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SOLVING NORM EQUATIONS
IN RELATIVE NUMBER FIELDS USING S-UNITS

DENIS SIMON

ABSTRACT. In this paper, we are interested in solving the so-called norm equa-
tion N7,k (z) = a, where L/K is a given arbitrary extension of number fields
and a a given algebraic number of K. By considering S-units and relative
class groups, we show that if there exists at least one solution (in L, but not
necessarily in Zy,), then there exists a solution for which we can describe pre-
cisely its prime ideal factorization. In fact, we prove that under some explicit
conditions, the S-units that are norms are norms of S-units. This allows us to
limit the search for rational solutions to a finite number of tests, and we give
the corresponding algorithm. When a is an algebraic integer, we also study

the existence of an integral solution, and we can adapt the algorithm to this
case.

1. INTRODUCTION

The aim of this paper is to solve explicitly an equation of the type Ny /i (z) = a,
where L/K is an arbitrary given extension of number fields, and a a given nonzero
element of the number field K. We also want to be able to decide if this equation
is solvable or not.

By writing a in the form a = /b with b € Z and « integral in K, we see that
our equation is equivalent to Ny k() = b¥la, where d = [L : K] is the degree of
the extension. Thus without loss of generality we can make the assumption that a
is an algebraic integer.

As a first idea we can look for integral solutions when a itself is integral, and this
can be done for example by bounding the absolute value of the solutions. This idea,
which we will not use, is developped by C. L. Siegel in [12] in the case of Galois
extensions, by U. Fincke and M. Pobhst in [9] in the case of an absolute extension,
or by C. Fieker, A. Jurk and M. Pohst in [8] in the relative case. A more algebraic
solution of this problem is given by D. Garbanati in [10] in the case of Abelian
extensions, or by C. Fieker for Galois extensions in [7]. Our purpose here is to give
an algebraic description of the rational solutions in the general case, and to deduce
from this an algorithm. To our knowledge, an algorithm which solves this problem
by algebraic considerations in the general case was not known before.

We will first prove some theorems giving a precise description of the prime ideal
factorization of the solutions, which give bounds for the primes in the solutions.
Secondly, we deduce an algorithm from these theorems that constructs a solution,
or proves the nonsolvability of the equation. This algorithm assumes that we have
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a good knowledge of the field L. For example we have at our disposal a funda-
mental system of units of L, and we can solve the “principal ideal problem”. We
illustrate each proposition by an example. These examples were computed using
the algorithms described at the end of this paper, which were implemented on the
number theory package PARI/GP.

If we can prove that there is no integral solution, it definitely does not prove
that there is no rational solution at all. Let us consider the following example:
L/K = Q(+v/34)/Q, and a = —1. The fundamental unit uv = 6v/34 4 35 has
norm +1, hence a cannot be the norm of an integer (in L). However we have
Ny (V31 45)/3) = 1.

The existence of rational solutions to the equation N7,k (z) = a could make
us think that there is no way to reduce this problem to a finite number of tests.
Our goal is to show that, on the contrary, this is possible by giving a bound on
the denominator or, more precisely, by giving a finite list of prime ideals that can
occur in the numerator or in the denominator. Our theorem makes it possible to
answer algorithmically the question of existence of a rational solution and at the
same time constructs such a solution.

Let S be a finite set of prime ideals of the base field K. We say that an element
a € K* (resp. x € L*) is an S-unit if the only primes occuring in the prime ideal
decomposition of a (resp. ) are in the set S (resp. above a prime ideal in S). We
denote by Uk s the set of S-units of K and Up g those of L. We are looking for
solutions x as S-units. It is clear that all primes dividing a may have a contribution
in the solutions z, and we will therefore assume that S contains all prime ideals
dividing a so that a is an S-unit.

It is clear that the norm of an S-unit of L is an S-unit of K’; in other words that
Nipyk(Ups) € Npyk(L*) NUgk,s. In view of the previous example, the reverse
inclusion is not true (in this case with S = 0): an S-unit which is a norm is not
always the norm of an S-unit.

The theorem that we shall prove asserts that we have equality as soon as S is
large enough, that is as soon as S contains some subset Sy depending only on the
extension L/K. This is to say that in order to solve the equation N,k (z) = a,
it is enough to consider all prime ideals dividing a, together with all exceptional
prime ideals of Sp.

Theorem 1.1. Let L/ K be an extension of number fields. There exists a finite set
So of prime ideals of K depending only on LK such that

if S O Sg, then NL/K(UL,S) :NL/K(L*) NUgs.

Such an Sy is given explicitly in terms of some class groups. When S does
not contain Sy, it is still possible to give results about the quotient group
Nk (L*) NUk,s) /N1 k(Ur,s), which are more precise when the extension is
Galois, and even more precise when it is cyclic.

General notation:

If a and b are two integers, (a,b) is the ged of a and b.

If G is a finite group, |G| denotes its order. We say that a finite group G is an
n-group if each prime dividing |G| also divides n. If G is abelian, we say that G
has exponent d if g¢¢ =1 for all g € G, and d is minimal with this property. For a
prime p, G, is the p-Sylow of G.

If G acts on a group A, A% is the subgroup of elements fixed by G. The notation
~A denotes the kernel of a map N : A — B (typically a norm map).
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2. S-UNITS AND S-CLASS GROUPS

In this section we recall the fundamental notions about the S-units of a number
field K, without giving the proofs. For more details, see [13].

Let S be a finite set of prime ideals of K. We say that € K is an S-integer if
vp(z) >0 for all p ¢ S. We say that z € K* is an S-unit if v,(x) = 0 for all p ¢ S.
We write Zg, s for the ring of all S-integers of K, and Ug s for the multiplicative
group of all S-units of K*. The invertible elements of Zg s are exactly the S-
units. We denote by Zs(K) the group of fractionnal ideals of Zy s and Pg(K) the
subgroup of principal ideals (we sometimes say S-principal). We call (S) the group
of ideals I such that v, (1) = 0 for all p ¢ S, and we say that an ideal I is S-integral
if vp(x) >0 forallp¢sS.

If L/K is an extension of K, and S is still a finite set of prime ideals of the
ground field K, we say that z € L* is an S-unit if vgp(z) = 0 for all primes P
except perhaps for those above S. Because there is no possible confusion, we allow
the notation 8 € S instead of P above p € S. The same kind of definition holds
for the S-integers in L. We denote by Uy s (resp. Zy, g) the set of S-units (resp. S-
integers) of L.

Copying the definition of the class group CI(K) as the quotient Z(K)/P(K), we
define the S-class group Clg(K) as the quotient Zg(K)/Ps(K).

Proposition 2.1. The following diagram is exact.

1 1
! 1

1— Ug — UK,S - <S> — Cl(<S>) — 1
! 1

1—- Ugx — K* — I(K) - Cl(K) - 1
1 !

1— UK,S — K* — Is(K) — Cls(K) — 1
! 1
1 1

This proposition shows in particular that Ux s/Uk is a free Z-module of rank
equal to the cardinality of S, and that the group Clg(K) is the quotient of the

group CI(K) by the subgroup generated by S. In particular this group is finite,
and its order divides the order of Cl(K).

3. RELATIVE CLASS GROUPS

If L/ K is a relative extension of number fields, there exists at least two canonical
morphisms between Cl(L) and Cl(K). Indeed, if I, is an ideal of L, we can take
its norm in K. This morphism allows us to define a morphism N7, /5 from CI(L)
to CI(K). If I is an (integral) ideal of K, we can form the ideal IxZj, of L. This
extends to a morphism on fractional ideals, and to a morphism ¢ from CI(K) to
CI(L). These two different morphisms lead to two different definitions of relative
class groups for the extension L/K.

3.1. Definitions. The map Ix + IxZ; induces a morphism ¢ from Cl(K) to
CI(L), and suggests the following definition.

Definition 3.1. An ideal I of L is pseudo-principal if there exists o € L and an
ideal I of K such that I;, = algZy. If Z is the group of fractional ideals of L,
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we write PP for the subgroup of all pseudo-principal ideals. We define the relative
pseudo-class group by

CL(L/K) = T/PP.

Remark. It is clear that PP is a subgroup of Z containing the subgroup of principal
ideals of L, and hence that Cl;(L/K) is a quotient of CI(L). In particular its order
is finite. In fact we have Cl;(L/K) = CI(L)/i(Cl(K)) = Coker(i). For example,
if CI(K) = 1, then CL;(L/K) = Cl(L). We also define the capitulation group as
ClL(K) = Ker(i).

The map I, — Ny k(1) on ideals induces a morphism Ny g from CI(L) to
Cl(K) and suggests the following definition.

Definition 3.2. The relative norm class group Clar(L/K) is the subgroup of Cl(L)
defined by

ClN(L/K) = Kel‘(NL/K).

Remark. As a subgroup of CI(L), Cly(L/K) is necessarily finite. If CI(K) =
1, then Cly(L/K) = CIL) = CL(L/K). We also define the group Cly(K) =
COkeI‘(NL/K) = CI(K)/NL/K(CI(L>>

As we defined the S-class group in the previous section for an arbitrary set S
of prime ideals, we can define the S-relative-pseudo-class-group and the S-relative-
norm-class-group by

Cli,s(L/K) = Cls(L)/i(Cls(K)) = CL(L/K)/(S),

Cly s(L/K) = Ker (CIS(L) Ny 015(1()) — ClLy(L/K)/(S).

3.2. Relations between class groups. We saw that when CI(K) = 1, the two
relative class groups are equal and coincide with CI(L). In the general case they
are not equal any more, but we can give some relations between them. We recall
here the exact sequences resulting from the definitions:

1 - QLK) — CQK) 5 QL) — CL(L/K) — 1,
1 - Cly(L/K) — cir) "5 cE) — Cw(k) — L

We denote by [m] the map on a group G consisting in taking the mth power. The
previous exact sequences remain exact if we take the p-Sylow of each group. If we
denote by d = [L : K] the degree of the extension, we have Ny i oi = [d].

Proposition 3.3. If p { h(K), then CI(K), = CLi(K), = Cly(K), = 1 and
ClL), ~ CL(L/K), ~ Cly(L/K)p,. These three groups are generated by the classes
of the same ideals.

Ifptd, then ClL(K), = Cly(K)p =1 and CL;(L/K), ~ Clyr(L/K)p. These two
groups are generated by the classes of the same ideals.

For a proof of this see [13]. Thus the two notions of relative class groups only
differ for the primes dividing (d, h(K)). We now give an example that shows that
these two groups are not always equal.

Example. Let K = Q(y) with > +30 = 0. The class group of K is of type Cy x Cy
generated by the ramified primes p3 and ps.
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Let L = K(z) with 22 —y = 0. In this case, we have (d,h(K)) = 2. The class
group of L is of type C4 x Cy generated by the (totally ramified) primes B3 (of
order 4) and s (of order 2). The relations N,k (B3z) = p3 and Nk (Ps) = ps
show that Cly(L/K) ~ C, is generated by 2. Moreover, the relations p3Z;, = 3
and psZp, = P? show that CL;(L/K) ~ Cq x Cy is generated by B3 and Ps.

4. NORM EQUATIONS IN (GALOIS EXTENSIONS

In the case where L/K is a Galois extension, the situation is quite simple and,

for this reason, we consider this case first. The results that we obtain are more
precise than in [7].

4.1. Proof of Theorem 1.1 for Galois extensions. Before proving Theorem

1.1, we study in detail the example of the introduction so that we can have an idea
of the general result.

Example. The extension L/K is the real quadratic extension Q(v/34)/Q of dis-

criminant 136. The fundamental unit is 6+/34 + 35 of norm +1. We have the
following relations:

Niyr((vV34+45)/3) = -1,
Niy((V3443)/5) = -1,
N ((5v/34+27)/11) = 1,
Ny ((5v/34 +3)/29) = —1,

Niyr((25V/34 +141)/37) = —1,....

Thus we can find S-units of norm —1 as soon as S contains one of the primes 3,
5, 11, 29, 37, ... . But it happens that the field L = Q(\/3—4) has a nontrivial
class group of order 2, and can be generated by primes above 3, 5, 11, 29, 37, ... .
The condition for —1 to be the norm of an S-unit seems in this case to be that S
generates the class group of L: this is exactly what we will prove.

We will always denote by S a finite set of prime ideals of the base field K, and
by abuse of notation (justified by the definition of S-units given in Section 2), by
the same letter S the set of all prime ideals above S for each finite extension of K.

Lemma 4.1. Let L/K be a Galois extension, S a finite set of prime ideals of K.
Let A be an S-integral ideal of K, and X,Y two S-integral ideals of L. Assume that
they satisfy the relation Ny ;i (X) = A- Ny, (Y) and that there exist prime ideals
P1,..., Pk of L (notin S) such that their product divides Y. Then there exist some
conjugates o1(p1), ..., 0k(Pr) of P1,..., Pk such that H1<i<k oi(p;) divides X .

Proof. This is easily proved by induction on k. U

Theorem 4.2. (Galois case) If L/ K is Galois and if Sy generates the relative class
group ClL;(L/K), then for all S D Sy

NL/K(UL,S) :NL/K(L*) ﬂUK,S

and NL/K(ZL,S) :NL/K(L) QZK7S.
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Proof. Let S O Sp. Both inclusions N7,k (Urs) € Np/x(L*) N Ugks and
NL/K(ZL,S) - NL/K(L*) NZk,s are obvious.

Conversely, let a € N, (L*)NUk s (resp. a € N g (L*)"Zk s) and 2,y € Z, 5
be such that Ny, x(z/y) = a. We can write Ny x(z) = aNy/k(y). Let [Tp: be
the prime ideal factorization of the principal ideal yZr, g. According to Lemma 4.1,

there exist some conjugates o;(p;) of the p; such that [] o;(p;) divides the principal
ideal 2Zr, 5. Let X be the S-integral ideal of L such that

rlr,s = HUz'(Pi) - X

We now use the fact that Sy generates the relative class group Cli(L/K). Each
ideal p; is So-pseudo-principal and can be written in the form p; = m; - q;Zr g,
where 7; is an element of L* and q; an ideal of K. This gives

yZr,s = Hm H 41,3,

and since ¢,Z;, s is fixed by o;, we also have

2Zlp,g = Hai(m) HinL,S - X.

Now if we set

w=(2/[Lostm)) / (w/ T] =)

we have Np /i (u) = a. The previous relations show that

and hence that u is an S-integer. The second equality of the theorem is then proved.
To prove the first one, it remains only to remember that if an S-unit a is the norm
of an S-integer u, then u is necessarily an S-unit. O

Corollary 4.3. Let L/K be a Galois extension such that the group ClL;(L/K) is
trivial, and a an integer in K, then:

The equation N, () = a has a rational solution if and only if it has an integral
solution.

More generally, if S is an arbitrary set of prime ideals whose classes generate
CL(L/K) and if a is an S-integer, then:

The equation Ny i (x) = a has a rational solution if and only if it has an S-
integral solution.

Example. We can illustrate this corollary by the following examples. All the
equations z2 + 9% =n, 22 4+ 2% =n, 22 +ay + 9y =n, 25+ y° +92° — 3zy? —
9z22 — 9y2z% 4+ 92yz = n, ... have a rational solution if and only if they have an

integral solution (they correspond to norm equations for Galois extensions with
class number 1).

4.2. Structure in the Galois case. In this subsection, we will use Tate cohomol-
ogy for the finite group G = Gal(L/K). For a description of this theory we refer
to [11] or to [2]. If A is a G-module, we have for example HO(G, A) = A /N (A),
where A% is the set of elements fixed by G and N(A) is the image of the norm

map. We also have (G, A) = yA/IgA, where y-A is the kernel of the norm
map and I is the augmentation ideal of Z[G].
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Let S denote a set of primes of K with the only condition that it is finite. We
first recall a standard lemma of Noether, which says that any ideal of norm 1 is a
product of ideals of the form 1971,

Lemma 4.4. (Noether) We have H=*(G,Zs(L)) = 1.
Theorem 4.5. For all S there exists a surjective map
H2(G,Cls(L)) . Npyg(L*) N Uks
Im(H-2(G,Zs(L))) Ni/r(UL,s)
If G is cyclic, this map defines an isomorphism
Cls (L) Npr(L*)NUk s
Cls(Zs(L)%) Nipyk(Ur,s)

Proof. Let denote by Ker the quotient (N7, x(L*) NUk.s) /Np/x(Ur,s). We first
notice that Ker is the kernel of the natural map

HO(G,Ups) — HOG, LY.

The short exact sequences

1—-Ups— L* — Pg(L) — 1,

1— Ps(L) - Is(L) - Cls(L) — 1
lead to the long cohomology exact sequences

H 4G, L") - H (G, Ps(L)) — H(G, Uy ) — H(G, L*),

H*(@,Zs(L)) — H™(G,Cls(L)) — HY(G, Ps(L)) — HHG, Is(L)) = 1.
F/‘}”om the first sequence g\nd if G is cyclic, Hilbert’s theorem 90 tells us that
H=Y(G,L*) = 1, so that H*(G,Ps(L)) = Ker. In the general case Ker is only a
quotient of H~*(G,Ps(L)). From the second one, we can see that H (G, Ps(L))
is always isomorphic to the quotient of H~2(G, Clg(L)) by Im (I?_Q(G,IS(L))). If

G is cyclic, we have H=2(G, *) = HO(G, ) (see [11]) so the last quotient is exactly
Cls(L)9/ Cls(Zs(L)9). O

The cyclic case of this theorem is a version of the “ambiguous classes formula”
given in [3].

If we denote by I the augmentation ideal of the ring Z[G], we can interpret the
group H=2(G, Clg(L)) as

(D (-1 @z, €Ig@zCls(L): [[257" = 1in Clg(L)}.
oceG o

This can be seen as a subgroup of Clg(L)!¢/~1. From this we can consider the
quotient of H~2 grotips in the theorem as a quotient of a subgroup of

(Cls(L)/ Cls(Zs(L)S) Y,

which is itself a quotient of Cl; g(L/K)I¢!=1. This is expressed in the following
corollary.
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Corollary 4.6. Let r = |G| — 1. For all S there ezists a subgroup Cl; g(L/K)™°
of Cli s(L/K)" and a morphism

¢: Clis(L/K)" — (N k(L*)NUks)/Np/k(ULs)
which is onto.

If v is an S-unit of K, then we have the trivial relation N, / r(u) = ullEl which
shows that the group (Np,x(L*) NUgk,s)/Np/k(UL,s) has an exponent dividing
[L : K]. This simple remark shows that in Theorem 4.5 (or in Corollary 4.6) it is

enough to consider the [L : Kl-parts of the class groups. For example we have the
following corollary.

Corollary 4.7. Let L/ K be a Galois extension and Sg a finite set of prime ideals
of K such that the cardinality of Cl; s,(L/K) is coprime to the degree [L : K] of
the extension. Then for all S O Sy

Niyk(Urs) =Npr(L*)NUks,
so that Theorem 1.1 is true with this Sg.

Remark. The assumption that [L : K] is coprime to | Cl; g,(L)| is not enough to
prove, as in Theorem 4.2, that all integers that are norms are norms of integers.
We illustrate this by an example.

Example. Let L/K = Q(+/229)/Q. The group CI(L) has order 3 (coprime to 2),
and is generated by an ideal p above 3. The integer 3 is a norm since

Ni k(16 — v/229)/3) = 3.

But it cannot be the norm of an integer x, otherwise this x would generate one of
the two ideals above 3, which are not principal.

We saw in subsection 3.1 that there exist at least two different definitions for the
relative class group. The following example shows that Corollary 4.7 is false if we
replace CL;(L/K) by Cly(L/K).

Example. Let K = Q(y) with y? —y — 26 = 0. The discriminant of K is 105 and
its class group has order 2 generated by the prime ideal po = 2Zg + (y + 1)Zxk
above 2. We consider L = K (z) with 22 + (—2y + 1)z — 158 = 0, so we have z* —
42122 + 24964 = 0. This field L is nothing but Q(+/105,+/737), with discriminant
10527372, In the relative extension L/K, —1 is a norm since

N (18808y + 87240) 4 (~352680y — 1625419) _
LK ((44y — 330)z + (1124y — 4777))3

The class group CI(L) is of type Cg x Cs, generated by a prime ideal B2 above pa
(above 2) of order 6, and a prime ideal P9 above 59 of order 2. We have

Niyr(B2) = p2 and Nz, (Pso) = (4y — 21)Zk.

Hence, the group Cly(L/K) = Ker(Ny, k) has order 6, and its 2-Sylow is generated
by Pso. If Corollary 4.7 was true with Cly(L/K) instead of Cl;(L/K), then —1
should be the norm of a 59-unit. We now prove that it is not the case.
The fundamental units of L are
up = 8y+ 37,
up, = (17952y — 8976)x + 777239,
uz = —18636936x + (18636936y + 243656915),
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whose norms are (8y + 37)2, 1 and 1, where 8y + 37 is the fundamental unit of K.
Therefore, the units cannot have any contribution to the norms. The supplementary
fundamental 59-units are given by

s1 = dx+ (26y —221),

8o = 230z + (—230y + 3237),
83 = 4y - 21,

S4 = 59.

We remark that s3 and s4 (together with 8y 4+ 37) form a system of fundamental
59-units of K, and for this reason they cannot contribute to the norms. The norms
of s; and sy are (8y +37) ! (4y — 21)? and —59(4y — 21). This proves that the only
unit which is the norm of a nontrivial 59-unit is (8y + 37), but not —1.

5. NORM EQUATIONS IN NON-(GALOIS EXTENSIONS

In this section we consider an extension L/K which is not necessarily Galois.
We call £/K its Galois closure. We denote by G the Galois group of £/K, and

by H the subgroup of G corresponding to the Galois extension £/L. We write
d=[L:K]and |H|=[L: L]

5.1. Preliminaries. Before proving Theorem 1.1 in the general case, we prove a
proposition relative to this case. With the previous notation, we have

Proposition 5.1. If S is a finite set of primes in K, then the group

(Noyx (L) VUk,s)/ Nk (ULs)
has an ezponent dividing both d and |H|-|Cl; s(£/K)|.

Proof. Because of the trivial relation a = N7,k (a), the first claim is obvious. For
the second one we apply Corollary 4.6 to the Galois extension £/K. O

Corollary 5.2. Let L/K be an extension such that d is coprime to |H| and Sy be
a finite set of prime ideals of K. If Sy is such that h = | Cl; 5,(£/K)| is coprime
to d, then for all S D Sy

Nipyxk(Ur,s) = Ny (L") N Uk s,
so that Theorem 1.1 is true with this Sy.

This corollary applies for example to Galois extensions (|H| = 1, this is exactly
Corollary 4.7). In the special case where d is prime, the degree |H| = [£ : L] must
divide (d — 1)!, so d and |H| are always coprime, and this corollary also applies to
this case. For small degrees (d < 5), the only extensions that are not dealt with by
this proposition are those with Galois group D4 (dihedral group of order 8) or S4
(symmetric group on 4 letters).

We shall now give an example where the group C1(£) (and not only CI(L)) must
be used.

Example. Let L/K = Q(z)/Q with 2* — 2® — 272% 4+ 3z + 149 = 0. This field is of
type Dy, and has discriminant 62525 = 52-41-61. Its class group is trivial, whereas
the class group of its Galois closure £ is of type Cy x Cy generated by two prime
ideals above 11 (or equivalently 79,151,181,191 ... ). All units of L have norm +1,
and therefore —1 cannot be the norm of a unit. However, we have the relation

Npjr((a® = 22° — 14z + 6)/11) = —1,
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which proves that —1 is the norm of an 11-unit. We have the further relations:

Ny k(282 + 52% — 341z + 63)/395) = —1,
Niyr((292° — 10222 — 2442 + 1156)/151) = —1,
Ny (682 — 13522 — 971x — 77)/905) = —1,

Ny ((202° — 322% — 177z + 510)/191) = —1,

which prove that —1 is the norm of a 79-unit, a 151-unit, a 181-unit, a
191-unit ... .

5.2. Proof of Theorem 1.1 for non-Galois extensions. In the case where the
extension is not Galois any more, the conditions on Sy are more restrictive and the
proof is more technical. It uses some ideas found in [1].

We introduce some additional notation.

If C' is a subgroup of the Galois group G, £¢ denotes the subfield of £ of those
elements fixed by the action of C (for example £ = L). The group Z[|G/C] is
the free abelian group generated by the elements of the quotient G/C, Z[G/C|¥
is the subgroup of Z[G/C] of the elements fixed by H (for left multiplication), and
Z[G /C)%H is the subgroup of Z[G/C] of all elements > a;0;C fixed by H, and such
that Y a; =0.

Easy computations in the ring Z[G/C] lead to the following lemma giving a
generalization of Noether’s Lemma 4.4 (also true for S-ideals).

Lemma 5.3. If 7 € Z[G/C)>H then the map x — a7 maps £C into the kernel of
the norm Ny, denoted by arL*. This also hold for ideals. Conversely, any ideal
of L of norm 1 over K is a product (over C and 7) of such ideals.

Proof. Only the second assertion needs some detail. Let I be an ideal of L whose
norm is 1 (or Zg s if we are dealing with S-ideals). For each ideal p of K, we
choose one ideal B of £ above p. Now if we factor I in £, this must be of the form
118", with 7 € Z[G]. Since B is fixed by its decomposition group Cy, 7 is in fact
in Z[G/Cy]. Since I is an ideal of L, it is fixed by H, and 7 € Z|G/Cgp]¥. Now
the triviality of the norm of I forces 7 to be in Z[G/Cq]%H. O

In the following, C' runs over all cyclic subgroups of G. Consider now the group
[1o =11c Clis(£¢/K) @ Z|G/C|%H, and note that if 7 € Z[G/C]*H | then I” =1
for any ideal I of £¢ fixed by G. This observation allows the construction of a map
from [] to Clg(L), defined by the formula ) 2, ® 7 — [[ 7(2;). By analogy with

Theorem 4.5, we write 7-752 for the kernel of this map. The next proposition is a
generalization of Theorem 4.5.

Proposition 5.4. (Non-Galois case) For all finite sets S containing the primes of
K ramified in L, there exists a surjective map

o Hg® — (Wi/w(L?)NUks)/Nojk(ULs).
Proof. Let > Ic; @ 7¢c,; be in H~2. We define ¢c as the composite of the maps
YIci®1ci — [lley) ™ =2Zrs = Npjk(z).

Using Lemma 5.3, we verify that this is a well-defined map. We have to prove its
surjectivity.
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Let @ € Ny x(L*) N Uk,s, and x € L* such that a = Ny k(x). According to
Lemma 5.3, the principal ideal zZj, ¢ has the form [] 7 g’z‘ Since we are looking
only at S-ideals, and S contains the ramified primes of £/K, the decomposition
groups C are all cyclic. Since the ideals I¢; are fixed by C and are unramified,
they can be considered either as ideals of £ or as ideals of £¢. Taking the classes
of Ic; in Cli g (QC/K), we build the element ) I_C,i ®Tcs € ’FZEQ

It is now an easy calculation to verify that the image of this element is exactly
a. O

The notation is the same as before, except that D only runs over the cychc
subgroups of G of prime power order. The group H? o is defined similarly to HC .

Theorem 5.5. (Non-Galois case) For all finite sets S containing the primes of K
ramified in L, there exists a surjective map

¢p: Hp? — Wir(L®)NUks)/Nok(ULs).

Proof. The definition of ¢p is exactly analogous to the definition of ¢¢ in Propo-
sition 5.4. We prove that Im ¢p D Im ¢ and use the surjectivity of ¢¢.

Let a = ¢c (> Ic,®7). Consider a cyclic subgroup C of G, of order |C| = [T p{".
Consider also D; its p;-Sylow. We have a factorization C = [ D;. We build the
groups ﬁl = Hj 4 Dj. Since the p; are disctinct primes, we can find a relation

S ds|Ds| = 1. Let now 7 be an element of Z[G/C]*H. We have

T = Zdl’ﬁle = ZdiTﬁia

where 7; = 7D; can be seen as an element of Z[G/D;]%H . Since ¢pc(Y. Io, @7) =
op (> Icr ® dim;), our claim is proved. O

From this theorem, it is immediate to derive an explicit version of Theorem 1.1.
We now make the assumption that Cl;(£/K) has order h coprime to the degree
d = [L : K]. Using successively information about Z[G/D]%# and Cl;(£P/K), we
can reduce the assumptions for Theorem 1.1.

Proposition 5.6. Let S be a finite set of prime ideals of K containing all ramified
primes of L/K, and such that Cl; s(£/K) has order h coprime to d = [L : K|. If
D is a cyclic subgroup of G of prime power order such that H NoDo~t =1 for all
o € G, then Cl; 5(£P/K) ® Z|G/ D)% C ﬁBQ and ¢p 1is trivial on this subgroup.

Proof. In the above statement we make a little abuse of notation. Indeed, we
will not prove this for the map ¢p, but for its composite with the map x — z".
Since h is coprime to d, the map = — 2" defines an automorphism of the group
(N k(L) NUk, ) /Ny k(UL,s), so the result remains.

Let {v;} be a system of representatives of G/D. If two elements n € H and
§ € D are such that ny; = ;0 for some ~;, then n = v;6v, 1 but the assumption
implies that 7 = § = 1. This means that we can choose {v;} and F' = {¢;} C G
such that {v;} is equal to H - F.

Let 7 € Z[G/D]>H =3 a;vi =Y ai jni¢;. Since 7 is fixed by multiplication on
the left by H, a; ; only depends on j, and we have 7 = (3° ;1) (3 a;¢;). Moreover
we have 3 a;; = 0 = |H| Y ay, hence 7 = (5 m) (¥ a; (5 — 1)),
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Now let I be an ideal of £P. The ideal I" is S-pseudo-principal in £, hence we
can find « € £ such that

= NE/L((ZEZL‘S)Z%(%_D) :NS/L(xzaj(¢j_1))ZL,S»
and ¢D<Ih®7-):/\/L/K<N2/L($ZGJ(¢J‘—1))):1. O

Corollary 5.7. Let Sy be a finite set of prime ideals of K containing all ramified
primes of L/K, and such that Cl; 5,(£/K) has order h coprime to d = [L : K].
Assume moreover that for all cyclic subgroups D of G of order p® with p | (d,|H]|)
such that D 0 H # {1}, we have Cl; 5,(£P/K), = 1.

With these assumptions, Theorem 1.1 holds.

Proof. Using Proposition 5.1, Theorem 5.5 and Proposition 5.6, we see that it is
enough to prove that Cl; 5,(£P/K); = 1 for each prime [ dividing (d, |H|) and each
cyclic subgroup D of order p®, with D N H # {1}.

Let D and [ be such that p#1. By Proposition 3.3 we know that Cl; s,(£P/K); C
Clis,(£/K); = 1. If p =1, then by assumption Cl; 5,(£"”/K); = 1. O

By a careful examination of the subgroups of GG, we can deduce two corollaries
of this proposition.

Corollary 5.8. (Dy-extensions) Let L/K be an extension of degree 4 of type Dy.
If Sy contains all ramified primes of L/ K and if Sy is such that Cl; 5,(£/K) and
Cl;,s,(L/K) have odd order, then for all S O Sp

Niyg(Urs) =Npyx(L*) Uk s
so that Theorem 1.1 is true with Sy.

Corollary 5.9. (S;-extensions) Let L/K be an extension of degree 4 of type Sa.
Let £°2 be one of the three conjugate cyclic subfields of £ of index 2 and containing
L. If Sy contains all ramified primes of L/K and if Sy is such that Cl; s,(£/K)
and Cl; 5,(£°2/K) have odd order, then for all S D Sy

Npyk(Urs) = Ny (L) NUk s
so that Theorem 1.1 is true with this Sy.

We shall give here an example which shows the necessity of the condition on the
ramified primes.

Example. Let L/K = Q(z)/Q with z* — 2% — 822 + 9z + 3 = 0. This field of
discriminant 25857 = 32 - 132 - 17 is of type Dy, and its class group is trivial. Its
Galois closure £ has also a trivial class group. The fundamental units have norm
—+1. If we forget the condition on ramified primes in Corollary 5.8, it should imply
that the equation N,k (z) = —1 has no solution. However, we find

Niyr((a® + 22 — 8z +3)/6) = —1.

This number factors in the form plpgl with p?p3 = 3, so it is a 3-unit, and 3 is
ramified because 3 divides the discriminant of the field L.

We remark that in this example, it is not enough to consider the discriminant of
£/L but really the discriminant of L/K (or equivalently the discriminant of £/K).

Indeed only primes above 17 ramify in the extension £/L, whereas 3,13 and 17
ramify in L/K.
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We can prove that this solution is unique up to the multiplication by an element
of norm 1. This example is therefore of a completely different nature than the other
ones where the solutions (up to elements of norm 1) were usually in infinite number,
parametrized by all ideals with given class in some class group.

5.3. The special case of extensions of Q. In Theorem 1.1 and in most of the
other results we claim the existence of a set Sy such that the groups N, /k(UL,s,)
and Ny, (L*) N Uk, s, are equal, and such that equality also holds for all larger
S. There exists some cases, where equality holds for some Sy but not for all S

containing this Sy. We give here a criterion for this to be true, and an example
where it is false.

Proposition 5.10. If N /x(Urs,) = Np/k(L*) NUk,s, and if Cly s,(L) has
order h coprime to d = [L : K], then for all S D Sy

Niyx(Urs) = Npyx(L")NUks.

Proof. Let S D Sy satisfy the conditions and a = N,k (z) € Ug,s. We can factor
the principal ideal 2Zj, g, in L:

olps, = | pi - [ 0 =11
p;€S pi¢S

Since Np/k(I') = 1, the definition of h makes the ideal I’ h Sy-principal. We then
have I' * = 2’7y, 5,. But N1k (%') is an Sp-unit, hence there exists y € Up, g, with
Nk (2) =Ny (y). Now let z =z /2": this is an S-unit. The relations

a" = Nk (x") = Np g (22") = Ny ()
hold, and this proves that a” is the norm of an S-unit. O

This allows us to consider the special case of extensions of Q with odd degree,

or the totally complex ones, because in these two cases the units that are norms
are well known.

Corollary 5.11. Let L/Q be an extension of degree d. Assume either that d is odd
or L/Q is totally complex. If the order h of CI(L) is coprime to d, then for all S

Niyk(Urs) = Npyjr(L*) N Uk s.

We now give an example in which the equality holds for Sy = § but does not
hold for some larger S.

Example. Let L/K = Q(x)/Q, with 23 — 22 — 412 + 93 = 0. This totally real
extension of degree 3 has discriminant 28212 = 22 - 3 - 2351 and has Galois group
S (so it is a non-Galois extension). It is clear that Ny ,g(Ur) = Ug. Consider now

S = {3}. We have
N jo((—32® + Tz + 31)/31) = 3.

This proves that 3 is a norm, but the solution has 31 in the denominator. We shall
prove that there is no 3-unit of norm 3. Suppose on the contrary that 3 is the norm
of a 3-unit s. We have 3Zp = pipy with Ny g(p1) = 3 and Ny g(p2) = 3, so we

can write

SZLp = pyp3?



1300 DENIS SIMON

with v; +v2 = 1. But the class group of L is cyclic of order 3, generated by p;, and
the principality of the ideal sZj, forces the relation v; +v3 =0 mod 3. These two
relations cannot hold together, which proves that 3 cannot be the norm of a 3-unit.

5.4. Existence of integral solutions. In this subsection, we are interested in
finding integral solutions & when the parameter « is an algebraic integer. We will
look for a generalization of Theorem 4.2 on the integers and the S-integers.

Remark. If we want the integers that are norms to be norms of integers, this should
first be true for units; such results are given by Corollary 5.2 or 5.7. It is also
necessary that all integral ideals that are norms be norms of integral ideals. The

condition for this is weaker than the one for integers and is the object of the following
lemma.

Lemma 5.12. Let L/K be an extension (not necessarily Galois) of degree 3, 4 or
6, Ix an ideal of K, and Ix = [[p?» its prime ideal factorization in K. Suppose
that I is the norm of an ideal I, of L, then for all prime ideals p of K there exists
a prime ideal B of L above p whose residual index fy,, divides vy,. In other terms,
any integral ideal which is a norm is the norm of an integral ideal.

Proof. Tt is enough to observe that in any partition d = 3 e; f; the ged of all the f;
is always one of the f;. |

Theorem 5.13. Let L/K be an extension (not necessarily Galois) of degree 3, 4
or 6 and Sy satisfying Npyx (U s,) = Nk (L*) N Ug,s,. If So also generates the
group Clyr(L/K), then for all S D Sy

NL/K(ZL,S) :NL/K(L) NZgs.

Proof. The inclusion Ny, g (Zr,s) € Np/x(L*) N Zk s is trivial. For the reverse
inclusion, let @ = Ny k(z) € Zgk,s. Lemma 5.12 asserts the existence of an S-
integral ideal I with norm aZg s,. Since the group Clyr s, (L) is trivial, we have
z7 ' = 297y 5,- But the norm of zg is an Sp-unit, hence is also the norm of an
So-unit y. We have the relations

a=Np/k(x)= Npyw(zzoy™).

Since zxq is an S-integer and y is an Sp-unit, the result is proved. |

Remarks. 1. Note that the condition of this theorem is really on the group
Cly(L/K) and not on Cl;(L/K) as for the other results.

2. When the degree is different from 3, 4 or 6, then Lemma 5.12 is not always true
and neither is Theorem 5.13. In degree 5 we can consider the following example.

Example. L/K = Q(z)/Q with 2%+ 3z —2 = 0. The number 7 is a norm because
Niyre((90z* + 82° + 342 + 24z + 281)/7) = 7.

The prime 7 splits into two prime ideals 3 and ‘B with residual index 3 and 2. If
7 is the norm of an integer z, then z has valuation v; and vy at P; and By, with
the relation 3v; + 2v5 = 1, which implies that v1 or v is negative, and hence that
z cannot be an integer. We can also remark that there are infinitely many primes

with this property, and this shows that there is no finite set S satisfying Theorem
5.13.
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There exist a great deal of extensions of degree different from 3, 4 or 6, which
satisfy Lemma 5.12. This is certainly the case for all Galois extensions, but also
for all extensions of type D, (dihedral group of order 2p with p an odd prime). It
would be interesting to give a characterization of such extensions in terms of the
groups G = Gal(£/K) and H = Gal(L/L).

6. NORM EQUATIONS: THE ALGORITHM

The algorithms we now describe were implemented in the PARI package for num-
ber theory, which already contains a large quantity of algorithms that we can use.
For example we assume that the fields K and L are completely known, in the sense
that we know their discriminants, integral basis, class groups, fundamental units,
and the corresponding discrete logarithms (for a description of these algorithms see
[4)).

For a proof of the algorithms of this section, see [13].

6.1. Algorithms for S-units. We give here the algorithm that computes a system
of fundamental S-units (modulo the units of K') together with the group Clg(K).

Let S = {p1,...,ps}, di1,...,d be the elementary divisors of the group CI(K),
and gi,...,8, the corresponding generators. We use the notation (A|B) for the
concatenation of the two matrices A and B. If V is a vector with k entries and U a

k x [ matrix, W = V' is the vector with [ entries defined by W; = [T, V4. Note
that (VA)B = VAB,

Algorithm 6.1. (Computation of Clg(K) and of a fundamental system of gener-
ators for Ug s/Uk)
1. Let

dy 0
M = .
0 d,
and V = (B1,...,0,) such that g% = B, Zx, with ; € K*.
2. Let M" = —(e;;) and V' = (a1, ... as) such that e; ; € Z, aj € K* and

p; = (H gf”) .

3. Compute a unimodular matriz U = (4 B) such that (M|M")U = (0|H) is in
HNF (Hermite Normal Form,).

4. Compute (W|W') = (V|V')V.

Results.

Cls(K) = [[(Z/H:.Z)g:,

7

and W is a fundamental system of generators for Uk s/Uk.

Remarks. 1. If we really want the elementary divisors of Clg(K), we have to take
the SNF (Smith Normal Form) of H, and not only its HNF. This amounts to left
multiplication by an invertible matrix, which corresponds to a change of basis on
the g;.

2. The matrix C of step 3 contains the valuations of the fundamental S-units
at the p; of S. TIts determinant is not zero. This matrix is only defined up to
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the multiplication on the right by some unimodular matrix. Hence, we can choose
the system of fundamental units with additional properties. For example, we can
obtain integral S-units if we take the HNF of C. We can obtain “small” S-units
if we LLL-reduce C. In this case, small means with small valuations on the prime
ideals. Note that the multiplication on the left of C' by a permutation matrix is
equivalent to a change of order of the p; in S.

Corollary 6.2. There exists a system of fundamental S-units which is formed by
integral elements of K.

If we keep the matrix C' of Algorithm 6.1, it is easy to express any S-unit as a
product of the fundamental S-units. It is also simple to solve the “principal ideal

problem” in Clg(K) if we keep the matrices H and D, and the vectors W and W’.
We have the two following algorithms.

Algorithm 6.3. (Discrete logarithm in Uk, s/Ugk)
Input: w e Uk s.
1. Compute F = (F;) such that uZg =[] pF*.
2. Z = C~'F has integral coefficients.
Result: We have u =] WiZi v’ where v € Ug.

Algorithm 6.4. (Principal ideal algorithm in Clg(K))
Input: I ideal of K.

1. Compute F = (F;) and o such that I = [[g" - a (this is the principal ideal
algorithm in Cl(K)).
2. Reduce F modulo H: F' =F — HZ.

Result: We have

(= () (T2 (D7)

6.2. How to compute relative class groups. We will not give a direct method
to compute these two relative class groups, because it is far beyond our task. For
the relative quadratic case, H. Cohen, F. Diaz y Diaz and M. Olivier in [5] give an
explicit algorithm for this, which can be extended to the general relative case. It is
preferable to use this relative algorithm when possible.

What we indicate here is the use of the definitions. Indeed Cl,(L/K) is a quotient
of CI(L), and [6] explains how to compute it from the knowledge of CI(L), CI(K),
and the map i. The same paper explains how to compute Cly/(L/K) as the kernel
of the norm map from CI(L) to CI(K).

6.3. General norms. The previous sections gave conditions on S which ensure
that all S-units that are norms are norms of S-units. The general strategy of the
algorithm that finds a solution of our equation Ny x(z) = a is to say that a is
an S-unit for a suitable set S. The remaining part of the algorithm consists of
“discrete logarithms” in the S-unit group, and linear algebra over Z.

The algorithm can be briefly described as follows.

Algorithm 6.5. (Find a solution to the equation Ny x(z) = a in L)
Input: K,L and a € K*.

1. Determine the set S using Algorithm 6.8.
2. Find an S-unit x such that Np, k (x) = a using Algorithm 6.9.
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Result: If step 2 gives some x, then it is a solution; otherwise the equation has
no solution in L.

In the following subsections we decribe this in more detail. Note that if we want
integral solutions (or S-integral solutions), then we can use Algorithm 6.10 directly.

6.4. Determine the sets Sy and S. If we want to find an integral solution to
the equation N, /k(7) = a where a is an integer of K, then any prime ideal that
divides a solution z also divides a, and hence for the set S it is enough to consider
all primes dividing a; that is, we can take Sy = 0. If we want a rational solution, we
have to add to the set of primes above a, a set Sy of exceptional primes satisfying
Theorem 1.1, that is S = Sy U {p | a}. Such an Sy is described in the previous
subsections.

We note that this set Sy only depends on the relative extension L/K and not at
all on the value of a in the equation Nk (z) = a. It can be computed only once
if we need to solve several norm equations in the same extension. For this reason
it is preferable to write separate algorithms.

Algorithm 6.6. (Compute the set Sy for Galois extensions L/K)
1. Compute the relative class group Cl;(L/K), and let g; be generators of the
[L : K]-part of this group.
2. Compute all prime factors of the ideals N (g:)-

Algorithm 6.7. (Compute the set Sy for non-Galois extensions L/K)

1. Determine the field £ and let b; be generators of the [L : K|-part of Cl;(£/K).

2. Determine G = Gal(£/K), H = Gal(£/L) and all cyclic subgroups D of G
of order p* with p | ([L: K],[£: L]) and DN H # {1}.

3. Compute the relative class groups Cl;(LP /K), and let g; be generators of the
p-part of these groups.

4. Compute all prime factors p; of the ideals in K under b; or g;.

Algorithm 6.8. (Compute the set S for the equation N7,/ (z) = a)

1. Determine the set Sy using Algorithm 6.6 or 6.7.
2. Factor a into prime ideals p; of K, and set S = So U {p; | a}.

Remark. Both Algorithms 6.6 and 6.7 can be simplified if we are able to find gen-
erators g; and h;, which are prime ideals, and this is in theory always possible.

6.5. Looking for solutions as S-units. In this paragraph, we give an algorithm
which solves the norm equation N7, / k() = a when a is an S-unit, and when we
require the solution x to be also an S-unit for a given S. As soon as we have

written z and a as a product of S-units, the problem reduces to a linear system.
The algorithm is as follows.

Algorithm 6.9. (Find a solution to N7,k () = a in Uy g)

1. Using Algorithm 6.1 compute a fundamental system {sq,...,sn} of S-units

of K, and {og,...,0m} of L, where sy and oo are the torsion units of order
wg and wr,, with wg | w.
2. Using Algorithm 6.3, compute a; and b; ; such that

a= Hsfl and Ny k(0;) = Hsf”
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3. Solve the linear system

for alli >0, Zbi,jxj = a4,
§>0

Zbo’jiL’j = ag mod Wk .
720
Result: The equation Ni/k(x) = a has a solution with x an S-unit if and only
if the linear system above has a solution in Z. A solution is given by

NL/K(HU;j) =a.

Remark. In step 2, ag is only defined mod wy. Since the norm of a torsion unit is
again a torsion unit, we have b; o = 0 for all ¢ > 0. In step 3 the linear congruence
bizi+- - +bpxy, = ag mod wg with n variables is equivalent to the linear equation
over Z with n + 1 variables bz + - -+ + bpzp + wrgxg = 0.

6.6. Looking for S-integral solutions. Suppose now that we want to solve
Ni/k(x) = a where a is an S-integer, and that we also want = to be S-integral for
a given S. The algorithm uses the fact that the prime factors of z are above the
prime factors of a, except perhaps some prime ideals in S.

If we write z and @ as products of prime ideals, the equation N7, /k(tZ,5) =
aZ,s reduces to a linear system (step 2 of Algorithm 6.10). The fact that zZr s
is a principal ideal gives a new linear system which must be solved simultaneously
with the first one (step 2 of Algorithm 6.10). The integrality of the desired solution
x implies that all the solutions of the system must be nonnegative. The number of
such solutions is finite (step 3 of Algorithm 6.10). For each solution of this system
we deduce an equality of the form N7,k (b) = a - u, where u is an S-unit, and b an
S-integer. It remains only to write the S-unit u as the norm of an S-unit to obtain
a solution of our problem (step 4 of Algorithm 6.10).

The algorithm is the following.

Algorithm 6.10. (Find a solution to N7,k (z) = a in Zg s)

1. Factorization: Compute the prime ideals p; (not in S) and the integers a;

such that aZyk s = []pi*. Compute also the prime ideals B; ; of L and the
integers e; ; and f; ; such that

pi = [0 and Noyae (i) = vl

2. Compute m; ;: Using Algorithm 6.1, compute a system of generators {gi}
of the class group Clg(L), and dy, the corresponding orders. Using Algorithm
6.4, compute the components m; j i of the ideals °B; ; on the generators gy.

3. Solve a linear system: Find all the tuples of integers (b; ;) satisfying the con-
ditions

for all 4, Zfi,jbi,j = a;,
J

for all k, Zmi’j’kbi,j =0 mod dy,

29

Oébijgai.

)
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4. Kill the spurious S-units: For each tuple (b; ;) find an algebraic S-integer b of

L such that bZy, s =[] &]3?;, and let u be the S-unit such that N7, /i (b) = a-u.
Using Algorithm 6.9, try to find an S-unit v such that u = N,k (v).

Result: If step 3 or step 4 has no solution, then the equation has no solution in
S-integers. Otherwise the S-integer bu~" is a solution.

Remark. Tt is easy to adapt this algorithm to obtain all the solutions up to S-units.
If we are only interested in the equation Ny x(x) = a - u, then it is also possible
to adapt the algorithm.
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