO KIM

ABSTRACT. In this paper, we are interested in the evaluation of the zeta func-
tion of the simplest cubic field. We first introduce Siegel’s formula for values
of the zeta function of a totally real number field at negative odd integers.
Next, we will develop a method of computing the sum of a divisor function for
ideals, and will give a full description for a Siegel lattice of the simplest cubic
field. Using these results, we will derive explicit expressions, which involve
only rational integers, for values of a zeta function of the simplest cubic field.
Finally, as an illustration of our method, we will give a table for zeta values
for the first one hundred simplest cubic fields.

1. INTRODUCTION

Using finite dimensionality of elliptic modular forms of weight h, Siegel [7] devel-
oped an ingenious method of computing (x(b), where K is a totally real algebraic
number field, (x(s) is the Dedekind zeta function of K, and b is a negative odd in-
teger. However, evaluation of values of a zeta function by means of Siegel’s formula
requires complicated computations in algebraic number theory, since the formula
involves terminology of algebraic number theory, such as norm, trace and different
of K. The problem of expressing zeta values in terms of elementary functions was
first studied by Zagier [10]. Siegel’s formula has been exploited by Zagier to give
an elementary expression for (i (1 — 2s), where K is a real quadratic field and s is
a positive integer, which involves only rational integers and not algebraic numbers
or norm of ideals. In this paper, we will be interested in expressing zeta values of
a certain class of totally real cyclic cubic fields, which are called the simplest cubic
fields, in terms of elementary functions.

It is well known (cf. [5, Appendix A.3]) that every cyclic cubic field can be
obtained by adjoining to Q a root of an irreducible polynomial

f(2) =2 +ma? — (m+3)z + 1,

where m runs over the set of rational numbers. Let K, (or simply K) denote the
cyclic cubic field corresponding to m € Q . Since K,, and K_,,_3 represent the
same field, we may assume that m > —%. The discriminant of the polynomial f(z)
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is D2, where D = m? + 3m + 9. Let p be the negative root of f(z). Then

/ 1 " 1

P=1 o pr=1 ’

are the other roots of f(z) so that K = Q(p) is a cyclic cubic field. The terminology
“simplest cubic field” goes back to a work of Shanks [6]. He studied the arithmetic of
a family of cyclic cubic fields which corresponds to m € Z such that D = m?+3m+9
is a prime, and he called these fields the simplest cubic fields. The notion was
extended by Washington [8] in which he studied the arithmetic of a family of cyclic
cubic fields which corresponds to m € Z,m # 3 (mod 9). The simplest cubic
field in the sense of this paper means that it corresponds to m € Z such that
D = m? + 3m + 9 is square-free. In this case, we have

Proposition 1.1. Let m(> —1) be an integer such that D = m?+3m+9 is square-

free. Then {1,p,p?} forms an integral basis of K and {—1,p,p'} generates the full
unit group of K.

Proof. See [8]. O

In this paper, we shall apply Siegel’s formula to the simplest cubic field K to
obtain an elementary expression of (x (1 — 2s). In Section 2, we will introduce
Siegel’s formula and the notion of a Siegel lattice. In Section 3, we will express
the sum of an ideal divisor function o,(2) in terms of the usual sum of divisor
function o, (n). In Section 4, we shall describe a Siegel lattice for the simplest cubic
field. In Section 5, we will obtain a formula for the values of the zeta function of K
which involves only rational integers. Finally, as an illustration of our computation,

we will compute (x(—1), (x(—3), and (x(—5) for the first one hundred values of
corresponding m’s.

2. SIEGEL’S FORMULA AND A SIEGEL LATTICE

In this section, we first state Siegel’s formula for values of the zeta function of
a totally real algebraic number field at negative odd integers. Next, we discuss
what is needed to apply Siegel’s formula for the computation of values of the zeta
function. Finally, we introduce the notion of a Siegel lattice which will be crucial
in our computation.

Let K be an algebraic number field and Ok be the ring of integers of K. For an
ideal A of O, we define the sum of divisors function o, (2) by setting

ey or(2) = > Nio(B),
B|A

where 9B runs over all ideals of Ok which divide 2. Note that, if K = Q and
2 = (n), our definition coincides with the usual sum of the divisor function

(2) or(n) =y _d’.

il
Now let K be a totally real algebraic number field. For [,s = 1,2, ..., we define
(3) Sf(2s) = Y 02s1((¥)9),

ves—!t
v>0
tr(v)=1
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where § denotes the different of K. Later we shall study the sum (3) intensively.
At this moment, we remark that this is a finite sum.
We now state Siegel’s formula.

Theorem 2.1 (Siegel). Let s = 1,2,..., be a natural number, K a totally real al-
gebraic number field of degree n, and h = 2sn. Then

(4) Cr(1—28) =2 bi(h)S{(2s).

=1
The numbers r > 1 and by(h),...,b,(h) € Q depend on h. In particular,
(5) r = dimc mh,

where My, denotes the space of modular forms of weight h. Thus by a well-known
formula,

r:{ [%] if h=2 (modl2),
[]+1 if h#2 (mod12).

Proof. See [7] or [10]. O

Remark. By applying (4) to the simplest cubic field K, we obtain

(6) (k(=1) = 2%xb1(6) % S°(2),
% (r(=3) = 2%%[ba(12) % S (4) + b2(12) x S5 (4)],
(8) (k(=5) = 2% [b1(18) * S{*(6) + by(18) * S5 (6)].

Zagier [10] contains a table for values of Siegel coefficients b;(h) for 4 < h < 40. We
quote the values of Siegel coefficients which will be necessary in our computation:

1
(9) b1(6) = “500°
(10) b(12) = — - By(12) = ———
7 7810900 2V T 196560
22 1

The essence of Siegel’s formula is that it transforms an infinite series (i.e., the value
of a zeta function) into finite sums involving Sf¢(2s) which itself is a finite sum of
powers of divisors of ideal((v)d) over the v’s in K which satisfy the Siegel conditions
described in (3). Therefore we need to establish the following two items to compute
SF(2s):

(i) the method of computing the sum of a divisor function (%) for an integral

ideal 2,
(ii) the description of v’s in K which satisfy Siegel conditions described in (3).

In Section 3, we shall develop a method of computing the sum of divisor function
or(2) when K is a cyclic extension of Q of prime degree. In Section 4, we shall give
a full description of v’s in K which satisfy Siegel conditions when K is the simplest
cubic field. At this moment, we examine the sum in equation (3) more closely for
an arbitrary totally real algebraic number field K, and introduce the notion of a
Siegel lattice which is first studied in [3].
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Let K be a totally real algebraic number field of degree n and Sk (or simply S)
be the set of elements in K which satisfy Siegel conditions described in (3). Fix an
integral basis {1, ...,a,} of K. For v € K, we can write

(12) v==ria1+ 0+ Taon, 2 €Q,
and we have an embedding ¢ : K — R"™ given by
(13) o(v) = (21, Tn).

The condition v € §~! implies that the denominator of 2;,7 = 1, ..., n, is bounded by
Dy where Dy denotes the discriminant of K. The condition tr(v) = [ is equivalent
to saying that ¢(v) lies in the hyperplane

(14) a1x1 + -+ anxy, =1,

where a; = trg/g(e;). Finally the condition v > 0 becomes n distinct linear
inequalities defined over K in the variables z1, ..., z,. Therefore the elements v in
S can be put in one-to-one correspondence to the lattice points in a bounded (n—1)-
dimensional region under ¢. We shall call this lattice (or any set which can be put
in one-to-one correspondence with this set under a suitable linear transformation)
as a Siegel lattice for K and denote it by Tk (or simply T'). Notice that equation (3)
expresses SZK (28) as a weight sum of divisor functions over a Siegel lattice. Hence

the description of the Siegel lattice is of crucial importance in the computation of
Sk (2s).

3. COMPUTATION OF THE SUM OF DIVISORS

In this section, we develop a method of computing the sum of the divisor function
of K when K is a cyclic extension of Q of prime degree.

Let K be a cyclic field of prime degree ¢ and W denote the group of gth roots
of unity and ¢ be a primitive gth root of unity. We define an arithmetic function
X : N — W U {0} in the following manner.

For a prime p, we set

0 if pisramified in K/Q ,
x(p) =< 1 if p splits completely in K/Q ,
¢ if pisinert in K/Q ,

and extend y multiplicatively. We put x’ by x; for j=0,1,2,...,g — 1.
Lemma 3.1. Let ¢ be a primitive qth root of unity. Then we have

1 if t =0 (modgq),

Z ¢srt2setorlelsey = 0 1 jfg=1 (modg),
Sls;"“'tsqzljt 0 otherwise.
,,,,, =12
Proof. Consider the polynomial
oo
gila) =1+ +¢Fa? o=y
k=0

and put

qg—1
¢(z) = [ ¢s(2)-
i=1
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By simple computation, we have

(e}
x) = E azt,
t=0

where
ap = Z CS1+282+~~~+(q—1)sq_1_
Sl+"'+3q_1~—t
81500y sq_lzo

Note that ¢;(z) = '1“—1@ and

q—1 1

i=1

1—=x 11—z

qul— )_1_xq=(1—x)(1+xq+a:2q+---), x| < 1.

By comparison of coefficients, we obtain
1 ift=0 (modyg),
a; =1 —1 ift=1 (modg),
0  otherwise.

O
Theorem 3.2. Let 2 be an integral ideal of K. Then, for any r > 0,
. N
(15) @)= > xi(1) xe-10g-1)d} G _10n (),
(f1rdg—1)2|2 JiJg—1

where N = Normp () denotes the norm of A, the function o, on the right-hand
side 1s the usual sum of divisors function defined by equation (2) in Section 2, and
the summation is over all positive integers ji, ..., jq—1 such that (jy -+ ja—1)* divides
A, e, ((j1++-jg—1)?) D AL

Proof. We put o, (2) to be the right-hand side of (15). Since o,.(2) and o, (2) are
both multiplicative, we may assume that 2 is a power ™ of a prime ideal . Let
p be the rational prime lying below 3. Then

N(B) =
where f is the inertial degree of P8 in K/Q. We have
(16) or(2) = 0 (P) =Y NP =D pl" =0y (™).
s=0 s=0

To evaluate o, (), we must distinguish three cases, according to the value of x(p).

Case 1. x(p) = 1. Since [K : Q] = ¢ is a prime, (p) splits completely in K/Q, and
f=1. Write

(p) =P1.. By,

where 1 = P and P;,4 = 2, ..., ¢, are the conjugates of . If j|29, then j|B"? for
each 1. So,

7™
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This means that j is a power of p. Since p splits completely, we must have j = 1.

Hence j; = -+ = jq—1 = 1 is the only term on the right-hand side of (16). Therefore
we have

o () =0 (P") = on(N) = 02(p™),
and this coincides with (16) since f = 1.
Case 2. x(p) = 0. Since p is ramified in K/Q, (p) = P? and f = 1. If j|2, then
FIB™. So j%|p™, which implies that j is a power of p. Since x(p) = 0, the only term
in 7,.(A) that does not vanish is the term corresponding to ji = -+ = jg—1 = 1,
namely, o,(N). Therefore, we have

o () = or(N) = 0r(p™),
and this coincides with (16) since f = 1.

Case 3. x(p) = ¢, a primitive gth root of unity. Since p is inert in K/Q,B = (p),
and f = q. By definition,

(17)

I . o N

ar(2A) =0, ((p ) = Z Xl(]l)"'Xq—l(]q—l)]l ."]q—]_O-T(—.Q—_.Q—)'

i N2|pma J1 g1
(G1+dq-1)%lp

Write j; = p%,i = 1,...,q — 1. Then (17) becomes
(18)

6.‘;(%) — Z pr(sl+...+sq—1)<31<252 . C(q_l)sq“lUr(pmq_z(sl"'"""sq—l)).

2(s14-+sq-1)<mgq
5420

Furthermore, from (18) it follows that
(75
19  FHE=) D ettt e,

t=0 sl+~~~+sq_1=t
;>0

Finally, we get

175]
I T DY i B DI S

t=0 s14etsqo1=t
5,20

w2

Now we consider two cases, say m is even or m is odd. We only give a proof
for the case that m is even since the other case can be treated similarly. Write
m = 2m’. Then [%?] = m/q. By Lemma 3.1, (20) becomes

m'q
E)’?(Ql) — Zprto_r <p2m q—2t)at
t=0

(pr)2m'q—qt'+1 _ (pr)qt'

= Z pr—1 - Z

<pr)2m'q—qt' _ <pr)qt'+1

t=qt’ t=qt'+1 -1
o<t <m! 0<t/<m/—1
So, we get
L 2m/
o) = o)™ =Y ()" = 00 (0™).

=143 1=0
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This agrees with (16) since f = g. O

Remark 3.1. When ¢ = 2, i.e., K is a real quadratic field, the equation (15) becomes
the formula obtained by Zagier [10].

4. DESCRIPTION OF A SIEGEL LATTICE FOR THE SIMPLEST CUBIC FIELDS

In this section, we shall give a full description of a Siegel lattice for the simplest
cubic field. As a result, we derive a formula for the number of points in a Siegel
lattice.

Let m(> —1) be an integer such that m? + 3m + 9 is square-free and K be the
simplest cubic field defined by the irreducible polynomial

(21) f(z) =2 +ma? — (m+3)x+1.

Recall that the discriminant dy, the ring of integers O, and the different dx of
K are given, respectively, by

(22) dr = D* = (m?® +3m +9)?,
(23) Ok = Zjp] = ZEP Zp P 707,
(24) 5k = (f'(p)) = (=(m+3) + 2mp + 3p%),
where p denotes the negative root of f(z). Let v be an element of K. We can write
(25) v=a+pp+qp°, of,7€Q
Now suppose that v satisfies Siegel conditions, i.e.,
(26) vedt, v>0, tr(v)=1
l.veét

v € <= v(—(m+3)+2mp+ 3p%) € Ok.
Hence we can write
(27) v(—(m+3) +2mp +3p?) = A+ Bp + Cp?,
with A, B,C € Z.
From (25),(27), we obtain the following system of linear equations:

(28) —(m+3)a—30+my= A,
(29) 2ma +2(m + 3)B + (—=m? — 3m — 3)y = B,
(30) 3a —mB+ (m? +2m +6)y = C.
Using Cramer’s rule, it follows that

a b c
(31) O.’—B, ,B—B, ’)’—5, (a,b,c)GA,

where A is a free module of rank 3 in Z3 and D = m2 + 3m + 9.
By substitution of (31) into (28),(29),(30), we finally have

(32) —(m+3)a—3b+mec=DA=0 (mod D),

(33) 2ma+2(m +3)b— (m*+3m+3)ce=DB=0 (mod D),

(34) 3a —mb+ (m?+2m+6)c=DC=0 (mod D).
2. tr(v) =1

tr(v) = <= 3a —mpB + (m? +2m +6)y = L.
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From (31),(34), it follows that

2
2 —
(35) C:l,b:3a+(m +2m 4+ 6)c lD.
m
By substitution of (35) into (32), we have
(36) —a+ 3l —2c=mA.

In particular, m divides a + 2c — 3l. Now we introduce a new variable ¢ by the
formula

(37) poaf2e=sl
m
By substitution of (37) into (35), we have
b=3t+ (m+2)c—Il(m+3).
3.v>0
V> 0<= Dv=a+bp+cp®>0.

This condition becomes three linear inequalities in the variables a, b, ¢ defined over
K. Using (35),(37), we have the following system of linear inequalities in the

variables ¢, t defined over K:

(38) (0* + (m+2)p—2)c+ (m+3p)t+1(3— (m+3)p) >0,
(39) (P2 + (m+2)p —2)c+ (m+3p)t+1(3— (m+3)p) >0,
40) (P2 +(m+2)p" —2)c+ (m+3p")t+1(3— (m+3)p") > 0.

Let Ly(resp., Lo, L3) denote the line in (¢, t)-plane defined by the left-hand side of
(38) (resp., (39),(40)). By simple computation, we obtain

l
(41)  ((=p+ ), ;/7) is the point of intersection of L = Ly =0,

l
(42)  ((—p' +p")l,~) is the point of intersection of Ly = L3 =0,

l, -
)

l
(43)  ((=p" +p)1, ;) is the point of intersection of Lz = L; =0,

We summarize the above computation as in the following proposition.

Proposition 4.1. Let m(> —1) be an integer such that D = m2+3m+9 is square-
free, and K be the simplest cubic field defined by equation (21). Let S be the set of
elements in K which satisfy Siegel conditions described by equation (26) and T' be
the set of integral points in (c,t)-plane which lie inside of the triangle surrounded
by the lines L1 = 0, Ly = 0, and L3 = 0. For v € S, by equation (31), we can
write

a b c 5
(44) V_B+5p+5p’ a,b,ceZ.

Then the mapping n : S — T given by n(v) = (c,t), where
2¢ — 3l
(45) t at2c—3l

c=c,t=
m
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gives a one-to-one correspondence between S and T. The inverse mapping 7 : T —
S is given by

b c

a
H=v=—=+—p+ —p°
T(c,t) =v D+Dp+Dp,
where a =mt — 2c+ 31, b=3t+ (m +2)c—l(m + 3). O

Remark 4.1. A straightforward calculation shows that v = 7(c, t) satisfies equation
(27) with A, B,C in Z.

Example 4.1. As an illustration of our discussion, we describe the Siegel lattice T
for the simplest cubic field K with m = 8. We first note that g;(z) = 2*—12Dz+I13D
(resp., hy(x) = 2% —1(m+3)2? +mi?z +13) is the cubic polynomial whose roots are
the conjugates of (—p + p')l (resp., %) By estimating the roots of g;(x) and hy(z),
we can find the rough location of vertices of the triangle. For the roots of g;(x), we
have
(—m =3l < (=p"+p)l < (—m —2)l
<(=p + N <m+Dl<(=p+p) < (m+2).
Similarly, we obtain
l l l
”Z<;<0<;ﬁ<l§(m+2)l<;<(m+3)l-
For (e,t) € T, the corresponding v in S is given by
a b c
46 = 2 4 L4 2
(46) v t 5Pt P
where a = mt — 2¢+3l, b=3t+ (m+2)c — (m + 3)l, ¢ = c. Since
§=(m+3—2mp—3p?),
it follows from a simple computation that
(47) ()8 = (t+ (=2t — c+20)p — 1p?),
where b = 2t 4+ ¢ — 2l. Let N(c,t) denote the norm function Ng /g((v)d). By ele-
mentary computation, we obtain
(48) N(c,t) = [It* + (c —D)lit]m?
+[—2t° + (=3¢ + 60)t* + (—c® + 3le)t + (—lc* + 31%c — 21°)|m
+[=3t3 4+ (3¢? — 9lc + 9?)t + (c — 6lc* + 91%c — 31%)].
Note that a point (c,t) in the plane near the boundary the triangle lies inside

the triangle if and only if N(ec,t) > 0. Combining these data, we conclude that the
Siegel lattice for K is given as in Figures 1 and 2.

‘We now describe the Galois action on a Siegel lattice. We start from the following
simple observation.

Lemma 4.2. Let K be a totally real Galois extension of Q with Galois group G. If
v € K satisfies the Siegel conditions described in equation (26), then so does o(v)
foroe@.

Proof. This is clear! The most important thing is to realize that this is an important
fact. O
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(=p"+p,1/p") t

................. m+3

: (-m-.l,m+ 1) 1

L,=0

m+2

(-p+p’ 1p")

————T=0 .
-m-3 -m-2 \(2,0) m+1

(=p*+p", 1/p)

e : point which belongs to the triangle
x : point which does not belong to the triangle

FIGURE 1. Siegel lattice for m = 8 with tr(v) = 1.

(2-p"+p),2/p")
..................... 2m+5
AN T T S 2m+d
)t
t Y (-2m-2,2m+2)
L,=0
B (2-p+p)2p")
L3:=0
(m+6,4)
)
nes!
-2m-§ -2m-4 L, =0 ~J ) ¢
1.0y 4.0) (m+5,1)

@ : point which belongs to the triangle (2(-p"+ p"),2/p)

X : point which does not belong to the triangle

FIGURE 2. Siegel lattice for m = 8 with tr(v) = 2.

By Lemma, 4.2, the Galois group G = Gal(K/Q) acts on the set S and S can be
put into one-to-one correspondence with the Siegel lattice 7. Therefore, we have

the induced Galois action on T'. Now we return to the simplest cubic field case and
describe the Galois action on T'.

Proposition 4.3 (Galois action on a Siegel lattice). Let m(> —1) be an integer
such that D = m? + 3m + 9 is square-free, and let K be the simplest cubic field
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defined by equation (21). Then the Galois group G(= (o)) induces an action on T
given by
(49) o(c,t) = (=2c—3t+ (m+3),c+1).

If 1 is not divisible by 3, then every G-orbit contains three points. In particular, Ny is

divisible by 3, where Ny denotes the number of lattice points in T which corresponds
to tr(v) = L.

Proof. Let (c,t) € T. By Proposition 4.1, it corresponds to v € S where v is given
by

Dv = (mt — 2¢+ 30) + {3t + (m + 2)c — (m + 3){}p + cp”.
By an actual computation, we obtain
DV = {(m +6)t+ (m+4)c— (2m + 3)l}
+{=3(m+ Dt — 2m + V)c+ (m* +4m + 3)l}p
4+ {3t — 2c + (m + 3)1}p*.

From the transformation formula (45), it follows that n(v') = (¢/,t'), where ¢ =

—2¢ — 3t + (m + 3)l and ' = ¢+ t. This proves the first assertion. Now suppose

that the Galois action on T has a fixed point, say (c,t). Then it follows from (49)
that

(e,t) =(—2¢—=3t+ (m+3)l,c+t).

Thus we must have ¢ = 0 and (m + 3)l = 3t. Since m is not divisible by 3, we
conclude that [ is divisible by 3. O

‘We now prove the main result of this section.

w o =

FIGURE 3. Galois action on the Siegel lattice for m = 8 with
tr(v) = 1.
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Theorem 4.4. Let m(> —1) be an integer such that D = m? + 3m + 9 is square-
free, and let K be the simplest cubic field defined by (21). Let N; denote the number
of Siegel lattice points for K which corresponds to tr(v) = I. Then we have

245 4
N 3(384—%), if m=3s+1,
e 352 +7s+6 .
3(f), if m=3s+2

and

N — 3(6s +10s+9), if m=3s+1,
27 3(6s2 +14s+13), if m=3s+2.

Proof. We only give a detailed proof for the case m = 3s + 2, since the other case
can be treated in the same manner. We assume that m > 5. (The case of m = 2
can be treated by direct computation.) The basic idea of the proof is to find a set
of representatives of “good shape” for the Galois action on T'.

First, we consider the case of tr(v) = 1. First note that (1,0) is the only point
in the Siegel lattice with ¢ = 0. Let Iy be the point (1,0). Then o(ly) (resp., o%(lp))
is the point (m+1,1) (resp., (—m —2,m+1)). For 1 <4 < s+ 1, let I; be the line
joining (3s+5 — 34,4) and (1,7). By simple computation, we know that o(l;) is the
line joining (—3s — 5+ 34,35+ 5 — 27) and (3s +2 — 34,1+ 1), and o%(l;) is the line
joining (0,4) and (—3s — 2+ 37,35+ 3 — 2i) (see Figure 3). This proves that the set
of lattice points on Uf:é l; becomes a set of representatives for the Galois action
(see Figure 5). Therefore,

s+1
Ny =3{1+) (35+5-3i)} = 3(
=1

32+ 7s+6
2 )

Gt,0t,0t,0t0 6t Ot

NN
NN

Gt G oty tg tet,

FIGURE 4. Galois action on the Siegel lattice for m = 8 with
tr(v) = 2.
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O : point which belong to T0
O : point which belong to oTo

A : point which belong to 52T

FIGURE 5. A set of representatives for the Galois action on the
Siegel lattice for m = 8 with tr(v) = 1.

AAaA 0DDoaooao

AAaaa oooao

O O O 00O Ogo o
O 0 0 0O Ofn o

[

O : point which belong to fo -
O : point which belong to 6T,
A : point which belong to o T,

FIGURE 6. A set of representatives for the Galois action on the
Siegel lattice for m = 8 with tr(v) = 2.
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Secondly, we consider the case of tr(v) = 2. Let ¢y be the line joining (2,0) and
(3,0) and ¢; be the line joining (1,1) to (3s + 6,1). For 2 < i < 2s + 3, let ¢; be
the line joining (6s + 10 — 3¢,4) and (1,4). As in the case of tr(r) = 1, the lattice

points on Ufigg t; becomes a set of representatives for the Galois action on T (see

Figures 4 and 6). Therefore,
2s5+3
Ny =3(2+3s+6+ »_(65+ 10— 3i)) = 3(6s” + 145 + 13).
=2

5. VALUES OF THE ZETA FUNCTIONS

In this section, we apply the previously discussed result to the evaluation of the
zeta function of the simplest cubic field. We shall derive explicit expressions for
Ck(—1),¢k (—3),Cx(—5) which are elementary in the sense that they involve only
rational integers and not algebraic numbers or ideals. As an illustration, we present

Table 1 for values of —21{x(—1),8190¢x (—3), and —3591(x (—5) for the first one
hundred simplest cubic fields.

Recall the definition of S/ (2s):
(50) Sf2s) = D 2s1((1)6).

By virtue of Theorem 3.2, we have

GV ona@d= 3 XOXGIG e (p
(73")21((v)8)3

where N denotes the norm of ideal (v)é.

Lemma 5.1. Let p be a prime or p = 1 such that p*|((v)8)3. Then only p’s such
that p|(v)d contribute in the sum (51).

Proof. Suppose that p?|((v)d)3. If p is inert in K/Q, then p|(v)d. If p splits in K/Q,
we can write (p) = PP P”, and

()8 = pep e [ s,

where (B;,p) = 1. Since p?|((v)§)3, it follows that min(3a, 3b,3c) > 2, and conse-
quently we have p|(v)d. Finally, if p is ramified in K/Q, p does not contribute in
the sum (51) since the character value on the right-hand side of (51) vanishes. O

From the unique factorization of ideals into prime ideals, it follows that
(52) 095-1((1)8) = 2s_1((V)8), forevery veds .

Now we shall compute S (2s). Let T be the Siegel lattice of K which is computed
in Section 4 and corresponds to tr(v) = [ = 1. In Section 4, we have a one-to-one
correspondence between points (¢, t) in T and ideals (v)d, where v is an element of
K which satisfies the Siegel conditions, v € !, > 0 and tr(v) = 1. For (¢, t) € T,
by equation (47), the corresponding ideal is given by

(53) (V)6 = (t+ (=2t —c+2)p — p?).
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Let fmm(c,t) be the norm of the ideal (v)d. By (48), it can be explicitly expressed
by

(54) fmlc,t) = [t2 + (¢ — D)tjm?
+ [=2t + (=3¢ + 6)t2 + (=c* + 3c)t + (—c + 3¢ — 2)|m
+ [=3t + (3¢* — 9c + 9)t + (c® — 6% + 9¢c — 3)].
Note that p|(v)é if and only if p = 1. By Lemma 5.1 we have
02s-1((¥)0) = 25-1(fm(c,1)).
Thus we have
(55) S{((QS) = Z 02s—1(fm(c,t)) =3 Z 025-1(fm(c;t)),
(et)eT (c,t)ETy

where T denotes a set of representatives for the Galois action described in the
proof of Theorem 4.4.

Next we shall compute S£(2s). Let T denote the Siegel lattice which corresponds

to tr(v) =1 =2. As in the case [ = 1, for (¢,t) € T the corresponding ideal is given
by

(56) (V)8 = (t+ (=2t —c+4)p — 2p%).

Therefore p|(v)¢ if and only if p = 1 when ¢ or ¢ is odd, and p|(v)d if and only
if p=1or p=2 when both ¢ and ¢ are even. Let g,,(c,t) denote the norm of the
ideal in (56), which is given explicitly by

(57)  gm(e,t) = 2% + 2(c — 2)t]m?
+ [=2t3 4 (=3¢ + 12)t? + (=c® + 6¢)t + (—2¢% + 12¢ — 16)|m
+ [=3t% 4 (3¢? — 18¢ + 36)t + (c® — 12¢% + 36¢ — 24)].
If either ¢ or ¢ is odd, then
025-1(()0) = 025-1(gm(c, t)).

If both ¢ and t are even, then

o201 (1)6) = 02ec1 (gmles)) + [X(2) + (D)2 gy (92D

Since f(x) is irreducible over GF(2), 2 is inert in K/Q. Hence x(2) + x(2) = -1
by definition of x. Therefore we have

(589 SEE)=3 Y oailgm(et) =2 Y pnr(IE0),

(e,t)ETH (c,t)eTo

c,t:even

where T denotes a set of representatives for the Galois action. By (6), (7), (8),
(55), and (58), we finally have the following theorem.

Theorem 5.2. Let m(> —1) be an integer such that D = m? + 3m + 9 is square-
free, and let K be the simplest cubic field defined by equation (21) in Section 4.
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Define elementary functions fm(c,t) and gm(c,t) by (54),(57), respectively. Then
we have

—21(:[{(—1): Z Ul(fm(c’t))>

(c,t)eTo
8190k (—3) = =24+ Y o3(fm(c,t))
(c,t)ETy
m(c,t
+ Z-Ug(gm(c,t))—S* Z~”3(g <4 ),
(c,t)eTy (C’E?ET"
—3591Ck (=5) =528% > o5(fm(c,t)
(c,t)eTo
m(C ¢
+ Y oslgmlet) -32e Y o200,
(c,t)eTy (c,t)ETy

c,tieven

where Ty (resp., TO) denotes a set of representatives for the Galois action on the
Siegel lattice for tr(v) =1=1 (resp., tr(v) =1=2). O

From Theorem 5.2, we can easily compute values of the zeta function of the
simplest cubic field. As an illustration, we give Table 1 for values of —21{x(—1),
8190Ck (—3), and —3591(k (—5) for the first one hundred simplest cubic fields.

We first give some remarks on our computation.

Remark 5.1. Halbritter and Pohst [2] developed a method of computing special

values of a class zeta function of a totally real cubic field. Byeon [1] exploited this
result to give

__ p(m)
Cr(=1,0) = 28 %33 % 5%7’

where p(m) = m® +9m® + 55m* + 195m3 + 544m? + 876m + 840, K is the simplest
cubic field corresponding to m, and C' denotes the principal ideal class. We remark
that (x(—1,C) = (x(-1), if K has class number 1. For m = —1,1,2,4,7,8,10
which are all the values of m such that K has class number 1, our result coincides
with Byeon’s result.

Remark 5.2. In [7], Siegel gave three examples for the zeta values of totally real
number fields. In the last example, Siegel computed that

23 6
CK (2) = 3*—747T >
where K is the maximal real subfield of cyclotomic field, Q(¢7). We note that this
field is the same as the simplest cubic field with m = —1. By our computation, we
have
(k(-1) = L
21

By the functional equation, our result and Siegel’s result coincide. More generally,
we have (cf. [4]) that if D = m%2 4+ 3m + 9 = p is a prime, our simplest cubic
field corresponding to m is the cubic subfield of Q((,). Therefore our computation
contains a table of zeta values of cubic subfield of Q((,), where p runs over primes
of the form m? + 3m + 9.
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