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A COMPUTATIONAL APPROACH
TO HILBERT MODULAR GROUP FIXED POINTS

JESSE IRA DEUTSCH

ABSTRACT. Some useful information is known about the fundamental domain
for certain Hilbert modular groups. The six nonequivalent points with nontriv-
ial isotropy in the fundamental domains under the action of the modular group
for Q(v/5), Q(v/2), and Q(v/3) have been determined previously by Gundlach.
In finding these points, use was made of the exact size of the isotropy groups.
Here we show that the fixed points and the isotropy groups can be found with-
out such knowledge by use of a computer scan. We consider the cases Q(\/B)
and Q(\/i) A computer algebra system and a C compiler were essential in
perfoming the computations.

1. INTRODUCTION

To give perspective on the fixed points of two-dimensional Hilbert modular
groups, a quick review of the one-dimensional case is helpful. In the latter case, H
is the upper half of the complex plane and the group of two by two matrices of de-
terminant one with integer entries acts on H by the corresponding linear fractional
transformation. This group is denoted by I'. We define a closed subset F' of H to
be a fundamental domain for I' only if the following two conditions hold. For every
point in H there exists a point in F' that is mapped to it under some transforma-
tion in I'. Additionally, if there are two points of F' that are related by a nontrivial
mapping from I', these points must lie on the boundary of F. The classic result of
the one-dimensional case is that the region /' = {z € H | |z| > 1, |[Rz| < 1/2}
is a fundamental domain for I'. It is also known that points in I that are fixed by
nontrivial elements of T are 4, p and —p~" where p = —1/2 + i1/3/2. Note that p
and —p~! are equivalent under the transformation z + z + 1, which is in I". Thus
there are only two inequivalent points of F' that are fixed by nontrivial mappings
of I'. We will see that these points lift to fixed points in the two-dimensional case.

For the two-dimensional analogue of the modular group we consider the product
of upper half planes in C? (see Gotzky [3, pp. 413-414], Gundlach [4, p. 109]):

H? = {(2,2) | 92>0,S2 >0}

and the ring of algebraic integers O of a real quadratic number field D. We let ¢
be the fundamental unit of the ring of algebraic integers. The group of two by two
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matrices of interest, called the Hilbert modular group I' = T'(O), is

r(o) = {(f; ?) | @.8,7,6€0, as - gy = 1}.

The action of this group on H? is

a g , az+ B o2+
(z7 z ) = ) )
¥ 0 vz+06 A2+
where o/, 8’,+/,8" are conjugates with respect to O. The above transformations
preserve H? (see Gotzky [3, p. 416]).
A fundamental domain for the action of T on H? is defined in exactly the same
way as in the one-dimensional case. Indeed the same definition works for any group

whose elements map H? onto itself. We follow Gotzky’s work and denote certain
special matrices with the notation

11 1w 0 —1 e 0
U R GV O IR (R

where 1 and w generate the set of algebraic integers as a Z-module. We note that
if the ring of algebraic integers O is norm Euclidean then the modular group I'(O)
is generated by S, S, T and U. This is essentially proven in Deutsch [2, chapter 4]
and is crucial to the construction of the fundamental domain & described below.

For a typical element (z, 2') € H2 let 2 = r + is and 2/ = r’ +is’. We define
the regions

U = {(z, z')|€'2 < s§/s < 52}, T = {(z2)] 27| = 1}.

Clearly U is a fundamental domain for the group of transformations generated by

U, and ¥ is a fundamental domain for the group of transformations generated by
T.

Now let §s s be the plane in H? with Sz = s and $2' = §'. From equivalent
points under the transformation group generated by S and S, choose those points
that minimize |z 2|?. See Gotzky [3, p. 417] for more details. Call the set of such

points &, 5. Let
6 = |J e
5,8 >0
Then & is a fundamental domain for the group generated by S and S,,.
Let F = F(O) = 4 N TN &. Then Gotzky has shown that each point in

H? corresponds to at least one point in F' under I'(O)-equivalence. See Gotzky (3,
p. 418] for details.

Suppose that (z, 2) in F is fixed by an element of I. Then we have the equations
az + o2+ g
ye+6 7 N

Thus
0 =72+ (5 —a)z — B, 0=~2>+0 -—ao)z— 4.
If v = 0 then z and 2’ are real, which is a contradiction. We may substitute r + is
for z and 7' + is’ for 2. Taking imaginary parts, we find that
a—06 , o — ¢

(L.1) r > r o

!
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Also, by further consideration of imaginary parts

!
(1.2) s = > 4 = s
(7 + 97 + () G+ O+ ()

and working with (S(=1/2),3(—1/7")), we get

(13) s s s s’
VT At @ FE T @t R @R

2. FIXED POINTS FOR Q(v/5)

Let us fix some notation. O(y/5) is the ring of integers of Q(v/5) and O(v/2)
is the ring of integers of Q(v/2). In the first case the fundamental unit ¢ equals
(1 + v/5)/2, and in the second case € is 1 + /2. A typical element 7 of the group

['(O) has entries
_ (> P
" <’v 5) '

Again we let (2, ') be a typical point in H? with z = 7 + is and 2’ = 7’ +is.
We have the key result of Gotzky

Theorem 1 (Gotzky). For (z,2') € & N T the product s-s" > (/312 —9)/16 >
b4

This leads to the results

Theorem 2 (Gotzky). F(O(v/5)) is a fundamental domain of the modular group

for Q(+v/5). The imaginary parts of a point in this region satisfy s > .45 and
s’ > 45,

Corollary 1 (Gotzky). An element of T(O(\/5)) that maps a point of the fun-

damental domain F(O(v/5)) into another satisfies |[N(y)| < 1. If v # 0, then
22| = 1.

To find the fixed points of T'(O(1/5)) in the fundamental domain, the basic idea
is to place bounds on «, £, v and ¢ and then do a computer search of all possible
eligibile two by two matrices. In order to proceed, we need bounds on 7 and 7/, the
real parts of the coordinates of a point (2, 2/) in F' = F(O(+/5)).

Lemma 1. In the fundamental domain F for Q(\/5), |r| and |r'| are each less than
1.853.

Proof. We use the inequality (see Gotzky [3, p. 420])

(r2 + ) (1" + %) < (5/16)% + (9/8) 55’ + (s5')2,
from which it follows that
(5/16)% + (9/8) ss' + (ss')?
r? 4 s?
(5/16)2 + (9/8) ss' + (s5')?
52
1 9s

(/16)2 +§—/+8

r? + 82

IA

IN
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Hence
1 9
r? < (5/16)2— + —&® < 3.43357...,
s 3
which gives the bound for r. The same argument holds for r'. O

The bounds on the entries of a matrix in I'(O(1/5)) that fixes a point in the
fundamental domain F' follow.

Lemma 2. Let 7 be an element of the modular group I'(O(v/5)) that fizes a point
in the fundamental domain F. Then

(21) lal, [o] < 1.86, 18], 8] < 5.69, Il || < 2.23, 13, |§] < 5.15.
Proof. From equation (1.2) we see that
(r + 0 + (39)* = 1,

which forces 42 < 1/s?, which gives |y| < 2.23 from the bounds on s for a point
in the fundamental domain F. Similarly, from (yr + §)2 < 1 we have

0] — |yr| < |yr 4+ 4] <1,

so the bound on § can be computed. Since |2z/| = 1 for any fixed point in T,
1 1
2
2" < r? 4 s = s
By (1.3)
1
(ar + B)* + (as)® = |2* < =5
8/
1
= o = o < 1.86.

= a2t
The bound on |3| is obtained analogously to the bound on |4|:

1Bl = lar] < |ar 4+ 8] < |z| < 2.23.
By symmetry, the same bounds hold for o/, 5/, 7' and §'. O

Running a computer scan, we obtain the following results.

Theorem 3. There are 94 matrices in T'(O(+/5)) that correspond to fized points
in the fundamental domain F for Q(v/5). The fired points are at a distance of /2

and \/3 from the origin. The product of the imaginary parts is either \/3/4, 3/4 or
1.

Working with a computer algebra system in addition to further computer scans
isolated the inequivalent fixed points of this collection of matrices.

Theorem 4. There are a total of siz T'(O(v/5)) inequivalent fived points in the
fundamental domain F of Q(v/5). Two points have cyclic isotropy subgroups of
order 4, two points have cyclic isotropy subgroups of order 6, and the final two
points have cyclic isotropy subgroups of order 10.

Of the 94 fixed point matrices, all are members of cyclic subgroups of orders 4, 6
or 10. There are three subgroups of order 4, six of order 6, and eight of order 10. Of
the three subgroups of order 4, two of the subgroups correspond to fixed points that
are I'(O(v/5))-equivalent to each other, while the third is not equivalent to either.
The six subgroups of order 6 break up into two sets of subgroups which have fixed
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TABLE I. Fixed points in the Fundamental Domain for Q(+/5)

Point Order Matrix
(i, 1) 4 ((1) _01>
0 V51
(i (V5 — 1)/2,i (V5 + 1)/2), 4 (_ﬁﬂ : )
2
. ‘ 0 -1
(=1/2 + iv/3/2, —=1/2 + i1/3/2) 6 <1 ) )

(Bl 4 /3821 VBl 4 3Y6EL)

% [- = v5-1 +5-3
(\/54—3 + 7/\/5 5:1‘\/3, _\/344-3 + 'L\/i 51‘\/3) 10 ' ( 2 2 >
(V58 4 iy2VERYE 3By VERYEy g (

points that are I'(O(v/5))-equivalent. One set has two subgroups in it, the other
has four. The eight subgroups of order 10 break up into two sets of subgroups which
have fixed points that are I'(O(v/5))-equivalent. Each set has four subgroups in it.

For the scan, we write & = aj + ase, where a1 and ay are rational integers and
g is the fundamental unit. The inequalities (2.1) for |a| and |&/| give bounds on
the sizes of |a;| and |ag|. Performing a similar representation for the other entries
of our typical matrix 1 of I'(O(v/5)) leads us to 8 “for” loops nested inside each
other. Every possible inequality was used to throw out unsuitable candidates, which
yielded the 94 remaining matrices.

Table I lists a choice of inequivalent fixed points with corresponding matrices.
Another program and a computer algebra system were used to show that the fixed
points produced by these matrices were actually in the fundamental domain, i.e.,
that they satisfied |z 2’| > 1, the condition on the ratio of imaginary parts, and
especially the minimum norm condition on all appropriate translates in §s s .

3. FIXED POINTS FOR Q(v/2)

Many of the results for Q(v/5) have analogues for Q(+/2). We now consider the
case of I'(O(v/2)) and fix a fundamental domain, F', contained in F(O(+/2)). Such
an F' exists due to the results of Gotzky mentioned previously.

Theorem 5. For (z,2') € & N T the product s-s' > (v/21 —3)/4 > .395.
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Proof. This was demonstrated previously (see Gundlach [5, p. 375]) with a slightly
different definition of fundamental domain. Alternatively, with some modifications,
the proof in Gotzky goes through. O

Corollary 2. In F(O(+/2)) we have s,s" > .26.
Lemma 3. In F'(O(v/2)), |r| and |r'| are each less than 3.53.

Proof. The demonstration follows the same pattern as the Q(+/5) case. O

Unfortunately, some key results of the Q(1/5) case do not come through at
this point. In particular, there are matrices in I'(O(v/2)) which map a point in
F(O(V/2)) to itself while |[N(y)| = 2. To find all the matrices of I'(O(+/2)) that fix
a point in F(O(+/2)), we proceed as follows.

Lemma 4. Letn be an element of I'(O(v/2)) that fizes a point in F(O(v/2)). Then

NI < 2.
Proof. By equation (1.2) we have
(3.1) (9 + 8% + (1) = 1 = (Y7 + 8)% + (V)2
whence

1> 2% 1> 9%

= 12 (y7)(ss)?

1 1
= N(H)? < < —
()" < (ss)2 — .3952

= |N(y)| < 3. O

We may again ignore the case of |[N(v)| = 0, as it results in a fixed point with

zero imaginary part. The case when the norm is two is dealt with by the following
lemma.

Lemma 5. Let ) be an element of the modular group I'(O(+/2)) that fizes a point
in F(O(V2)). IfIN(y)| = 2, then

2
o= 5 5= 0%+ 1
8
Proof. Using (1.1), we find that
a—0 a+ 06
d = y— = .
yr + v o + 0 5

If &« + § = 0, then we immediately obtain &« = —§, and the formula for 8 drops
out from the equation ad — fy = 1.

Suppose a + & # 0. Since N(v) = 2, it is clear that v = 0 (mod+/2). As the
order of the factor ring O(v/2)/(+/2) is two, we find that

ad — By =1
= ad = 1(modv?2)
= a =6 = 1(modv?2).
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So a + ¢ is congruent to zero modulo v/2, and we can find an algebraic integer
w # 0 such that @ + § = w+/2. We also have o + § = —w' /2. Starting from
(3.1) and using (1.1), we see that

(v + 68+ (19 = 1 = (7' + 87 + (s)?
2 / I\ 2
<a ;_ 5) + (v8)? =1 = (a ;—6> + (4's")?

2 12
S () = 1= o+ (R

2 2
Let 2 = % and y = Y. Then we have
2 2

N
N

Considering the function

hz,y) =1 -2 —y+ay

on the region defined in (3.2), we see that the critical point is at (1,1) in the x-y
plane, a boundary point of the region. So the extreme values occur on the boundary
of this region. On the boundary lines z = 1 and y = 1 the value of the function

h is zero. On the boundary curve zy = 1/4 we have by the Arithmetic Mean
Geometric Mean Inequality

T + > 24/x L
v = 4

Y

1,
which implies
hiz,y) < 1-1+1/4 < 1/4.
So h is bounded between 0 and 1/4 in the region (3.2). Hence

(v9)*(v's")? = h(z,y) < 1/4
11 1 1
1< =— < = — < 1.2658.
> s g = g ey = 10
Thus |N(y)| < 1, which is a contradiction. O

Lemma 6. Let 1 be an element of the modular group T'(O(\/2)) that fizes a point
in F(O(v/2)). Then

v, 7] < 3.85, 6], |8’ < 14.60.
If IN(v)| = 1, then additionally
laf, || < 2.57, 18], 18| < 12.90.

Proof. Similar to the proof for Q(v/5). When |N ()| = 1 Gotzky has essentially
demonstrated that the fixed point (z, 2’) satisfies |z2| = 1. O

Running two computer scans, we obtain the following results.
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TABLE II. Fixed Points in the Fundamental Domain for Q(v/2)

Point Order Matrix

(i, 4) 4 ((1) —01>

(i(vV2 = 1),i (V2 + 1)), 4 (_\/50_ 1 ﬁo— 1>
(—1/2 + iv3/2, =1/2 + iV/3/2) 6 ((1) —11>

(Lt 4 ivBY2t, YRR i 3YEEL) 6 (-\/50—1 ﬁl— 1>

(V2/2 + iV2/2, —V2/2 + iv/2/2) 8

-2 2 c2— V2
( +\/_+Z 2\/_,

(
S EAV RS E 2V 3 ( V2 ﬁ—l)

Theorem 6. There are 66 matrices in I'(O(\/2)) that correspond to possible fived
points in the fundamental domain F for Q(v/2). The corresponding fived points are

at a distance of /2 and \/6 from the origin. The product of the imaginary parts is
either 1/2, 3/4 or 1.

It is interesting to note that of the 66 matrices, twelve satisfy the condition that
IN(y)| = 2, but each of these is a power of one of the other matrices for which
IN(v)| = 1.

Working with a computer algebra system and further scanning yields the next
result.

Theorem 7. There are a total of siz T'(O(v/2))-inequivalent fized points in the
fundamental domain F for Q(v/2). Two points have cyclic isotropy subgroups of
order 4, two points have cyclic isotropy subgroups of order 6 and the final two points
have cyclic isotropy subgroups of order 8.

Of the 66 matrices mentioned above, all are members of cyclic subgroups of order
4, 6 or 8. Clearly there must be a point in the fundamental domain fixed by a cyclic
subgroup of the same order as any fixed point generated by the computer scan.

Table II lists a choice of inequivalent fixed points with corresponding matrices.
Another program and a computer algebra system were used to show that the fixed
points produced by these matrices were actually in the point set F(O(v/2)).

Both tables agree with previous results on fixed points up to translation by a
rational integer (see Gundlach [5, pp. 377, 378]). In that paper, there is a small
typo in the last fixed point listed for Q(+/5) in the table for Satz 1, where v/5 should
be replaced by v/5.
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It should be remarked that Gundlach and Siegel use a different definition of the
fundamental domain. While Gotzky was able to show F(O(1/5)) is a fundamental
domain, his proof breaks down for the case of Q(v/2). It is still the case, how-
ever, that F(O(v/2)) contains a fundamental domain. Thus one may reasonably
conjecture that F(O(v/2)) is itself a fundamental domain for the modular group

of Q(v/2). See Gotzky [3, pp. 420-421], Gundlach [5, pp. 371-375] and Siegel [10,
pp. 186-208].

4. THE COMPUTATION

The GNU C compiler and PUNIMAX, a variant of MAXIMA, were used on
LINUX partitions on each of two PC’s. The LINUX kernel version was 2.0.35
and the GNU C compiler version was 2.7.2.3. The most time-consuming aspect of
the computation was searching for matrices that mapped one specific point into
another specific point. This required using “for” loops nested 8 deep. Due to the
wider range of permitted values in the Q(v/2) case, each search would take from 15
to 30 minutes. The lower time occured when using GNU C’s level 2 optimization.
The PC’s had Pentium chips rated at 133 mhz and 300 mhz, respectively. The
RAM sizes were 32 megabytes and 64 megabytes, respectively.

Early versions of one of the scanning softwares were ported to Microsoft® and
Borland® 16 bit C compilers. Unfortunately the executables were extremely slow
and three to four times larger than the GNU C executables. The Microsoft® debug
version executable was so slow it was essentially impossible to use.
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