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THUE’S THEOREM
AND THE DIOPHANTINE EQUATION 22 — Dy? = £N

KEITH MATTHEWS

ABSTRACT. A constructive version of a theorem of Thue is used to provide
representations of certain integers as 2 — Dy?, where D = 2,3,5,6, 7.

1. INTRODUCTION

The idea of using Euclid’s algorithm to construct solutions of p = 22 + y? goes
back to Serret [9] and Hermite [5]. (Also see Wagon [12] and Brillhart [1].) The
method easily extends to p = 2% + ny?, n = 2,3,5. (See Wilker [13] for n = 5.)

Cornacchia [2, pp. 61-66] generalised the method to N = 22 + ny? n > 1 and
discussed the case n < 0 [2, pp. 66-70]. (Also see Nitaj [8] and Hardy, Muskat and
Williams [3], [4], Muskat [6], Williams [14], [15].)

It is not so well known that the Serret—Hermite method can be used to find
explicit solutions of 22 — Dy? = N when D > 1 is small. Nagell [7, pp. 210-212]
used a nonconstructive form of a theorem of Thue [10, p. 587] to deal with D = 2
and 3, while a variant of Thue’s theorem was also used in Uspensky and Heaslet
(11, pp. 352-368] for D = 2,3,5.

In this paper we show how to obtain explicit representations of certain integers in
the form 2?2 — Dy? for small D > 1, using a constructive version of Thue’s theorem
based on Euclid’s algorithm. Amongst other things, if u? = D (mod N), D # 1

(mod N) is soluble and ged(D, N) = 1, N odd, we show how to find the following
representations:

N=8k+1 N = g2 — 292

—N = 2% — 292
N =12k +1 N = 2?2 — 3y?
N=12k—1 —N =22 - 32
N =5k+1 N =22 — 592
N=5k—-1 —~N =22 -5y
N =24k +1 or 24k — 5 N = 22 — 6y?
N =24k — 1 or 24k + 5 —N =22 —6y?
N =28k + 1,28k +9 or 28k + 25 N = 2% — 792
N =28k —1,28k —9 or 28k —25 | —N = 22 — Ty?
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2. EUCLID’S ALGORITHM AND THUE’S THEOREM

Euclid’s algorithm. Let a and b be natural numbers, a > b, where b does not
divide a. Let g = a, ry = band for 1 < k < n, rp_1 = Tpqr + Tk+1, Where
0 < rg41 <7 and 7, = 0. Define sequences sg, 51, ... ,Sp41 and tg,t1,... ,tp41 by

so=1,81 =0,% = 0,81 = 1, {51 =tk + tkt1, Sk—1 = Skak + Sk+1,

for 1 < k < n. Then the following are easily proved by induction:

(i) sp = (=1)F[sl, te = (=1)Ftxl;

(ii) 0= [s1] <|s2| <+ <lsnsal;

(i) 1= [ta] < [ta] < - < ltnpal:

(iv) a = |tg|rp—1 + [to—1|rp for 1 <k <n+1;

(v) rp=ska+tgbfor 1 <k <n+1
Theorem 1 (Thue). Let a and b be integers, a > b > 1 with ged(a,b) = 1. Then
the congruence bx =y (mod a) has a solution in nonzero integers x andy satisfying
|z < Va, [yl < Va.
Proof. As r, = ged(a,b) = 1 and a > /a > 1 and the remainders rq,... ,r, in
Euclid’s algorithm decrease strictly to 1, there is a unique index k such that rp_; >
Va > ri. Then the equation a = |tg|rg—1 + |tk—1|7x gives a > |tx|re—1 > ltx]/a.
Hence |tx| < /a.

Finally, 7, = sga + txb, so bty = ry (mod a) and we can take z = ty,y =r;. O

3. THE EQUATION z? — Dy? = kN WITH SMALL K

Let N > 1 be an odd integer, D > 1 and not a perfect square. Then a necessary
condition for solvability of the equation 2 — Dy? = kN with ged(z,y) = 1 is that
the congruence u? = D (mod N) shall be soluble. From now on we assume this,
together with ged (D, N) = 1 and 1 < u < N. Then the Jacobi symbol (£) = 1.
We note that if N is prime, then (£) = 1 also implies that u?> = D (mod N) is
soluble.

If we take @ = N and b = u in Euclid’s algorithm, the integers r — Dt? decrease
strictly for K =0,... ,n, from a? to 1 — Dt2 and are always multiples of N. For

ri — D2 =t2u? — Dt: =t3(u> —D)=0 (mod N).
If k is chosen so that r,_1 > /N > 7, as in the proof of Thue’s theorem, then as

(1) N =rp_q|te] + relte—1] > re—1|ts],

we have [t,| < v'N and

(2) ~DN < r} — Dt; < N.

Hence ri — Dt2 = —IN, —1 <1< D. In fact 1 <1 < D. Hence
(3) ~DN < r} — Dt; < —N.

Also 72 + IN = Dt? and hence Dt2 > [N. Hence
fa 2 i

@) >/

From equation (1), N > r_1|tx| and hence inequality (4) implies

DN
(5) Te—1 < T
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4. THE EQUATION 2% — 2y%2 = £N

The assumption (&) = 1 is equivalent to N = £1 (mod 8). Also 1 <1 < 2,

sol = 1 and (3) gives r? — 2t = —N. Hence from equation (5) with D = 2,
re—1 < V2N and

_N - T'i - Zti < ’I"i_l - Zti_l < lr%—l < 2N.
Hence r?_, — 2t | = N.
Example. Let N = 10000000033, a prime of the form 8n + 1. Then u = 87196273

gives k = 10, 719 = 29015, t19 = —73627, rg = 118239, tg = 44612 and 7%, — 2t3, =
—N, 7"3 —Qt% = N.

Remark. We can express r;_1 and t;_1 in terms of r; and t;. The method is useful
later for delineating cases when D = 5,6,7:

Using the identities

(6) (rerp—1 — Dtytr_1)? — D(tyri—1 — ts_1ri)? = (rp — D) (ri_y — Dt} _1)
and

(7) (—1)*N = ryptp_y — rr_1ts,
we deduce that
(8) TeTk—1 — Dtptr_1 = €N,
where ¢ = +1.
From equation (8), we see that € = 1, as t;t;—1 < 0. Hence
9) rrk—1 + DT Tx—1 = N,

where Ty, = |tg|. Then solving equations (7) and (9) with D = 2 for 7,_; and Ty_1
yields

Te—1 =Tk + 2T, Tp—1 =Tk — Tk,
5. THE EQUATION 2% — 332 = £ N
The assumption (%) = 1 is equivalent to N = +1 (mod 12). From equation
(3), we have —3N < r? — 3t2 < —N. Hence r7 — 3t = —2N or —N.
Case 1. Assume N =1 (mod 12). Then ri — 3t = —N would imply the contra-
diction 72 = —1 (mod 3).
Hence 77 — 3t2 = —2N and inequality (5) implies r_1 < (/2. Hence

3N
N =72 —32 <ri | —-3ti_,<ri_, < -
Consequently r?_, —3t7_, = N.

We find 2rp_1 = —7ri + 3T, and 2Tp_1 = —7rp + Tk.

Case 2. Assume N = —1 (mod 12). Then 77 — 3t2 = —2N would imply the
contradiction r? = 2 (mod 3). Hence r} — 3t = —N and inequality (5) implies
rr—1 < V3N. Hence

-N = 7";% — 375% < 7‘;%_1 — Stﬁ_l < 7“%—1 < 3N.

Consequently ri_l — 3tﬁ_1 = N or 2N. However 7"2_1 — Stﬁ_l = N implies the
contradiction 72_; = —1 (mod 3). Hence r7_, — 3t2_, = 2N.
We find g1y = —rp + 3T, and Tx—1 = —rg + Tk
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6. THE EQUATION 22 — 5y% = N

The assumption (%) = 1is equivalent to N = +1 (mod 5). Then from equation
(3), we have —5N < r? — 5t2 < —N. Hence r} — 5t7 = —4N, —3N,—2N or —N.

We cannot have r? —5t2 = —3N as then (2) = 1. Neither can we have 7} — 5t} =
—2N, as N is odd.

Case 1. Assume N =1 (mod 5). Then r? — 5t = —N would imply the contradic-
tion r2 = —1 (mod 5). Hence r? — 5t7 = —4N. Then rj, and t;, are both odd. Also

inequality (5) implies 751 < \/@. Hence —N <r?_, —5t3_; <N.
Then as in the remark above, we can show
(i) if 7’2_1 — 5t2_1 = —N, then
drp_1 = =3r, + 5T, 4Tp_1= -1+ 3T}

and hence rp, = =T}, (mod 4);

(i) if r7_, — 5t3_, = N, then
drp_1 = —7rp + 5Ty, 4ATp 1 = -1+ T}
and hence 1y = T) (mod 4).

Case 2. Assume N = —1 (mod 5). Then 7} — 5t = —4N would imply the contra-
diction 72 = 4 (mod 5). Hence r7 — 5t = —N. Then not both rj and t; are odd.
Also inequality (5) implies 7,—1 < V5N and we deduce that —N < r,zc_l - 515%_1 <
4N. Consequently r,zc_l — 575%4 = N or 4N.
Then as in the remark above, we can show
(i) if ri_; —5t2_; = N, then
re_1 = —2rp + 5Tk, Tp_1=—rr+ 2T}
and hence ri_1 = —27, (mod 5);
(ii) if rZ_; — 5t2_; = 4N, then
Th—1 = —Tk + 5Tk, Tp—1 =1k + Tk
and hence 7,1 = —r (mod 5).

Here is a complete classification of the possible cases:
1. N =5k +1. Then r — 5t = —4N, while rj and t; are odd.
(i) rp = —T}) (mod 4). Then r?_, —5t2_, = —N.
(ii) rp = Ty (mod 4). Then r? ;, —5t_; = N.
2. N =5k — 1. Then r? — 5t = —N, while 4, and ¢ are not both odd.
(i) rp_1 = —2r, (mod 5). Then ri ;| — 575,26_1 = N.
(ii) rx_1 = —7% (mod 5). Then r?_, —5t2_, = 4N.

7. THE EQUATION 2?2 — 6y = +N

The assumption (%) = 1 is equivalent to N = =£1 (mod 24) or N = %5
(mod 24). Then from equation (3), we have —6N < 7 — 6t < —N. Hence
ri —6t2 = —5N, —4N, —3N, —2N or —N. Only —4N is ruled out immediately and
the other possibilities can occur.

As with the case D = 5, there is a complete classification of the possible cases:

1. N =24k —1 or 24k + 5.
(i) r, =0 (mod 3). Then r} — 6t2 = —3N, ri_; —6t3_; = —N.
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(ii) 7 £ 0 (mod 3). Then rZ — 6t = —N.
a) re—1 =0 (mod 2). Then r?_, — 6t2_, = 2N.
k—1 k-1
b) re—1 =1 (mod 2). Then r2_, — 6t2_, = 5N.
k-1 k—1
2. N =24k +1 or 24k — 5:

1
(i) 7% =0 (mod 2). Then r? — 6t2 = —2N, ri_, —6t;_, = N.
(ii) 7, =1 (mod 2). Then 77 — 6t7 = —5N.
(a) ¢ = T}, (mod 5). Then ri , —6t2_; = N.
(b) 7, = =T} (mod 5). Then
ri_y —6th_y = —2N, rj_, —6t;_, =N.
8. THE EQUATION 22 — Ty? = &N

The assumption (%) =1 is equivalent to N =1,3,9,19,25,27 (mod 28).

As with the case D = 6, there is a complete classification of the possible cases:

1. N =28k+ 1,28k + 9, or 28k + 25.

(i) rx = Tk (mod 2). Then 73 — 7t7 = —6N.
(a) r, = —T} (mod 6). Then r_, — 7t7_, = —3N.
(1) r4—1 = —Tk_1 (mod 3). Then r?_, — 7t _, =N.
(2) rp—1 =Tk—1 (mod 3). Then TZ_Q - 715%_2 =2N.
(b) 7, =Tk, (mod 6). Then r7_, —7t7_, = N.
(ii) 7% # Tk (mod 2). Then r? — 7t7 = —3N.
(a) 7x = —T) (mod 3). Thenri , —7t_, = N.
(b) 7, =Ty (mod 3). Then r?_, — 72 _, =2N.
9. N = 28k + 3,28k + 19, or 28k + 27.
(i) 7, = Tk (mod 2). Then 72 — 7t7 = —2N.
(a) 7h—1 = —Tk_1 (mod 3). Thenr?_, — Tt _, = —N.
(b) 7)1 =Tr—1 (mod 3). Then r2_, — 7t7_, = 3N.
(ii) 7 # Tk (mod 2). Then r2 — 7t = —N.
(a) rp—1 = —Tx—1 (mod 3). Then 7‘,%_1 — Tt _, =3N.
(b) ri_1 =Tk_1 (mod 3). Then r?_, —7t2_, =6N.

In cases 1(a)(2) and 2(i), the equations 72 _, — 7t?_, = 2N and r} — 7t7 = —2N
give rise to equations 22 — 7Ty? = N, —N, respectively, if we write = + T =
(rh—o+ts—oV7)/(3+/T) and (1 + txV/7)/(3+/7), respectively. For if z+yv/7 =
(r+tv7)/(3++/7), where r and t are odd, then z = 32"t and y = 3=~ are integers
and z2 — Ty? = (r?2 — 7t?)/2.

We note that 1(a)(2) cannot occur unless N =0 (mod 3) for we have

=51 + 77T; —rg + 5T}
(10) Po_y = _—-k6—k’ Ty = _"36__i
—rg—1 + TTh_1 —Tp—1 +Tk1
11 I Ty 9= —""——.
(11) Th—2 3 , k—2 3

Then (10) implies r,_1 + Th—1 = —7% + 2T = —r — T, = 0 (mod 3). Also (11)
implies 7,—1 = Tr—1 (mod 3). Hence 3 divides 7,1 and Tj_;, and the equation
r2_, —Tt?_, = —3N then implies 3 divides N.

Example. N = 57. The congruence u? = 7 (mod 57) has solutions u = 8, +11
(mod 57). Then u = 8 gives k = 2,7y = 8,t; = 1,ro = 1,ty = =7, 7} — Tt7 = —6N
and Tz_l — 7152_1 = N, while u = 11 gives k = 2,71 = 11,1 = 1,70 = 2,t3 = =5
and r,% —T7t2 = —3N and 7"2_1 — 7t%_1 =2N.
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