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POSITIVITY PRESERVING 
FINITE ELEMENT APPROXIMATION 

RICARDO H. NOCHETTO AND LARS B. WAHLBIN 

ABSTRACT. We consider finite element operators defined on "rough" functions 
in a bounded polyhedron Q in RN. Insisting on preserving positivity in the 
approximations, we discover an intriguing and basic difference between ap- 
proximating functions which vanish on the boundary of Q and approximating 
general functions which do not. We give impossibility results for approxima- 
tion of general functions to more than first order accuracy at extreme points 
of Q. We also give impossibility results about invariance of positive operators 
on finite element functions. This is in striking contrast to the well-studied case 
without positivity. 

1. INTRODUCTION 

Let Q be a bounded polyhedral domain in IRN, N > 2, with simplicial edge- 
to-edge partitions , with local mesh size hT = diam T for T E T. For ease of 
presentation in this introduction, we assume that the partitions T are shape-regular 
and also quasi-uniform; i.e., there exist two constants C1 and C2 such that 

For any simplex T E , the ratio of the radius of the smallest ball 
(1.1) containing T to that of the largest ball contained in T is bounded 

above by C1; 

and 

maxTEj hT < 
C2. 

minTE hT - 

With standard (slight) abuse of notation, we then simply write h for the mesh size 
maxTe, hT. 

Let Sk (Q; h) be the space of continuous Lagrange finite elements of total poly- 
nomial degree < k, with k > 1. We start with a brief review of some aspects of 
approximation theory into these spaces when positivity is not required. Letting 
4k 

(- ?k,h) be the standard pointwise interpolation operator at the nodes (the 
principal lattice points in each element), we then have that ?k is up to (k + 1)-th 
order accurate in Lp,(); i.e., 

(1.3) ||u - 
k(u)ttL,(Q) < Ch'|ullws(O), for integers s < k + 1, 
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provided also that N/s < p < o (see [1, Section 4.4] and [4, Section 16]). The 
condition ps > N guarantees, via Sobolev's inequality, that functions in 

Wp (Q) 
possess point values and hence that 4k(u) is well defined. 

The needs of numerical analysis of finite element methods for partial differen- 
tial equations has led to the construction of approximation operators defined on 
functions without point values, such as those in 

Wp(F() 
for ps < N (the case 

p = 1,s = N is exceptional in that then point values are defined). As typical ex- 
amples of such needs, in the context of second order elliptic problems, we mention 
the following: the a priori error analysis in the energy norm W2 (Q) of singular 
functions u c Ws((Q) with 1 < s < 2 [1, Section 5.8], [4, Section 18]; the basic 
residual-based a posteriori error analysis in W1 (Q), which requires approximation 
of functions in Wl (Q) [12, Section 1.2]; the local construction of Fortin's operators 
for mixed finite element methods, which deals with local approximation of func- 
tions in H(div; Q) [2, Section 111.3]; and the analysis of pointwise errors for function 
values (or gradients), which is often based on approximation of functions in W2 (Q2) 
(or WI (Q)) such as regularized Green's functions [1, Section 7.2]. 

Approximation operators as above necessarily involve averaging; we refer to 

Cl6ment [5], Hilbert [6], Scott and Zhang [10], and Strang [11] for details of dif- 
ferent such constructions and analyses of their properties. For approximation on a 
polyhedral domain, as is our present case, the Scott-Zhang operator ek 

(=- 
k,h) 

into the Lagrange finite elements is of particular interest for later comparison when 
we also demand positivity. We shall not actually define this operator, since it is 
somewhat lengthy to do so and not essential for our purposes, but we record here 
some of its properties [10]: 

6k satisfies (1.3) for all 1 < p < co provided s > 1 (which guaran- 
(1.4) tees that functions in 

Wpf(Q) 
have well-defined traces on &Q); also, 

if u = 0 on OQ, then 6k(u) = on OQ; 

and 

(1.5) 6k reproduces all the Lagrange finite element functions of degree 
Sk; i.e., ifu Sk(Q; h), then &k(u)= u 

For the analysis of finite element methods for variational inequalities [3] it is 
natural and sometimes instrumental to have approximation operators 3 (= 3h) 
which are also positive: 

(1.6) u > 0 implies 3(u) > 0. 

Of course, if u does have point values, then the piecewise linear pointwise interpola- 
tion operator ?1 is such a positive operator (but the general Lagrange interpolation 
operator 4k is not for k > 2). None of the averaging approximation operators of [5], 
[6], [10], [11] is positive. Moreover, simple truncation at the nodal values of 3(u) 
would enforce positivity for k = 1 (not for k > 2), but at the expense of linearity, 
a crucial and desirable property of 3. For rough functions without point values, a 
linear and positive operator 3 : L,(t) -- S-1(Q; h) has been introduced in Chen and 
Nochetto [3] with values into the spaces S (Q; h) of piecewise linear finite elements 
which vanish on OQ. 

For the purpose of discussing our major impossibility result, Theorem 1 below, 
it will be convenient to have a brief description of this operator. Thus let B(x, r) 
denote the open ball of center x and radius r, and note that the nodes xi of T are 
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the vertices of the simplices in the piecewise linear situation. For nodes xi which 
are interior to Q, we define the nodal value of 3 as the local mean-value 

1 
(1.7) x(u;xi) 

:= I u, 
meas(Bi Bi 

where Bi := B(xi, C3h(xi)) with C3 so small that it is contained in the star associ- 
ated with xi (i.e., the union of closed elements containing xi). At nodes xi on 80, 
we set 3(u; xi) := 0; thus 3(u) E S1( (; h) for all u E Lp(Q). 

It was shown in [3] that 3 satisfies (1.3) for u c 
Wp (Q) n W•l(Q), s- 1, 2, and all 

p > 1. Hence, 3 is second order accurate in Lp,(Q) for functions on W 2(Q) which 
vanish on 0Q. The two essential ideas involved in the proof are: 

* The simple averaging in (1.7) implies that all nodal values are nonnegative 
for nonnegative functions, whence 3 satisfies (1.6); 

* Due to the symmetry of the interior balls Bi with respect to xi, any locally 
affine function u would be reproduced locally, i.e., 3(u; xi) = u(xi). 

Then standard approximation theory for finite elements based on a circle of ideas 
involving local polynomial invariance (in the present case the local affine functions), 
in conjunction with some extra arguments from [10] to handle vanishing boundary 
values, gives (1.3) for s = 1 and 2. This circle of ideas has been pervasive in the 
finite element literature for more than thirty years now; see, e.g., Brenner and Scott 
[1], Brezzi and Fortin [2] and Ciarlet [4]. 

Let us now remark that it is not possible to ask for more than second order 
accuracy in positive approximation operators, if they are also required to be linear 
operators, no matter how smooth the functions to be approximated are. This 
is a classical result of Korovkin [7], given by him in the context of polynomial 
approximation with increasing degree on a fixed domain. His ideas translate to our 
finite element context, and thus one cannot achieve (1.3) with s > 2 for positive 
operators which are also linear, irrespective of the polynomial degree. 

We now turn to our basic problem in this paper: 
Is it possible to construct bounded and positive (linear) operators into 

S1 (Q; h) also for functions which do not necessarily vanish on aQ ? 

As already mentioned, if ps > N so that the function u has point values, we may 
simply use the piecewise linear Lagrange operator ?1. In order to motivate our 
impossibility result, we next consider two examples. 

Example 1.1 (First order approximation). Here we ask for positive operators 3: 

L,(p) --+ Si(Q; h), defined for functions without point values, which satisfy (1.3) 
with s = 1 for all p > 1. We construct 3 as follows: For interior nodes, let the nodal 
values be as in (1.7). At boundary nodes xi, let Di := B(xi, C3h(xi)) n Q and 

3(u; xi) :=1 J u . 
meas(Di) 

uD 
Since constant functions are locally reproduced, using standard techniques it is easy 
to verify (1.3) for s - 1 and all p > 1. However, at the boundary the domains Di 
are not symmetric with respect to the nodes xi, affine functions are not reproduced 
locally, and (1.3) is not satisfied for s = 2. 

We next attempt second order approximation for a simple domain in two dimen- 
sions. 
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Example 1.2 (Second order approximation?). Let Q be an L-shaped domain in 
the plane and let 3 : 

Wp1(Q) 
-+ S1 (Q; h) be defined as follows. For interior nodes, 

we again use (1.7). As for boundary nodes xi, we distinguish between three kind 
of nodes: the nodes which are interior to a boundary straight segment {4x}; the 
lone node at the reentrant (nonconvex) corner x R; and the five nodes at the convex 
corners {x{}. For xf, we let Li :=- B(x, 

C3h(xif)) 
OQ be a straight segment 

which is symmetrically placed around xs and in 0Q. Then we define the nodal 
value at 4x as the local line integral mean-value 

(u; ) = length(Li) j 
This is well defined since, for s > 1 and all p > 1, the functions in 

Wp (Q) have 

traces on 0Q. At x R, we may similarly place a small line-segment LR contained in 
(2 which is symmetric about xR and define the nodal value 3(u; xR) accordingly. 
Due to the symmetric placement of discs and line-segments, we have preservation of 
local affine functions and thus, so far, local second order accuracy. However, at the 
five convex corners xC, this idea breaks down. A similar symmetric line-segment 
would have to extend outside of Q. 

The problematic convex corners in Example 1.2 point to the heart of the matter. 
For a general polyhedral domain in RN, we have the standard notion of extreme 
points e: these are points on 0Q such that there is a supporting hyperplane at e; 
i.e., there is an affine function ae(x) satisfying 

(1.8) ae(e) = 0 and ae(x) > 0 for all x E Q,x e. 

Note that any bounded domain has extreme points. 
Now we are ready to give our major impossibility result (in the simplifying 

context when shape-regularity (1.1) and quasi-uniformity (1.2) are satisfied). With 
a fixed p < N, we are seeking linear approximation operators 3h into Sk (Q; h) which 
are positive and, as a basic minimal requirement, are also first order accurate: 

(1.9) |u - 
3Jh(U)|L,(n) < Chllu|llwi(n), for all u WP,(Q). 

Example 1.1 shows that such •h do exist. We now add a further demand which 
involves superlinear (higher than first order) approximation but only for the affine 
functions and only at an extreme point. With ao(x) = 1, a,,(x) = xn for 1 < n < N, 
we thus assume that 3h satisfies at an extreme point e, with some y > 0, 

(1.10) lan(e) - 3h(an; e) I C,hl+, for 0 < n < N. 

Theorem 1. Assume (1.1), (1.2), and let 1 < p < N, N > 2, k > 1. There do not 
exist positive linear operators 7h : W(•() -+ Sk(Q; h) which satisfy both (1.9) and 
(1.10) as h tends to zero. 

Note that, without the positivity requirement, the Scott-Zhang operator E sat- 
isfies (1.9) and (1.10), the latter being satisfied even in the stronger sense that 

S(an) - a , for 0 < n < N. 
We next present a result which complements and gives insight into the impos- 

sibility result of Theorem 1. The context now does not involve any finite element 

spaces but only a single operator 3 on the space C(Q) of continuous functions in 
0. 
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Theorem 2. Let 3 : C(0) -+ C(Q) be a linear, bounded, and positive operator. 
Let 3 reproduce exactly all affine functions: 3(an) = an for 0 < n < N. Then, at 
any extreme point e of Q, we have 

(1.11) 3(u; e) =u(e), for all u 0C(Q). 

Again, without the positivity requirement, the Scott-Zhang operator on any fixed 
mesh and for any k > 1 satisfies the basic assumptions of Theorem 2 but not the 
conclusion (1.11). 

Since second order accuracy in the finite element context is, essentially, equivalent 
to (locally) preserving affine functions, Theorems 1 and 2 together uncover the 
amazing and unexpected fact that, for a positive approximation operator 3 to be 
of second order, one does indeed need point values of functions at extreme points 
and 3 reduces to point evaluation at those points. 

The impossibility result, Theorem 1, and the complementing result, Theorem 
2, may be loosely described as results pertaining to (approximately) reproducing 
affine functions (either locally or globally). In finite element analysis it is often 
convenient if approximation operators also reduce to the identity operator when 
applied to functions in the finite element space. This is the case for the Scott- 
Zhang operator without the positivity requirement (see (1.5)). For the positive 
Chen-Nochetto operator, the situation is drastically different as is readily seen by 
applying it to a piecewise linear basis function. We refer to this new circle of 
problems as pertaining to (approximately) reproducing piecewise affine functions. 
We give, in the next two sections, results analogous to the impossibility result 
Theorem 1 and the complementing result Theorem 2 also for this circle of problems. 

We now outline the rest of the paper. It is organized in a way that does not cor- 
respond to the order in which results have been discussed so far. It rather reflects a 
natural grouping of results with respect to the techniques of proofs involved, and it 
also reflects a natural progression of these techniques. In Section 2 we prove comple- 
menting results such as Theorem 2 in the context of reproducing affine, respectively 
piecewise affine, functions. In Section 3 we derive corresponding impossibility re- 
sults such as Theorem 1. Finally, in Section 4 we discuss the limitation to second 
order accuracy imposed by positivity in the finite element context. We have not 
been able to find this extension of Korovkin's results to piecewise polynomial ap- 
proximation in the literature, but think it is of value to make it available to the 
numerical analysis community. The extension is not entirely obvious. 

Throughout this paper, C will denote a positive constant, not necessarily the 
same at each occurrence. It will always be independent of h unless otherwise 
specified. 

2. COMPLEMENTING RESULTS IN C(Q) 

We consider linear positive operators 3 which are bounded in the space of con- 
tinuous functions and reproduce affine or piecewise linear functions. The comple- 
menting result in the introduction, Theorem 2, as well as other companion results 
will follow from Theorem 3 below. We prove such a basic Theorem 3 in its simplest 
form and comment on possible extensions in Remark 2.3. 

Let C(Q) be the space of continuous functions on R, and let C(Q) be the subspace 
of functions which vanish on 0Q. The support supp(u) of a function u is the closed 
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subset of Q defined by 

supp(u) = closure of {x E : u(x) X= 0}. 

Note that the support may coincide with Q for a function in C(Q). 

Theorem 3. Let Q indicate either Q or 0 and let C(Q) be C(Q) or C(Q), accord- 
ingly. Let 3 : C(Q) -- C(Q) be a linear, bounded, and positive operator. Let xo E 
and fo, f+ E C(Q) satisfy 

(2.1) 3(fo; zo) = fo(xo) = 1, 

(2.2) f+(x) > 0, V x e Q\{xo}, 
(2.3) 3(f+; xo) 

=-0. 
Then 3(u; xo)= u(xo) for all uE C (Q). 

Proof. We first observe that it suffices to demonstrate the assertion for functions 
which vanish at xo. In fact, let w = u - u(xo)fo CE C(Q) which satisfies w(xo) = 0 
and 3(w, x0) = 3(u; x0o) - u(xo) because of (2.1). 

We next see by standard density (approximation) arguments that it is enough to 
consider functions w whose support avoids x0 (and avoids 0Q in case of functions 
which vanish on 09Q); i.e., supp(w) is a compact set in the set Q\{xo}. Hypothesis 
(2.2) yields the existence of a positive number a such that 

f+() + aw(x) > 0, Vx EQ. 
Using also (2.3), we then have 

o = 3(f+;xo) = 3(f+ aw; xo) T a3(w; xo), 
where the first term on the right is nonnegative regardless of the choice of sign. 
This implies that 3(w; x0o) = 0 and concludes the proof. O 

Our first corollary is Theorem 2 of the introduction. 

Corollary 1. Let 3 : C(Q) - C() reproduce all affine functions and let x0o be an 
extreme point of Q. Then 

3(u; xo) = u(xo), V u E C(Q). 
Proof. Simply take fo = 1 and f+ = a0o, the affine function of (1.8) associated with 
xo, and apply Theorem 3. O 

Corollary 1 pertains to reproducing affine functions. Our next two applications 
of Theorem 3 correspond to reproducing piecewise linear functions over T or, equiv- 
alently, to invariance of 3 in subspaces of S1 (Q; h). We recall that if {fj }jJ1 are the 
canonical piecewise linear basis functions, i.e., /j(xi) = %ij at nodes xi (including 
boundary nodes), then 

Sl(Q; 
h)= span {fj}J=1; note that 1 E Si(Q; h). 

Corollary 2. Let 3 : C(Q) -+ C(Q) reproduce the functions of S1(Q; h) and let xi, 
1 < i < J, be any node of the partition T. Then 

3(u; Xi) = u(xi), V u E C(Q). 
Proof. Take fo = Oi and f+ = 1 - i, and apply Theorem 3. 
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Let S1 ((; h) = span { }i)l=1 be the subspace of piecewise linear functions of 

S1 (Q; h) vanishing on Qt. Now letting Qo denote the union of all closed simplices 
which do not have any vertex on 80Q, we have 

I 

(2.4) lo(x):= i(x) = 1, VxEQo. 
i=-1 

Corollary 3. Let 3 : C(Q) --+ C(Q) reproduce the functions in S1(Q; h) and let xo 
be an interior node such that the support supp(bo) of its canonical basis function 
0o does not meet OQ. Then 

3(u;xo) = u(xo), V u e C(). 
Proof. Let fo = 0o, and set Eo = supp(qo). Since 60 does not intersect 0Q, we 
have by (2.4) that lo(x) = 1 for all x E Eo. Let f+ = lo - l o; then f+ > 0 in 

Q\{ox0}. Now apply Theorem 3. O 

Remark 2.1. Let Q = [0, 1] and T be a uniform mesh of size h = (I + 1)-1. Let 
{Zi x} 

be the interior vertices and {qi} 
4 the corresponding basis functions of 

SI (Q; h). Define 3 : C(Q) -- S, (Q; h) by 
I-1 

3(u) =- 2u(h/2)q1 + 1u(xi)oi + 2u(1 - h/2)?i. 
i=2 

Since this operator 3 reproduces S1 (Q; h), but does not reproduce point values at xl 
and 

xi, 
we see that our condition that supp(qo) avoids 0Q is necessary in Corollary 

3. 

Remark 2.2. Let h(x) be a piecewise linear mesh density function equivalent to the 
local mesh size of T. Consider the positive and bounded linear operator 3 : C(Q) - 

C(Q) given by 

3(u; x) = 
-?(u; x) + u(xo)h(x)m, 

where x0o E and m > 1 integer. Then 3 approximates affine or piecewise linear 
functions to any order m, but it does not reproduce them. We conclude that the 
invariance assumptions of Corollaries 1-3 are necessary to deduce that 3(u; xo) 
u(xo). 

Remark 2.3. The function f+ of Theorem 3 need not be strictly positive in the 
entire Q but rather locally. In fact, consider the case Q = Q and assume that for 
each y E Q there exists a nonnegative function f+ = f+(y, 

.) 
E C(Q) satisfying 

3(f+; x0) = 0 together with f+ > 0 in a closed ball B(y, p) C of center y and 
radius p = p(y); alternatively, for Q = R, assume f+ C(Q), and f+ > 0 in 
B(y, p) n Q. To show that the assertion of Theorem 3 still holds, one resorts to a 
finite covering argument of supp(w) in conjunction with a partition of unity. 

3. IMPOSSIBILITY RESULTS IN 
WP l() 

In this section we prove Theorem 1 and other impossibility results for N > 2 and 
1 < p < N. Their proofs hinge upon constructing suitable functions v in W1 (Q) 
and associated barriers 0o. As a motivation, we give first v and 0o for a simple 
and, we hope, illuminating situation. 
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Let F(Q) C C(Q) be a finite-dimensional space of functions containing the affine 
functions. Let 3 : W (Q) -+ F(Q) be a linear, positive and bounded operator, 
which reproduces all affine functions. Let x0 = 0 be an extreme point of Q, and let 
v = v. be given in polar coordinates by v(r) = log if r < e and 1 otherwise. A 

calculation shows that v E Wp(Q\) 
for all p < N and that 

lim,_o 
v = 1 in W1(0Q). 

Since all norms are equivalent in F(Q), we deduce that 13(u; 0)1 < CF|u|| w,(I() and 
that 

3(v; 0) --+ (1; 0) = 1, as E --+ 0. 

Since Q is polyhedral and xo is an extreme point, there exists a constant K > 0 
such that the affine function a of (1.8) satisfies 

(3.1) a(x) > Kx - xol, Vx EQ. 

We now set 4o(x) = E + iea(x) and realize that 0 < v < ?o in Q provided 3, is 
sufficiently large. Since 0o is affine, we arrive at the contradiction 

0 < 3(v; 0) ? 3(ko; 0) = o(O) = E. 
Consequently, there is no such operator 3. 

It is our intention to exploit such an idea for operators 3 which are just almost- 
invariant on the affine, or piecewise linear, functions (see (1.10) and (3.6) below). 
We give a general construction in Theorem 4, and we then apply it to specific cases 
in Corollaries 4-6. 

In contrast to the introduction, we now consider quite general finite element 
spaces S(Q; h) over general meshes T with some additional properties. We first 
assume that S(Q; h) satisfy the local inverse assumption 

(3.2) IIu1L,(.) < Cllh-,/PU•lL,(n), 
V u E S(F; h). 

Note that finite element spaces over shape-regular triangulations satisfy (3.2). 
Let x0 E be an auxiliary point to be chosen later. We assume that for each 

6 > 0 there exist a function v E W (Q) and a barrier function 
0o 

E W1 (Q) n C(Q) 
such that 

(3.3) Ilhl-N/PV(v - 
1)IILp(Q) + IIh-N/P(v- 1)llP(a) 

_ 
65 

(3.4) 0 <v(x) <o(x) Vx Z Q, and ?o(xo) < 1 
Let ho denote the mesh size at x = xo. 

Theorem 4. There exists no linear, bounded, and positive operator 3 : W (Q) -- 
S(Q; h) which satisfies, for some 7 > 0, 

(3.5) Ilh-NP(u - 3(u))IIL(Q) Clhl-N/(ll I ILP() V E W l(u), 
(3.6) 1 - 3(1; xo) + oo(xo) - 3(0o; xo) < Cahl, 
Note that (3.5) and (3.6) state that 3 is locally of first order in Lp(Q) and that 3 
approximates both 1 and 0o at xo, respectively. If the underlying meshes T are 
quasi-uniform, then (3.5) reduces to the more standard condition (1.9). 

Proof. Taking u = v- 1 and applying (3.2) together with (3.5) and (3.3), we obtain 

3(u; xo) I< C Ih-Nlp3(u)IIL,() < CIIh-N/J(3(u) - 
u)llL,(Q) + Cl h-N/PulIL,(o) 

< CI|hl-Nl(lIUI 
+ IVUI)IIL,(Q) + Cllh-N/PUll(LP~) < C6. 
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We now choose 6 and then ho sufficiently small and use (3.6) to deduce that 

13(v; xo) - < 13(v - 1; o) + 3 (1; xo) - I Cs + Cah < . 
On the other hand, in view of (3.4) and (3.6), for ho perhaps even smaller we arrive 
at 

S3(v; xo) ?< 3(o; xo) 13(•o; xo) - o0(xo) + qo(xo) < CQhJ + < 
This is a contradiction which proves the assertion. O 

Remark 3.1. As is easily seen from the proof, the assumption (3.6) can be replaced 
by the weaker condition 

(3.7) 1 - 3(1; xo) ? + 1o(xo) - 3(o; xo) = o(1). 

Remark 3.2. If the function 1 in (3.3) and (3.6) is replaced by the function 10 of 

(2.4), then Theorem 4 extends to the case 3 : W10Q) -- S(Q; h). 

We now give three applications of Theorem 4. We start with the simplest case 
p < N, which reveals the main idea. 

Corollary 4. Let xo be an extreme point of Q. There is no linear, bounded, and 
positive operator 3 : W, (Q) -- S(Q; h) with 1 < p < N which is first order accurate 
in Lp,(Q), i.e., satisfies (3.5), and is superlinear in the affine functions an at x = xo, 
namely, 

(3.8) ]an(xo) 
- 

3(an; o) = o(ho), 0 <n <N. 

Proof. Let v be radially symmetric and given in polar coordinates by v(x) = p(r) 
with r = ix - x0o and 

(3.9) p(r) , r 
`1, r > E. 

A simple calculation yields 

clV(v 
- 

1)IIL,(a) + Ilv - 1IIL,(Q) < CEN/p, 
which implies (3.3) provided e = ho()P/(N-P); thus h0 C . We have 

o p(r) < =: z (r), Vr 0 0. 
Let a be the affine function of (3.1) and let the barrier function 0o be given by 

a) (x)) a(x) 00(X) K= (eK _• 
We observe that 0o satisfies both conditions in (3.4), the latter with 0o(xo) = 0. 
To apply Theorem 4 it remains to verify (3.7) for Oo. In view of (3.8), we have 

]:3(o; xo) = '13(a; o)] K h o(1) = (1) --Ke - 

which implies (3.7). We finally apply Theorem 4 to conclude the proof. OI 

The second consequence of Theorem 4 is similar to Corollary 4 but with p = N. 
We observe that for this critical case we need a function p different from (3.9) since 
the ensuing function v does not satisfy (3.3) any longer. The rather tricky but 
elementary proof proceeds along the same lines as that of Corollary 4, but requires 
a property slightly stronger than (3.8). 

Corollary 5. Let (3.8) be replaced by lan(xo) - 3(an;x0o)l 
Chjo' 

for some 
y > 0. Then the assertion of Corollary 4 is also valid for p = N. 
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Proof. Let E, L be two parameters to be chosen later, the former small and the 
latter large. Let p be given by 

log e L < 
p(r) := 

1,o 

r 
>I 1(L > 1, r>e 

and set v(x) := p(Ix - x0o). We split the rest of the proof into several steps. 
1. We first note that an elementary calculation yields 

I|v - 1|ILN(Q) ? N-1/Ne < E 

VL(v 
- 1) ILN() ((L)1)1N ogel-1/N IF7(V - 

1)[[LN(Q ) -- 
(N(L. 1)_-1)IN 

I log 
lI_-1/N 

-CI logell-1/N, 

where wo < 7r is the interior angle of Q at x = x0 and C depends only on N. 
This shows that (3.3) holds for e < ho sufficiently small since L will be chosen 
independently of E (see (3.10) below). 

2. We now construct the barrier function 0o. We have for r < e 

p(r) = 
rLI log L 

p"(r) LI logL+2 (L + 1 -- log r), 
p( 

rl log 
rlL+l , 

' 

~lgl+ 

whence p"(r) < 0 if r < e-(L+1). Therefore, for e small, p is concave and 

0 
_ 

p(r) < p(ri) + p'(ri)(r - ri) =: p(r) 
for 0 < rl < e. In view of (3.1), we set 

Oo(x) := 
"- 

(()) 
3. With ho sufficiently small, let e, r1, and L be given by 

(3.10) e : iho ri := 61+y/2 1 < 1 

Since v(x) < qo(x) for all x E , and 

0 0(xo) = p(r) - rilp'(ri) < I ogel rL 
= 

1y/2)1 

we infer that (3.4) is valid. 
4. It remains to verify (3.6) for 0o. Since 

0o(x) = W o(xo) + 
'(l) a(x), p'(r) ? C 

lgh+-y/2 
O• 

invoking (3.8) we obtain 

:3(•o; xo) - qo(xo) I < Ch/21 log ho1~/2. 
This shows that (3.6) holds with an exponent < -/2. Finally, applying Theorem 4, 
we conclude the proof. O 

Corollaries 4 and 5 yield in particular Theorem 1 of the introduction. 
The above two impossibility results pertain to the topic of almost reproducing 

affine functions. We now turn our attention to the issue of almost reproducing piece- 
wise linear functions, or equivalently to quasi-invariance of S1 (Q; h). We note that 
the Chen-Nochetto operator 3 does not approximate the canonical basis functions 
qi with any order, namely, 

11 
- 

3(?i;xi)l 
> 

C > 0. 
Our last result in this section demonstrates that it is impossible to improve upon 
this. 
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Corollary 6. Let S(Q0; h) be a finite element space. For 1 < p < N there is no 

linear, bounded, and positive operator 3 : Wl () -* S(Q; h) (resp. 3 : (0)\ 
S(Q; h)) which satisfies (3.5), i.e., is first order accurate in Lp,(Q), along with the 
local pointwise error estimate for some y > 0 

(3.11) 1 - 3(10;x i) + - (i;xi)i Ch 
Here qi is the i-th canonical basis function of S1 (Q; h) for any node 

xx 
in 0 and 

10 is 1 (resp. xi is such that supp(qi) does not intersect OQ and 10 is the function 
defined in (2.4)). 

Proof. We consider first the case 
Wp 

(Q). Let v E 
Wp 

(Q) be either the auxiliary 
function of Corollary 4, for p < N, or of Corollary 5, for p = N; thus (3.3) holds. 
Let xo := xi and the affine function a(x) be replaced by the piecewise affine function 

&(x) := hi(1 - Oi(x)). Note that 

a(x) 2 Klx - xo|, V x c No, 
where No is the star around x0. The barrier function is now given by O0(x) := 
p( a() with o as in the proof of Corollaries 4 and 5, respectively. This time o (x) 
is constant outside No, but so is v(x), and the domination in (3.4) still holds. We 
then argue as before to check (3.6). 

On the other hand, when dealing with 
p(Q) 

we simply multiply both v and 

0o by the piecewise linear function 10 of (2.4). Since supp(?i) is interior to Q, we 
deduce that vlo0 is arbitrarily close to 10 in W•(Q), and o010o E (Q) is a barrier 
function satisfying (3.4) and (3.6). We finally apply Theorem 4 in conjunction with 
Remark 3.2 to complete the proof. O 

Remark 3.3. In view of Remark 3.1, (3.11) can be weakened, for 1 p < N, to 

1 - 3(10; xi) ? 1 - 3( i; = o(1). 

Remark 3.4. Consider the operator 3 : Wi () -- S1 (Q; h) given by 

3(u; X) := 2 

h•1 

= (X) + E ( UI 
i+l 

(X) ? , (X)+(X), 
i=2 , 

--I I 

where we are using the notation of Remark 2.1. We see that 3(01; xl) = -J(i; xi) = 

1 and thus (3.11) is valid at x - x1, x . This construction extends to N > 2 and 
N -1 < p < N as follows: if xi is a node connected to a boundary node xj through 
an element edge yij, we set 3(u; xi) = 2 f u. We deduce that the assumption 
on the support of qi is necessary in Corollary 6. 

4. RESTRICTION TO SECOND ORDER ACCURACY 

In this section we investigate Korovkin's classical result in the context of piece- 
wise polynomial approximation on finite element spaces S(Q; h) for general parti- 
tions T of Q. We prove, following Korovkin [7], that a linear, bounded, and positive 
finite element operator 3 cannot be more than second order accurate in L1 provided 
some additional, but natural, conditions on S(Q; h) and 3 hold. 

We consider the h-method; that is, we assume that there is an integer k > 1 
independent of T such that all shape functions of S(Q; h) are piecewise polynomials 
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of degree < k: for all u E S(Q; h), 

(4.1) UIT E IIk(T), V T E T. 

We further assume that the interpolation operator 3 is local: there is a function 
p(h) such that p(h) 1 0 as h = h(x) 1 0 and 

(4.2) 3(u; x) depends only on the values of u in B(x, p(h))n n, 
where B(x, p) is the ball of radius p centered at x. As is easily seen from (1.7), 
p(h) = C4h for the Chen-Nochetto operator. 

Let Xo E Co0(' ) be a nonnegative cut-off function which is 1 in a neighborhood 
of ~o, where Q0 C = is a fixed region in Q. Then for any function f E L1(Q) we 
may write 3(f; x) to mean 3(Xof; x) which, in light of (4.2), is defined only in terms 
of f provided x E Qo and the mesh size hT := lhIL.(Q) is sufficiently small. We 
also assume that 

(4.3) I13(Xo)IIL.(c n ) < C 

with C independent of T. We then have the following result. 

Theorem 5. Let T be a general edge-to-edge partition of Q, and let 3 : C(Q) 
-- S(Q; h) or 3 : C(Q) -+ S(Q; h) be a linear, bounded, and positive operator which 

satisfies (4.1)-(4.3). Then, for hc sufficiently small, we have 

C meas(Qo) <Ih-2(Ix12 - 3(IyL2;x))IIL (?o) 
N 

(4.4) + E h-2(Xn 
- 

(Yn; X))L(o) 
n=1 

+ lh-2(1 - 3(1;X ))ILL(o) 
Remark 4.1. A positive operator 3 must thus fail to be more than second order 
accurate already on one of the local polynomial functions Ix12 = nN1 Xn,X 
(1 < n < N), or 1 (even with the error measured in L1, the weakest Lp space). 

Remark 4.2. Theorem 5 does not demand any regularity of the meshes, not even a 
maximum angle condition. 

Theorem 5 relies on a classical result of Korovkin for polynomial approximation, 
Lemma 4.3 below [7, Theorem 17, p.128 and p.132]. For the reader's convenience, 
we give a proof following Lorentz [8, Theorem 3, p.94], for which we need two 
preliminary results. A positive operator satisfies 

(4.5) I3(f; x) <5 3J(fl;x), Vx E 

together with the Cauchy-Schwarz inequality 

(4.6) 3(fg; x)l2 < :(f2;x)3(g2;x), V E Q. 

The inequality (4.5) results from applying 3 to Ifl f > 0, and (4.6) is a consequence 
of the following nonnegative quadratic expression in A E IR: 

0 < 3((f + Ag)2; x) = 3(f2; x) + 2A3(fg; x) + A21(g2; 2). 

For notational convenience we introduce the following error functions: 

o(x) = (1; x) - 1, el,n() = 
(Yn; ) - Xn, e2() = (12; X) - X2, 

where 1 < n < N. Korovkin's result is now the following. 
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Lemma 4.3. Let 3 be a positive linear operator, and let t E E2 be arbitrary. Then 

3(ly - tl;x) - Ix - tll < x - tlleo(x) 

(47) + 3(1; x)1/2 (e2(x) - 2 xe,() x2eo(x) 1/2 
n=1 

Proof. We have, by the triangle inequality, 

Ily - t - tx - tll ?ly -X. 
Since Ix - tj acts as a constant for 3, we can write 

•(Y - tl;x) = J(ly - tj - Ix - tl;x) + Ix - tl1(1; x), 
whence, using that 3 is positive together with (4.5), we get 

13(y- tl;x) - Ix - tll < Ix - tl 3(1; x)- 11 + 3(iy- xI;x). 

In view of (4.6), we then obtain 

32(ly - x; x) < 3(1; x)3(ly - x12; x) 

= 3(1; x)(3(lyl2 - 2y- x + Ix1; x) -_ x1 + 22 x - x)12 
N 

- 3(1; x) ((3(|y12;x) - Ix2) 
- 2 

xn(3(yn; x) - 
xn) 

+ IX (3(1; x)2 - 1)). 
n=1 

This proves the assertion. Ol 

The following three lemmas will enable us to prove Theorem 5 without any shape 
regularity assumption on the mesh T. 

Lemma 4.4. For any simplex T in RIN let P be a parallelipiped with a vertex at 
a vertex V of T and edges given by 1/N times the edges of T meeting at V. Then 
Pc T. 

Proof. This is clear using barycentric coordinates. Ol 

Lemma 4.5. Let Hk (-d, d) be the set of polynomials of degree < k on the interval 
(-d, d). There exists a constant C, depending only on k and N, such that 

mm n r Ir- _O(r)2rN-dr > Cd2+N. 
oEnk (-d,d) J-d 

Proof. Scaling to (-1, 1), with ?p(r) E IIk(-d, d) corresponding to 0(p) = d-1p(dp) E 
IIk (-1, 1), we obtain 

j r - p(r) 2 Nldr = 2+N J INpI - (p)12 pN-1dp 

Since Hk(-1, 1) is finite dimensional and Ip|I IIk(-1, 1), the assertion follows. O 

Lemma 4.6. Let T and P be as in Lemma 4.4 with one edge of P on one of the 
longest edges of T, and let t be the center of gravity of P. There exists a constant 
C > 0, solely depending on k and N, such that 

min Ill-tl- IIL2(T) > Ch(t) meas(T)1/2. 
EnIk(T) 
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Proof. We may assume for ease of notation that t = 0. One edge of P is on one 
of the longest edges of T, of size h(t); we let S1 and S2 be two parallel faces of P 

separated by h(t)/N. Let P1 and P2 denote the two pyramids formed by S1 and 

t, and S2 and t, respectively. Then meas(PI U P2) is a fixed fraction of meas(T), 
depending only on N, namely, 

N! 
meas(P1 U P2) = 

2NNmeas(T). 2NN 

Introducing polar coordinates on P1 U P2, we can write 

S-d( 0)rNdrdw(0), 

where the integration in 0 extends over the appropriate set of polar angles E. Since 

by construction d(O) is comparable to h(t), Lemma 4.5 gives 

I Pxl - p(x)1 2dx > Ch2+N dw(0) 

J -d() >?Ch 2 
eJ -d( N-i'drdw(0) = Oh 2 meas(T). 

This proves the lemma. O 

Proof of Theorem 5. We recall that Xo is a cut-off function which is 1 in a neighbor- 
hood of Qo, and that we write 3(f; x) for x E z•0 to mean 3(xof; x). Since 3 is a local 

operator, that is, 3 satisfies (4.2), we infer that the definitions of 3(lyl2; x), 3(yn; x) 
and 3(1; x) are unaffected by the choice of Xo if x E o for hT sufficiently small. 
We thus conclude that (4.7) is valid provided both x, t E 

•0o. 
Let T be a simplex 

in T contained in Q0, and let t be as in Lemma 4.6. Since Q is bounded, using 
Lemmas 4.6 and 4.3, we see that 

Ch(t)2meas(T) 
JT (Ix- tlleo(x)I 

N 

+•1/2(xo; 
X) (le2(x)|+2 S e,(x) nl+|IXl21eo(X) )1/2)2 

n=1 

N 

<C(h2(t) 11e2 JL(T) + 

jje21L(T)-+ 
el,nl Ll(T) + Ile OILi(T) 

n=1 

N 

< C (I e2IL,(T) 
+ Iel, LLl(T)+ 

0eoL,(T)), n=1 

where we also used (4.3) in the last two steps. Equivalently, we have 
N 

Cmeas(T) C(Ih2e2L(T) 
+ h-2el,nl ,(T) 

+ Ih-2eo L(T)). n=l 

Let Q0 be the union of all simplices of T contained in o0. Then 
N 

Cmeas(Qo)< ( lh-2e211L((o)+ Ilh-2eI,nll()+ -2eo L(o) 
n=l 

For he sufficiently small, meas(Qo) is comparable with 
meas(•o), 

which gives the 
desired lower bound. The proof of Theorem 5 is thus complete. Ol 
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Remark 4.7. Even though it does not pay to enlarge the range of 3 beyond S1 (Q; h) 
to increase the rate of convergence, one may wonder about positive interpolation 
operators 3 with larger range. As a simple example, consider the following con- 
struction for N = 1: let S2(Q; h) be the space of continuous piecewise quadratics 
over T, and, on the master interval (0, 1), set 

3(u; x) = u(0)(1 - x) + u(l)x + (2u(1/2) - (u(0) + u(1)))x(1 - x). 
The range of 3 is all the piecewise quadratics, 3 reproduces the piecewise linears, 
and : is positive since 

3(u; x) = u(0)(1 - x)2 + u(1)x2 + 2u(1/2)x(1 - x). 

Obviously, such an operator cannot also preserve quadratics locally as this would 
violate Theorem 5. In fact, x2 is not preserved in this example. 
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