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ON THE LEAST PRIME PRIMITIVE ROOT MODULO A PRIME

A. PASZKIEWICZ AND A. SCHINZEL

ABSTRACT. We derive a conditional formula for the natural density E(q) of

prime numbers p having its least prime primitive root equal to g, and compare
theoretical results with the numerical evidence.

1. THEORETICAL RESULT CONCERNING THE DENSITY OF PRIMES
WITH A GIVEN LEAST PRIME PRIMITIVE ROOT

Let us denote, following Elliott and Murata [4], by g(p) and G(p) the least
primitive and the least prime primitive root modp, respectively. The first aim
of this paper is to derive from the work of Matthews [5] a conditional (under
the generalized Riemann hypothesis) formula for the density of primes p such that
G(p) = q, where ¢ is a given prime, and to compare this formula with the numerical
evidence. Next we give for each prime q < 349 the least prime p such that G(p) = q,
if such p exists below 23!, and we compare G(p) with (logp)(loglogp)?, which,
according to a conjecture of E. Bach [2], is the maximal order of G(p) (ie., 0 <

. G(p) . . .
lim sup oz p)(log g 7 < 00). We also numerically investigate the average value of
the least prime primitive root.

In order to formulate the theorem, we denote by p, the nth prime and, for a
given set M, by | M| its cardinality. Now we can state

Theorem. Assume that the Riemann hypothesis holds for each of the fields Q(/1,

Wpi,..., %/Dn), where k = le.m. I; is squarefree. Then the set of primes p such
that G(p) = pp, has a natural density equal to

n

(1) E(pn) = Z (_1)m—1Am *Cm,n,

m=1

where

A = 1-— 1—(1—— ,

(-5 0-05) )
1

(2) cmn= 5 Z H (1+dmp) + H (1+ (=1p)dm.p)

[M|=m peEM—{2} peEM—{2}

MC{p1,p2,---sPn}
Mapn)
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oot (1= (23)) (55 (- (3) )

The above formula for ¢, , is due to the referee, which we gratefully acknowledge.
The expression given in (2) can be efficiently evaluated using a generating function
approach. Our original formula was less suitable for computation.

The proof is based on two lemmas, in which the letters p, q,r, are reserved for
primes and log, = loglog z.

and

Lemma 1. Let M = {rq,...,rm} be a set of primes,
Ny (z) ={p <z: everyr in M is a primitive root modp}.
On the assumption of the Riemann hypothesis for each extension
QUVL, /i,y 'W/rm),
where k = l.c.m.l; is squarefree we have
|Nw(2)] = Apr - Liz + Oy (Liz(log z) ~* (log, a:)2lMl_1),

where Ay is defined as follows.
Let ¢(p) be the natural density of the set

{q:q = 1(modp), at least one of T1,...,Tm is a pth power residue modr}
and let €(p) = 1 — c(p). Also let G(rl,...,rm) denote the set of numbers of the
forma=r'---rim = 1(mod4), &, =0 or 1, and finally let

c(p)
fla) = .
(@) H 1—c(p)
Then
(3) Av=]Tew) > fla).
i=1 a€G(T1y.sTm)

Proof. This is how Theorem 13.2 of Matthews [5] simplifies when his set M consists
of primes.

Lemma 2. In the notation of Lemma 1

-t (o3))

Proof. Let us put in Theorem 7.11* of [6] K = Q((p), L = Q(Cpy ¥/T15- -5 ¥/Tm),
where (, is a primitive root of unity of order p. The extension L/K is Abelian and
its Galois group is isomorphic to F}", a vector [ay,...,an] € F* acts on L by the
formula

/i — (o Yy (1< i <m).

Let, for a prime ideal q of K not dividing r1,...,7m, F1/k(q) be the Artin symbol,

ie., a vector [ai,...,a,] € F}" such that
Nq—1
(4) r; 7 = (modq) (1<i<m).

By Theorem 7.11* of [6] for each [ay,. .., an| € F}", the number of prime ideals g of

K with norm < z satisfying 'k (q) = [a1, ..., am], hence (4), is (]%m +0(1) o7
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If at least one 7; is a pth power residue and ¢ = 1(modp), gt r1,...,m, then for
each prime ideal q of K dividing ¢ we have in (1) at least one a; =0 (1 <14 <m).
The number of vectors [ay, ..., ay] in F}* with this property is p™ — (p — 1)™. To
each prime g = 1(mod p) correspond p — 1 ideals q of norm ¢. Since the number of
prime ideals with norm < x not being a prime is o( -5 gI) the lemma follows.
Proof of the Theorem. By the sieve principle the number N(z) of primes < x with
G(p) = pn equals

S (=)MEINy ()

McC{p1,...,pn}
(M9Pn)

(cf. [4, Lemma 10], for a similar formula concerning g(p)); hence by Lemma 1,

N(z) = Z (—=1)MI=T A Liz + Op(Liz(logz) " (logy )2 1)
MC{p1,.-,pn}
(Mapn)
and
(5) E(pa)= Y (=)Mtay.
MC{pi,..,pn}
(JVIEPn)

Now if M = {r1,...,7m}, we have by Lemma 2

=15 (- (- 2))

clp)
T
hence
(6) Ha(pi) = Am‘
i=1

On the other hand if M, = {r : r = emod 4}, the condition H;T=1 ry = 1(mod4)
is equivalent to

ep=0ifr, =2 and Z ey = 0(mod 2).

TMEJVI_1
Hence
M| [l
> => > Ildme > > Tl
a€G(r1,...,rm ) k=0 NCM, reN k=0 NCM_1reEN
IN|=k |N|=2k
) [ 4ty i )+ Tl )
- m,r) *
reM; 2
1
~ 3 H (L4 dmp) + H (=1p)dmp) ¢ »
peM—{2} peM— {2}

and (1) follows from (2), (3), (5), (6) and (7).



1310 A. PASZKIEWICZ AND A. SCHINZEL

2. RESULTS OF NUMERICAL INVESTIGATIONS
This section addresses two practical topics:

o It attempts to verify empirically the existence of positive densities E(py,) for
all primes having their least prime primitive root equal to p,. By formulas
(1) and (2), values of E(p,) for n < 25 have been computed. These values
were compared with the frequencies calculated empirically on computers.

o It attempts to answer the question of whether the average value of the least
prime primitive root tends to a finite limit.

The computation of E(p,) was programmed for all n < 25 with the aid of an
IBM PC (Pentium 100 Mhz) computer using Borland’s PASCAL compiler. Table
1 shows the results of the computation of FE(p,) according to formulas (1) and (2)

for initial values of n. The constants A, were computed with high accuracy and
are as follows:

Ap = 0.373955813619,
Ay = 0.026107446426,
A7 = 0.002430226781,

A1o = 0.000259105371,

Ars = 0.000029353746,

A1 = 0.000003425724,

Atg = 0.000000406471,

Az = 0.000000048730,

Ao = 0.147349400317,
As = 0.011565842109,
Ag =0.001140851399,
A1 = 0.000124792269,
A4 = 0.000014309885,
A17 = 0.000001680934,
Agp = 0.000000200235,
Agz = 0.000000024068,

Az = 0.060821655315,
Ag = 0.005251758060,
Ag = 0.000541435518,
A1z = 0.000060404308,
A1s = 0.000006994080,
A1s = 0.000000826053,
Ag1 = 0.000000098737,
Ag4 = 0.000000011896,

Ags = 0.000000005883.

The calculation was similar to that of Wrench [9].
One can prove that lim,_ o ﬁ =2

Note that F(2) is Artin’s constant and that F(3) = A; — Ay. The referee has
observed that E(pn+1)/E(pn) seems to tend to a limit, but we are unable to prove
or disprove this.

Additionally the frequencies of least prime primitive roots for prime numbers
from the interval [3,2147483647] were computed. The computations were done
on several IBM PC Pentium computers. The program for the computations was
optimized for 32-bit arithmetic. Results of computations are gathered in Table 2.
The correctness of computations was monitored in several ways.

e The number of generated primes. To verify the number of generated
primes that least prime primitive roots were searched for, the algorithm by
D. C. Mapes from 1963, for finding isolated values of the 7(z) function
(the number of primes < ) was used.

e Verification of the factorization of p— 1, where p is a randomly selected prime,
with the aid of procedures independently implemented by other people.

e Partial verification of computations by existing packages, e.g., GP/PARI,
Maple.

Let us denote by N(pn,z) the number of least prime primitive roots equal to
py, for primes not exceeding = and respectively by F(p,,z) the natural density of
primes not exceeding x, having their least primitive roots equal to py,.
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TABLE 1. Theoretical values of densities FE(p,) of least prime
primitive roots equal to p, for n < 25

3

Dn En
2 | 0.37395581
3 | 0.22660641
5 | 0.13906581
7 | 0.08639185
11 | 0.05640411
13 | 0.03669884
17 | 0.02468028
19 | 0.01691581
23 | 0.01159480
29 | 0.00799836
31 | 0.00561924
37 | 0.00394799
41 | 0.00280419
43 | 0.00200731
47 | 0.00144059
53 | 0.00103755
59 | 0.00075313
61 | 0.00054722
67 | 0.00040018
71 | 0.00029321
73 | 0.00021534
79 | 0.00015895
83 | 0.00011751
89 | 0.00008706
97 | 0.00006471
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Graphs of the functions E(p,,z) for primes p, < 32 and = < 21 - 108 are given
below. Figures 1-11 show us that the behavior of natural densities of primes with a
given least primitive root equal to a small prime number is extremely regular. The
functions F(py,z) for primes p, < 32 stabilize very early and at least four decimal
digits after the dot are constant.

Let us denote by E*(z) the average value of the least prime primitive root of
primes not exceeding z, that is

B (@) = 75 2. 60),

p<z
and the above sum is extended for all primes p less than or equal to z.
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TABLE 2. Frequencies of least prime primitive roots of prime num-
bers less than or equal to z = 2,000, 000,000. N(p,,z) denotes
the number of least prime primitive roots equal to p, for primes
not exceeding x.

Pn | Npn,x) | E(pn,@) | pn | N(pn,2) | E(pn, )
2 |1 36730667 | 0.3739545079 | 131 | 787 0.0000080124
3| 22258719 | 0.2266157680 | 137 | 632 0.0000064344
5 | 3659479 | 0.1390670022 | 139 | 471 0.0000047952
7 | 8486600 | 0.0864019792 | 149 | 362 0.0000036855
11 | 5539490 | 0.0563974854 | 151 | 248 0.0000025249
13 | 3603666 | 0.0366888830 | 157 | 183 0.0000018631
17 | 2424059 | 0.0246793174 | 163 | 139 0.0000014152
19 | 1662660 | 0.0169275228 | 167 | 98 0.0000009977
23 | 1139840 | 0.0116046982 | 173 | 75 0.0000007636
29 | 786125 0.0080035298 | 179 | 71 0.0000007229
31 | 551842 0.0056182972 | 181 | 53 0.0000005396
37 | 387927 0.0039494804 | 191 | 40 0.0000004072
41 | 275476 0.0028046181 | 193 | 39 0.0000003971
43 | 197240 0.0020080982 | 197 | 21 0.0000002138
47 | 140579 0.0014312332 | 199 | 22 0.0000002240
53 | 101667 0.0010350706 | 211 | 20 0.0000002036
59 | 73978 0.0007531692 | 223 | 8 0.0000000814
61 | 53542 0.0005451105 | 227 | 3 0.0000000305
67 | 39135 0.0003984330 | 229 | 2 0.0000000204
71 | 28765 0.0002928561 | 233 | 6 0.0000000611
73 | 20912 0.0002129048 | 239 | 4 0.0000000407
79 | 15548 0.0001582940 | 241 | 3 0.0000000305
83 | 11486 0.0001169388 | 251 | 3 0.0000000305
89 | 8462 0.0000861515 | 257 | 2 0.0000000204
97 | 6217 0.0000632952 | 263 | 2 0.0000000204
101 | 4721 0.0000480644 | 277 | 1 0.0000000102
103 | 3470 0.0000353280 | 283 | 1 0.0000000102
107 | 2498 0.0000254321 | 307 | 1 0.0000000102
109 | 1818 0.0000185090 | 347 | 1 0.0000000102
113 | 1419 0.0000144468 | 349 | 1 0.0000000102
127 | 980 0.0000099774
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FicUrRE 1. The natural density of primes with the least prime
primitive root equal to 2
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FIGURE 2. The natural density of primes with the least prime
primitive root equal to 3
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FIGURE 3. The natural density of primes with the least prime
primitive root equal to 5
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FIGURE 4. The natural density of primes with the least prime
primitive root equal to 7
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FIGURE 5. The natural density of primes with the least prime
primitive root equal to 11
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FiGURE 6. The natural density of primes with the least prime
primitive root equal to 13




ON THE LEAST PRIME PRIMITIVE ROOT 1315

—~

z%108

= 0,02466 4
= 0,02464
0,02462 +

123456 7 89 10111213141516 17 1819 20 21

T

FIiGURE 7. The natural density of primes with the least prime
primitive root equal to 17
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FIGURE 8. The natural density of primes with the least prime
primitive root equal to 19
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FIGURE 9. The natural density of primes with the least prime
primitive root equal to 23
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FicURE 10. The natural density of primes with the least prime
primitive root equal to 29
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FIGURE 11. The natural density of primes with the least prime
primitive root equal to 31

5,908
5,907
5,906
5,905
5,904
5,903
5,902
5,901
5,900

E*(x%108)

123 45 6 7 8 91011121314 1516 17 18 19 20 21

Zz

FIGURE 12. The average value E*(z) of the least prime primitive
root of primes < x



TABLE 3. Average values E* of least prime primitive roots of prime
numbers (primitive roots of prime numbers) not exceeding z - 10
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E*(z - 10®)

E*(x - 10%)

xT

E*(z - 10®)

5.9027080833

5.9063536374

15

5.9070799864

5.9054200778

9

5.9065722812

16

5.9070094456

5.9054950599

10

5.9066169463

17

5.9072094835

5.9052252014

11

5.9070787552

18

5.9071083838

5.9056411614

12

5.9072307772

19

5.9068949876

5.9064682273

13

5.9071263097

20

5.9070018498

glo o |ns |w v [~ |8

5.9066463619

14

5.9069476033

21

5.9072779365

TABLE 4. The growth rate of least prime primitive roots

G(p) p lci(gpzz lgg(g)p e¥log pc(l(:g) log p)?
2 3| 1.820478 | 1.657070 115.559706
3 1.541695 | 0.792274 1.953084
5 23 | 1.594644 | 0.508578 0.685570
7 41 | 1.884977 | 0.507591 0.614838
11 109 | 2.344741 | 0.499801 0.551000
19 191 | 3.617481 | 0.688745 0.738260
43 271 | 7.675667 | 1.370136 1.451413
53 2791 | 6.679980 | 0.841927 0.874297
79 11971 | 8.412988 | 0.895928 0.941673

107 31771 | 10.321899 | 0.995715 1.059694
149 190321 | 12.256850 | 1.008257 1.102962
151 2080597 | 10.379315 | 0.713444 0.812905
163 3545281 | 10.808210 | 0.716671 0.824196
211 4022911 | 13.874717 | 0.912359 1.051558
223 73189117 | 12.314619 | 0.680044 0.824189
263 137568061 | 14.034429 | 0.748917 0.917462
277 443571241 | 13.912348 | 0.698748 0.873004
307 565822531 | 15.232866 | 0.755831 0.948147
347 | 1160260711 | 16.625214 | 0.796535 1.011101
349 | 1622723341 | 16.456541 | 0.775982 0.990421

1317
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TABLE 5. The least prime numbers p < 23! and their least prime
primitive roots

G(p) | 9(p) p Factorization of p — 1
2 2 |3 2
3 3 |7 2,3
5 5 |23 2,11
7 16 |4 2(3),5
11 6 | 109 2(2),3(3)
13 13 | 457 2(3),3,19
17 17 | 311 2,5,31
19 19 | 191 2,5,19
23 10 | 2137 2(3),3,89
29 21 | 409 2(3),3,17

31 | 10 | 1021 2(2),3,5,17

37 | 14 | 1031 2,5,103

41 | 6 | 1811 2,5,181

43 | 6 | 2711 2,3(3),5

a7 | 6 | 14203 | 2(2),3(2),397

53 | 6 | 2791 2,3(2),5,31

59 | 38 | 55441 | 2(4),3(2),5,7,11
61 | 12 | 35911 | 2,3(3),5,7,19

67 | 6 | 57991 | 2,3,51933

71 | 22 | 221101 | 2(2),3,5(2),11,67
73 | 6 | 23911 | 23,5797

79 | 10 | 11971 | 2,3(2),5,7,19

83 | 69 | 110881 | 2(5),3(2),5,7,11
89 | 6 | 103091 |2,5,13(2),61

97 | 44 | 71761 | 2(4),3,5,13,23
101 | 6 | 513991 | 2,3(2),5,5711
103 | 35 | 290041 | 2(3),3,5,2417

107 | 10 | 31771 | 2,3(2),5,353

109 | 14 | 448141 | 2(2),3,5,7,11,97
113 | 33 | 2447761 | 2(4),3,5,7,31,47
127 | 6 | 674701 | 2(2),3,5(2),13,173
131 | 10 | 3248701 | 2(2),3,5(2),7(2),13,17
137 | 10 | 2831011 | 2,3,5,7,13,17,61
139 | 18 | 690541 | 2(2),3,5,17,677
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TABLE 5. (continued)
149 | 14 | 190321 2(4),3,5,13, 61
151 | 6 | 2080597 2(2),3,7,17,31, 47
157 | 33 | 4076641 | 2(5),3(2),5, 19,149
163 | 14 | 3545281 2(6),3(2), 5, 1231
167 | 33 | 11643607 2,3(2),13,17,2927
173 | 18 | 16135981 2(2),3,5,7,103,373
179 | 94 | 5100721 2(3),3,5,7(2),11,79
181 | 15 | 9633751 2,3,5(4),7,367
191 | 38 | 25400761 2(3),3,5,7,11,2749
193 | 15 | 25738831 2,3(3),5,13,7333
197 | 22 | 399263281 | 2(4),3,5,13,73,1753
199 | 6 | 37565431 2,3,5,7,41,4363
211 | 6 | 4022911 2,3(2),5,44699
223 | 6 | 73189117 | 2(2),3(3),7, 11,13,677
227 | 6 | 298155271 | 2,3,5,7,71,19997
229 | 6 | 741488749 | 2(2),3,7,11,13,61729
223 | 6 | 453507991 | 2,3,5,13,31,37511
239 | 12 | 187155691 | 2,3,5,1223,5101
241 | 14 | 449032321 | 2(7),3(2),5,11,19,373
251 | 22 | 672618871 | 2,3(3),5,7,11,32353
957 | 10 | 794932741 | 2(2),3(2),5,7, 630899
263 | 14 | 137568061 | 2(2),3(2),5,7,23,47,101
277 | 57 | 443571241 | 2(3),3,5,7,29,131,139
283 | 22 | 1095701881 | 2(3),3,5,7,13,19,5281
307 | 12 | 565822531 | 2,3(3),5,7,13,23029
347 | 15 | 1160260711 | 2,3,5,7(2),17,29,1601
349 | 6 | 1622723341 | 2(2),3,5,7,1151, 2557

1319
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It is still an open problem whether E*(x) tends to a constant value when x tends
to infinity. Table 3 and the graph of the function E*(z) for x < 2.1-10° (Figure
12) allow us to believe that E*(x) will really tend to a constant.

With the aid of computer programs, the average values of least prime primitive
roots were computed. Table 3 collects these values.

Table 4 registers the very first occurrence of a prime number as a least prime
primitive root greater than the previous one. With the aid of the table one can
approximate the growth rate of prime primitive roots. It can easily be seen that
the growth rate of the least prime primitive root of primes is well approximated by
small powers of logarithms of these primes.

E. Bach [2] surmises, giving probabilistic arguments, that

lim sup ———g—(ﬂ~—2 =e7
p—co 10g p(loglogp)

i

where « in the above formula is equal to the Euler constant 0.5772. ...

The validity of the above limit may be of great importance for practical purposes,
e.g., for primality testing. The existence a small primitive root of a prime number
is the basic assumption in many primality testing strategies.

Table 4 supports the correctness of Bach’s computations. In the Table 5 we
present minimal prime numbers p having prescribed least prime primitive roots g <
349, corresponding to G(p) = ¢, the least primitive root g(p), and the factorization
of p — 1. We see that all primes below 350 with the exception of 311,313,317,331
and 337 occur as the least prime primitive root of a prime less than 23!

3. CONCLUSIONS AND PROPOSALS FOR FUTURE INVESTIGATIONS

We derived a conditional formula for the natural density E(p,) of prime num-
bers p having its least prime primitive root equal to p,. For every prime number
from the interval [3,2147483647(= 23! —1)] the least prime primitive root has been
found. Under the generalized Riemann hypothesis, densities E(p,) of prime num-
bers having their least prime primitive root equal to the prime p,,, where p, < 100,
were computed (Table 1). These values were compared with empirical values (Table
2). The agreement of both: theoretical and practical results are surprisingly good.

Relying on the computed material, the average value of the least prime primitive
root has been found (Table 3).

It seems reasonable (Table 4) to majorize the value of the least prime primitive
root of a prime by a constant multiple of the square of the natural logarithm of that
prime. It would be useful to find a stronger theoretical estimate than that found
by Ankeny [1] on the extended Riemann hypothesis, namely G(p) = O(Y? log? V),
where Y = 2~ ]ogp and w(n) is the number of distinct prime factors of n. It
is highly probable that the estimate can be improved to the form G(p) < log' ¢ p,
where € can be any positive number as suggested by E. Bach.

We extended the investigations of least (unrestricted) primitive roots to the
bound 3 -10'°, but they were stopped because of highly time-consuming computa-
tions. The results will be submitted for publication in the near future. It would
be very useful to extend the computations of least (prime) primitive roots for all

primes p < 10! or higher, but for this project much more powerful machines should
be applied.
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NOTE ADDED IN PROOF

The computation described in the paper has been carried further, up to the limit

10*2 by A. Paszkiewicz and 10'* by Tomas Oliveira e Silva, University of Aveiro,
Portugal.
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