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DERIVATIVE SUPERCONVERGENT POINTS 
IN FINITE ELEMENT SOLUTIONS 

OF HARMONIC FUNCTIONS- 
A THEORETICAL JUSTIFICATION 

ZHIMIN ZHANG 

ABSTRACT. Finite element derivative superconvergent points for harmonic 
functions under local rectangular mesh are investigated. All superconvergent 
points for the finite element space of any order that is contained in the tensor- 
product space and contains the intermediate family can be predicted. In the 
case of the serendipity family, results are given for finite element spaces of 
order below 6. The results justify the computer findings of Babulka, et al. 

1. INTRODUCTION 

Derivative superconvergent points are those special points where the convergent 
rate of the derivative of the finite element solution exceeds the possible global 
rate. This phenomenon has been analyzed mathematically because of its practical 
importance in finite element computations. For literature, the reader is referred 
to [3], [6]. So far, most superconvergence investigations have concentrated on the 
second-order elliptic problems, especially the Poisson equation. In 1996, Babuika 
et al. developed a "computer-based proof' [2] that predicted all superconvergent 
points not only for the Poisson equation, but also for the Laplace and the linear 
elasticity equations, on four mesh patterns of triangular elements and on three 
families of rectangular elements of degree n, 1 I n < 7. The actual superconvergent 
points were located by a computer algorithm and up to 10 digits were provided in 
their reported data (see also [1]). 

The main assumptions in [2] are (a) there is no roundoff error, (b) the mesh 
is locally translation-invariant, and (c) the solution is sufficiently smooth locally 
and the pollution error is under control. The central idea is to majorize the finite 
element solution error by a polynomial of one degree higher than the finite element 
space being used. Therefore, the search for superconvergent points is transferred 
to a search for intersections of some polynomial contours. At this moment, the 
computer is used to actually locate those intersections. 

In an earlier work [7], the author analytically located those intersections which 
represent superconvergent points for the Poisson equation under local rectangular 
meshes. The result justified those computer findings in [2]. 
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The current investigation is the continuation of this previous effort. Here the 
harmonic functions (solutions of the Laplace equation) are of concern. We shall 

study the derivative superconvergent points for harmonic functions under local 

rectangular meshes. While results for the tensor-product space and intermediate 
elements are the same as those for the Poisson equation, superconvergent points are 

quite different for the serendipity family. In fact, the situation is more interesting 
and "nontrivial" for the harmonic functions with the serendipity element. It is 
known from previous results [2], [7] that there are no derivative superconvergent 
points for the Poisson equation for even order n = 2k > 4 serendipity elements 
and there are only three derivative superconvergent points for Poisson equation 
for odd order n = 2k + 1 > 3 serendipity elements. However, there are plenty of 
derivative superconvergent points for harmonic functions in both even and odd order 

serendipity elements, which we shall demonstrate in this work. Indeed, derivative 

superconvergent points are much richer for harmonic functions than for the Poisson 

equation. Again, theoretical results in the current article justify the computer 
findings in [2]. Note that in the theoretical analysis there is no need for assumption 
(a) in the computer-based proof. 

We would like to point out that most of the superconvergent points for harmonic 
functions are not symmetry points in the sense of [5] by Schatz, Sloan, and Wahlbin, 
and therefore cannot be predicted by the symmetry theory (see also [6]). 

2. ORTHOGONAL DECOMPOSITION OF PERIODIC POLYNOMIALS 

We shall make assumptions (b) and (c) from now on. The basic result from 

previous works along this line is that the task of finding derivative superconvergent 
points can be narrowed down to a master cell or equivalently to the reference 
element K = [-1, 1]2. This is based on the key observation that when the exact 
solution is sufficiently smooth and the local mesh is translation invariant, then the 
finite element approximation local error can be majorized by the approximation 
error to polynomials of 1 degree higher (than the finite element local space), an 
error which behaves periodically. Naturally, we need to introduce PP,(K), the 

space of periodic polynomials of degree not greater than n on K. That is to say, for 

any f E PPn (K), f is a polynomial of degree (< n) that satisfies f(x, 1) = f(x, -1), 
f(1,y) = f(-1, y). 

The characteristic of the space PPn (K) is the following lemma which is proved 
in [7]. 
Lemma 2.1. 

PPU(K) = Span{1, k(X), k(y),k = 2,3,... ,n; i(x)(j(y),i +j < n,i,j 
_ 

2} 

with 

4k+1(X) 
2k + 1 Lk(t)dt, k > 1, : 

-1 

where Lk is the Legendre polynomial of degree k on [-1, 1]. 

Further, we consider the orthogonal decomposition of PPn(K) under the Laplace 
operator. Toward this end, we define 

Tn(K) = {u E PPn(K) I VuVv 
= 0 Vv PPn-1(K)}. 



SUPERCONVERGENT POINTS FOR HARMONIC FUNCTIONS 1423 

Then by the Gram-Schmidt process, we can decompose PP (K) into 

(2.1) PPn(K) = PPo(K) 2(K () e ... E Dn-1 (K)' n(K). 

Note that PPo(K) = Span{1} and i'1(K) = {0}. 
Let Vn(K) be the finite element local space on the reference element. Then we 

have the following result (see [2], [6], and [7] for the proof). 

Theorem 2.1. Under assumptions (b) and (c), derivative superconvergent points 
of Vn (K) along the x-direction for the Poisson equation are the intersections of the 
contours 

Ox -- O E 
In+1(K)}, where 

4n+l(K) 
-= { E PPn+1(K) \ Vn(K) I V 

=- 
0 Vv E V,(K)}. 

Let 
Pn(K) 

be the space of complete polynomials of degree n on K and let Q, (K) 
be the tensor-product space of order n on K. Then 

Pn+1(K) n Qn(K) Pn+(K) \ {xn+l, yn+l} 
is the intermediate element of degree n, and 

Sn(K) = P,(K) U {x'y, xyn• 
is the serendipity element of degree n. 

Apply Theorem 2.1 to the case of harmonic functions, and we have 

Theorem 2.2. Under assumptions (b) and (c), assume further that the finite ele- 
ment local space includes the serendipity family, i.e., Sn (K) C V, (K). Then, deriv- 
ative superconvergent points (along the x-direction) of harmonic functions Re(zn+l) 
and Im(zn+l) are the intersections of the contours 

Rn+ 10 and = 0, 

with 

noRe - Re(zn+l) - Pn, n~ +l Im(zn+l) -qn 

where 

nRe 
E Im (K); p E V(K). 

Proof. Clearly P,+1(K) D Re(zn+l), Im(zn+l) V,~(K). Since 

Pn+1(K) = PPn+1(K) U Sn(K) 

PPn+1(K) U Vn(K) 

= -n+I(K) u Vn(K) 
= (n+1(K) U V (K) 
= (n+I(K) D Vn(K), 

then 

Re(zn+l) = 
n pR~ Pn, Im(zn+) 

= nm + n, Re~z' an njl+ Pnqnn 
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where 

vn)elOI 
K;n_ 

il(Kf); Pn qn E Vn(K). 

By Theorem 2.1, the conclusion follows. 

3. DERIVATIVE SUPERCONVERGENT POINTS OF HARMONIC FUNCTIONS 

Denote H,(x) (Hn(y)) the set of derivative superconvergent points of the local 

finite element space V, (K) for harmonic functions in the x-direction (y-direction). 
Then according to Theorem 2.2, 

SRe 0, (xy)0}Im X) = ,) EK I n+l (XIy) 0, 
nn+l(, 

y) 
= 

0}, axx ax 
H- () {( 2 

K 
Re 0 Im 

H,(y) = 
-(x, 

y) K I 
y 

, Yy) = 01 

Case 1. 
Pn+1(K)\ {xnll, yn+l} C 

Vn(K) 
C Qn(K). This includes the intermedi- 

ate family, tensor-product space, and all possible choices in between. 

In+l (K) = 
Span{?n+l(x), On+l(Y)}. 

Therefore, both n l (x, y) and 
In+l 

(x, y) are linear combinations of On+l(x) and 
On+1(y), and hence 

H,(x) = {(x, y) E KI (x) = } = {(G),y), i = 1,..., n 

Hn (Y)= {(X, y) KI 
Oy 

(y)= 
0- 

{(x, G(n)), i= 
1,..., n}. ay 

Here G n) are zeros of the Legendre polynomial L,, i.e., the Gaussian points of 

degree n. In this case, superconvergent points are the same as those of the Poisson 

equation. Especially, in case of the intermediate and the tensor-product elements, 
we have confirmed the computer findings of [2]. 

Case 2. V,(K) = Sn(K), the serendipity family. In this case, 

(In+ l(K) --= Inl(K)\ Vn(K) 
=-IQnl(K). 

Based on Theorem 2.2, the following procedure is developed to find the desired 

superconvergent points. Some properties and particular expressions of the Legendre 
polynomials are needed for this purpose. These properties and expressions are 
listed in the Appendix for readers' convenience. For more information regarding 
the Legendre polynomials, see [4]. 

Step 1. Orthogonal decomposition of the periodic polynomials. The following is a 

list of 
1n,+1(K) 

for n = 1, 2, 3, 4, 5, 6. Note that for n I 2, the serendipity element 
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S,(K) is the same as the intermediate element. 

12(K) = 
Span{2(x),02(y)}, 

'I3(K) = 
Span{13(x), 33(Y)}, 

14(K) = Span{q4(x), L2(x)L24(y), 04(, 
XF 5(K) = Span{f5(x), 03(x)L2(y), L2(X)03(y), ,5(Y) 

- 1 
S6(K) = 

Span{?6 (x), (L4(x)- -L2 (x))L2(y), 03 (X) q3(y), 2 

1L 
, 

L2(x)(L4(y) - - L2(Y)) 6(Y)} 2 

'7(K) = Span{07(x), (05$(x) - /33(x))L2(y), (L4(x) - 
/L2(X))3(y), 

03(x)(L4(y) 
- -yL2(y)), L2(X)()5(y) - /03(Y)), 07(y)}, 

where 

(05, 03)11 LL'2 I(L', L ) 113113 
2 

|3 L24 32|L22' = L2 4 
+ 

32 
L•2 

Step 2. Expression of harmonic functions by the orthogonal periodic polynomials 
of degree n + 1 and the serendipity element of degree n. 

Re(z2) = 2 2 = 2 
2(2(x) 

- 

2(Y)), q3 

Re(z3) = x3 - 3xy2 = 2 -03(x) + p2, 

Re(z4) 4 - 62 + y4 = (4() + 4()) - L2(x)L2(y) + 3, 
5e7 3 

Re(z5) = x - 10x3y2 + 5xy4 - 
5(X) - 3(x)L2() + 4, 3 7 

Re(z6) = 6 - 154y2 + 152y4 6 16 1 

1 1 
- (L4(x) - -L2(x))L2(y) + L2(x)(L4(y) - 

-L2(y))] + 5, 2 2 

Im(z6) = 6x5y - 20x3y3 + 6xy5 = 
-3243(x)43(y) + q5. 

Here Pr, qGr S,(K). Note that 

xry, yr 
' 

S,(K), Im(z2) C S,1(i), Im(z4) E S3(K). 

Also note that Im(z3), Im(z5) can be obtained symmetrically. 

Step 3. Obtaining R and n+1 n+1t~~l 
(021R(X, y),Vim(X, y ) = {2(x) - ( 2(y), 0}, 

{,Re(x, y), m(x, Y)} 03(X), 03(Y), 

12 
4 

1 
04"(X, )R 04e ( X,y) y)= {- -(04(X) +04(y))- -L2(x)L2(Y),O0, 5e7 3 

{ 

5e(x, 

y), m(x, y)7} 
= 

{7 

5(X) - 
/V503(x)L2(y), 

75(y)- 

/53(y)L2(X), 
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(,y),(y) = ( -( 
6(x)-6 6(y)) 

- (L4(x) - 
L2(x))L2(y) 3 11 2 

1 
+ L2(x) (L4(y) - L2(Y)), 

3(X)03(y)}. 2 

Step 4. Calculating x-derivative superconvergent points. 

4.1. It is easy to see that the superconvergent points for SI(K) and S2(K) are 
along the lines of Ll (x) = 0 and L2(x) = 0, respectively. They are the same as for 
the Poisson equation. 

4.2. Superconvergent points for S3(K) located on the contour of 

012 1 1 
[x (5 (4(x) +04(y)) - -1L2(x)L2(y)] = L3(x) -- xL2(y) = 0, ax 5 7 3 5 

or 

3 
x(x2 - _) = x(3y2-1). 5 

They are three curves in the reference element K = [-1,1]2: x = 0 and two 
branches of the hyperbola 15y2 - 5x2 = 2. Note that the four intersections of the 
hyperbola with L3(x) = 0 

S 3 1 31 31 
3- e5 ( ?(F3 05 vF3 05 -,F3,~ 

and the segment (0, y), -1 
_ 

y ? 1, are also superconvergent points for the Poisson 
equation. 

4.3. Superconvergent points for S4(K) located at the intersections of contours 

01 13 

S7• 
5(x) - V/3(x)L2(y)] = [ L4(x) - 5L2(x)L2(y)] = 0 

and 

03(y)L2 3( =0 

[-?5(Y) - V/q53(y)L2(x)] = -3V'?3(y)x = 0. Ox: 7 

Using L2(0) = -1/2, L4(0) = 3/8, and L2(?l) = 1, we obtain three groups of 

superconvergent points. 
4.3.1. x = 0 and y satisfies 

2 1 3 
3 70 

4.3.2. y = 0 and x satisfies 

3 5 
-L4(x)+ -L2(x) =0 or 105x4+120x2 -61 =0. 
7 2 

There are two real roots in [-1, 1]: 

4 1 42 61 4 2 = 1 602 + 105 - 61 = - 7 7 105+72 105 7 
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4.3.3. y = ?1 and x satisfies 

3 
-L4(x) - 5L2(x) = 0 or 105x4 -5102 + 149 = 0. 
7 

There are two real roots in [-1, 1]: 

51 1 51 172 149 512 = 2552 - 105 -149 = 
21 105 21 72 105 

4.4. Superconvergent points of S5(K) located at the intersections of contours 

-L5(x) - (L'(x) - 1L'(x))L2(y) + L' (x)(L4(y) - L'(y)) 3 2 2 

and 

L2(x)?3(y) = 0. 

Again, we have three groups of points. 
4.4.1. y = 0 and x satisfies 

1 1 1 5 
L5(x) + (L(x) - -L'2(x)) + -L2(x) = 0, 3 2 2 8 

which is 

( 24 352 2) 0. 8 6 
There are three real roots in [-1, 1]: 

2 10 4 352 10 4 25 3 x=0 
- 

x = + 62 +21= --+ -+-.+ 9 21 9 3 36 7 

4.4.2. y = ?1 and x satisfies (note that L2k(1l) = 1) 

1 1 1 

-L5(x2) 
- (L'(x)-- 

L'2(x)) 
+ 

-L2(x) 
= 0, 3 2 2 

which is 

490 x(21x4 - 490 + 89) = 0. 
3 

There are three real roots in [-1, 1]: 

2 
_35 

1 2452- 218935 352 89 

- 9 21 32 9 92 21 
1 

4.4.3. x = 
?• 

and y satisfies 
73= 

S s 1 
-T 

_ (TV• 
)L 2() 

/(L4(y) 

- -L2(y)) 
= 0. 

54 9 2 2 

Note that 

1 1 5 1 v3- L(? ) = , L(? ) F L5?) 
v'--F 9 ''3 18 

The above equation is simplified to 

5 1 
L4(y) + -L2(y) - = 0. 

9 54 
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TABLE 1. Superconvergent points (x, y) of harmonic functions n = 4. 

0.00000000000000 0.53895843112080 

0.00000000000000 -0.53895843112080 

0.61740622481152 0.00000000000000 

-0.61740622481152 0.00000000000000 
0.55877322236109 1.00000000000000 

-0.55877322236109 1.00000000000000 
0.55877322236109 -1.00000000000000 

-0.55877322236109 -1.00000000000000 

3 = 

0.53895843112080... 
42 61 4 

-+ 
61 = 0.61740622481152 

72 105 7 

251 - 72-10= 
0.55877322236109. - 21 72 105 

There are four real roots in [-1, 1]: 

117 

Summarizing the results for n = 4 and n = 5, we list in Tables 1 and 2, 14 digits 
of x and y coordinates of superconvergent points. 

Comparing with the data provided in [2], it is interesting to observe that all 10 
digits of computer findings are correct (up to rounding at the tenth digits) with 
one exception: instead of 0.1678536898, [2] listed 0.1678536900. 

The superconvergent points for the y-derivative can be obtained similarly. Sum- 
ming up, we conclude that: 

1. For any finite element space that is contained in the tensor-product space 
and contains the intermediate element, all superconvergent points for harmonic 
functions under the rectangular mesh are along Gaussian lines, the same as those 
for the Poisson equation. 

2. For the serendipity element of order n = 3, the superconvergent points are 
along the central line x = 0 and the two branches of the hyperbola 15y2 - 5x2 = 2. 

3. For the serendipity element of order n = 4, there are eight superconvergent 
points for harmonic functions compared to none for the Poisson equation; and for 
the serendipity element of order n = 5, there are 17 superconvergent points for 
harmonic functions compared to three symmetry points for the Poisson equation. 

Remark 4.1. Results in the computer-based proof of [2] for harmonic function under 
the rectangular mesh are justified for n = 1, 2, 3, 4, 5. However, the results here are 
more general in the sense that they include all possible choices of the finite element 
space between the intermediate family and the tensor-product space. 

Remark 4.2. Reference [2] also listed data for n = 6, 7. We did not go further since 
it would be all technical. In general, for n = 2k or n = 2k + 1, root-finding of a 
polynomial of degree k needs to be performed to locate the desired superconvergent 
points. 



SUPERCONVERGENT POINTS FOR HARMONIC FUNCTIONS 1429 

TABLE 2. Superconvergent points (x, y) of harmonic functions n = 5. 

0.00000000000000 0.00000000000000 
0.54941314054283 0.00000000000000 

-0.54941314054283 0.00000000000000 
0.00000000000000 1.00000000000000 
0.76784878647334 1.00000000000000 

-0.76784878647334 1.00000000000000 
0.00000000000000 -1.00000000000000 
0.76784878647334 -1.00000000000000 

-0.76784878647334 -1.00000000000000 
0.57735026918963 0.79905682243383 
0.57735026918963 -0.79905682243383 
0.57735026918963 0.16785368982726 
0.57735026918963 -0.16785368982726 

-0.57735026918963 0.79905682243383 
-0.57735026918963 -0.79905682243383 
-0.57735026918963 0.16785368982726 
-0.57735026918963 -0.16785368982726 

4 52 3 10 
.54941314054283 V52+7- 

- = 0.54941314054283... 

35 352 89 
S=0.76784878647334- 

9 92 21 

1 + 1- = 
0.79905682243383"'0 

1- 1- =0.16785368982726- 
V3 -105 

1 
== 

0.57735026918963??? 

APPENDIX. LEGENDRE POLYNOMIALS 

Lo(x) = 1, Ll(x) 
= x, (k + 1)Lk+1(x) = (2k + 1)xLk(x) - 

kLk-(X). 

2L2(x) = 3x2 - 1, 2L3(x) = 5x3 - 3x, 

8L4(x) = 35x4 - 
30x2 + 3, 8Ls(x) 

= 63x5 - 
70x3 

+ 15x, 

16L6(x) = 231x6 - 315x4 + 105x2 - 5, 

16L7(x) = 429x7 - 693x5 + 315x3 - 35x. 
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oj+l(x) = 2j+ 1 
x 

Lj(t)dt= 
1 

[Lj1(x) 
- L- (x)]. 2 -1 

V2(2j 
+ 1)[L+(X) - 

2 351 3 

S2x-), 3(x)= 22 

4 (x) = 1 (54 2 ), 28 

5 (x) = 9(7x5 - 103 + 3x), e2 8 

6 (x) = 
--(21x6 

- 354 + 15 - 1), 2 16 

13 
3x1 63x35x5), 07 (X)= --(33X7- 63X5++35X3- 5x), 

F2 16 

8 (x) =15 1 
(429s 

- 9246 + 
630X4 -140x2 

+5). 
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