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COMBINED HERMITE 
SPECTRAL-FINITE DIFFERENCE METHOD 

FOR THE FOKKER-PLANCK EQUATION 

JOHNSON C. M. FOK, BENYU GUO, AND TAO TANG 

ABSTRACT. The convergence of a class of combined spectral-finite difference 
methods using Hermite basis, applied to the Fokker-Planck equation, is stud- 
ied. It is shown that the Hermite based spectral methods are convergent with 
spectral accuracy in weighted Sobolev space. Numerical results indicating the 
spectral convergence rate are presented. A velocity scaling factor is used in 
the Hermite basis and is shown to improve the accuracy and effectiveness of 
the Hermite spectral approximation, with no increase in workload. Some basic 
analysis for the selection of the scaling factors is also presented. 

1. INTRODUCTION 

In the studies on Brownian motion we are principally concerned with the per- 
petual irregular motions exhibited by small grains or particles of colloidal size im- 
mersed in a fluid. The perpetual motions of the Brownian particles are maintained 
by fluctuations in the collisions with the molecules of the surrounding fluid. Under 
normal conditions, in a liquid, a Brownian particle will suffer about 1021 collisions 
per second and this is so frequent that we cannot really speak of separate collisions. 
Also, since each collision can be thought of as producing a kink in the path of 
the particle, it follows that we cannot hope to follow the path in any detail. The 
modern theory of the Brownian motion of a free particle (i.e., in the absence of an 
external field of force) generally starts with Langevin's equation 

du 
(1.1) = -0ou + A(t), dt 

where u denotes the velocity of the particle. According to this equation, the influ- 
ence of the surrounding medium on the motion of the particle can be split into two 
parts: first, a systematic part -P0u representing a dynamical friction experienced 
by the particle and second, a fluctuating part A(t) which is a characteristic of the 
Brownian motion. 

In an analysis of the Brownian movement we regard as impracticable a detailed 
description of the motions of the individual particles. Instead, we emphasize the 
essential stochastic nature of the phenomenon and seek a description in terms of 

Received by the editor December 13, 1999 and, in revised form, October 30, 2000. 
2000 Mathematics Subject Classification. Primary 65M12, 65M70; Secondary 82C31. 
Key words and phrases. Fokker-Planck equation, unbounded domain, Hermite spectral 

method, finite-difference method, error analysis. 
This research was partially supported by FRG Grants of Hong Kong Baptist University and 

RGC Grants of Hong Kong Research Grants Council. 

(2001 American Mathematical Society 

1497 



1498 J. C. M. FOK, B. GUO, AND T. TANG 

the probability distributions of velocity and/or position at a later time starting from 

given initial distributions. The Fokker-Planck equation deals with those probabil- 
ity distribution of position and velocity under quite general circumstances. For 

example, let At denote a time interval long compared to the periods of fluctuations 
of the acceleration A(t) occurring in the Langevin equation but short compared 
to intervals during which the velocity of a Brownian particle changes by appre- 
ciable amounts. In this case we should expect to derive the distribution function 

W(u, t + At) governing the probability of occurrence of u at time t + At from the 
distribution W(u, t) at time t and a knowledge of the transition probability that 
u suffers an increment Au in time At. By expanding W(u, t ? At) in the form of 

Taylor series and passing to the limit At --+ 0, we can obtain a special form of the 
Fokker-Planck equation in velocity space to describe the Brownian motion of a free 

particle: 

(1.2) = 
3odivu(uW) 

+ oq2 VW 

where q is a positive constant called thermal velocity. Equation (1.2) is one of the 

simplest Fokker-Planck equations. By solving (1.2) starting with W(u, 0) for t = 0 
and subject to the appropriate boundary conditions, one obtains the distribution 
function W(u, t) for all later times. Once we have found W(u, t), any averaged 
value of the velocity can be calculated based on simple integrations. The derivations 
for (1.2) and more general forms of the Fokker-Planck equations can be found in 
Chandrasekhar [13] and Risken [35]. The Fokker-Planck equation is now used in a 
number of different fields in natural science, such as solid-state physics, quantum 
optics, chemical physics, theoretical biology and circuit theory. The theoretical 

analysis for the Fokker-Planck equation can be also found in many literatures (see, 
e.g., Diperna and Lions [15] and Perthame [34]). 

Over the past decades it has turned out that the Fokker-Planck equation provides 
a powerful tool with which the effects of fluctuations close to transition points can 
be adequately treated and that the approaches based on the Fokker-Planck equa- 
tion are superior to other approaches, e.g., based on Langevin equations (1.1) (see, 
e.g., [25, 35]). Quite generally, the Fokker-Planck equation plays an important role 
in problems which involve noise, e.g., in electrical circuits. Various methods of 
solutions for the Fokker-Planck equation have been proposed, including transfor- 
mation to Schrodinger equations, WKB methods, and matrix continued-fraction 
methods (see, e.g., Chapters 5 and 6 of [35]). Although analytic solutions of the 
Fokker-Planck equations can be found in some special cases, in general it is difficult 
to obtain them especially if separation of variables is impossible or if boundary 
values are prescribed. In general cases, numerical methods have become important 
in obtaining the approximate solutions of the Fokker-Planck equation. One class 
of works to solve the Fokker-Planck equation analytically is based on a proposal 
by Brinkman to expand the velocity part of the probability distribution function in 
Hermite functions [7]. Recursion relations for the position and time-dependent ex- 

pansion coefficients follow from the recursion relations for Hermite polynomials and 

eigensolutions of the Fokker-Planck equation are sought. His approach has become 
one of the most popular methods used for solving the Fokker-Planck equation, not 

only for the Cauchy problems (for which some analytical solutions can be obtained) 
but also for the initial-boundary value problems (for which analytical solutions are 
in general unavailable). 
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Motivated by the work of Brinkman, a class of numerical methods have been 
proposed to solve the Fokker-Planck equation by using the Hermite functions in 
velocity as spectral basis (see, e.g., Boyd [4, 5] and Tang et al. [39, 40]). To 
better illustrate the ideas of the methods, we will consider only a special class of 
the Fokker-Planck equation, namely, the Kramers equation [28]. The numerical 
and analysis techniques used in this work can be easily extended to other types 
of the Fokker-Planck equations. The Kramers equation is an equation of motion 
for distribution functions in position and velocity space describing the Brownian 
motion of particles in an external field. In the one-dimensional case it has the form, 
W = W(x, v, t), 

(W OW O(vW) Fi (x) OW /P kT O2W 
(1.3) = -v + pi + Ot Ov dy m Ov m 02v 

Here W is the probability density, 01 is the damping constant (7 = 1/31 is the 
relaxation time), m is the mass of the particle, T is the temperature of the fluid, 
k is the Boltzmann's constant, and Fl(x) = -mf'(x) is the external force where 
mf(x) is the potential. For Brownian motion of particles, whose probability density 
W in phase space is a solution of the Fokker-Planck equation (1.3), the boundary 
conditions become complicated. For one-dimensional boundary value problems, it 
will not be well-posed if we propose boundary conditions on the left and right walls 
X = Xmin, X = Xmax and |vi < 00. To see this, we consider the case that there are 
absorbing walls at the left- and right-hand sides of the domain 

Xmin < x < Xmax. 
In this case, at the left side of the domain x = Xmin we require that the probability 
current in x-direction must vanish for those particles leaving the wall into the 
domain, i.e., for the particles with positive velocities. Therefore, we must require 
that the probability density for positive velocities is zero at x 

= Xmin, 

(1.4) W(xmin, v, t) = 0, for v > 0. 

Similarly, since we have an absorbing wall at x = Xmax, we have 

(1.5) W(xma, v, t) = 0, for v < 0. 

Kramers was able to derive rate expressions for various ranges of the damping con- 
stant 01. For a piecewise parabolic potential, Blomberg [8] derived an analytical 
solution for strong damping in terms of parabolic cylinder functions and a numeri- 
cal scheme useful towards weaker damping based on a truncated expansion in the 
same functions. Voigtlaender and Risken [44, 45] have performed extensive studies 
of other potentials by a method of matrix continued fractions. Burschka and Titu- 
later [9, 10] calculated probability densities for the equation (1.3) with the absorbing 
boundary conditions (1.4)-(1.5). Several numerical methods, such as finite differ- 
ence methods [12], Galerkin method [33] and mixed Hermite spectral-finite differ- 
ence method [14, 40] have also been developed to solve the Fokker-Planck problems. 
Tang et al. [40] developed a mixed Hermite spectral-finite difference method, i.e., 
the Hermite spectral approximation in the velocity direction and finite-difference 
in the x-direction, for solving the Fokker-Planck equation with finite boundaries 
in space. The advantages for using Hermite basis in velocity are the following: (i) 
they form a complete system; (ii) they have correct natural boundary conditions 
in velocity space -oo < v < 0o; and (iii) they lead to the tridiagonal structure 
of the coupling system. Spectral methods based on Hermite functions have been 
implemented before but were dismissed because of their poor resolution properties 
[19, 18]. However, recent works of Tang [39] and Holloway et al. [26, 36] suggest 
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that with proper selection of the scaling factors the Hermite basis can be quite 
competitive when modeling functions with Gaussian-shaped profiles. In solving 
the Vlasov equations [18, 27], it was found that without careful velocity scaling of 
the Hermite functions, spectral expansions with 500 to 1500 Hermite modes are 

required to achieve only moderate accuracy levels. For plasma kinetics simulation, 
a recent paper by Schumer and Holloway [36] indicates that the Hermite based 

spectral methods are very efficient and extremely stable when velocity scaling and 

symmetric weighting are used. 
While the Legendre- and Chebyshev-spectral approximations for PDEs in 

bounded domains have achieved great success and popularity in recent years (see, 
e.g., [3, 11, 16, 19]), spectral approximations for PDEs in unbounded domains have 
received only limited attention. Some earlier works on the convergence analysis 
of spectral methods in unbounded domains have been given by Funaro and Ka- 
vian [17], Guo [23] (on Hermite spectral approximations); by Mavriplis [32], Shen 

[37] (on Laguerre approximations); by Boyd [6], Grosch and Orszag [20] (on ratio- 
nal polynomial approximations). Although Hermite-spectral approximations have 
been used successfully in approximating the solutions to the Fokker-Planck equa- 
tions (and also the Vlasov equations), there has been little convergence analysis for 
these numerical schemes. The main objective of this work is to provide a rigorous 
theoretical analysis for this class of spectral methods. For ease of notation, we con- 
sider the following normalized form of the Fokker-Planck equation with boundary 
and initial conditions: 

(1.6) 
ow __ a aw 02W OW OW - /W(vW)+F(x) - 

02W at + 
v-O 

- vW ) + F(x) - 1P 2 
= 0, x < Y, Iv < 00, t > o, 

W(-Y, v,t) = bL(v, t) for v > 0, t > 0, 
W(Y, v, t) = bR(v, t) for v <0, t >0, 

W(x, v, 0) = w(x, v) IlI <Y, Iv| < 00 . 

Since problem (1.6) is hyperbolic-like in the x-direction, we will adopt the upwinding 
approximations for the term involving axW. Three types of combined Hermite 

spectral-upwinding difference schemes for (1.6) will be constructed and analyzed. 
Roughly speaking, the main result of this paper is the following: If the solutions 
of (1.6) decay exponentially to zero as Ivl -+ oc, then the error between the exact 
solution W and the mixed spectral-difference solution satisfies 

(1.7) IlErrorll = O(At? + Ax) + O(N- ) 

where At and Ax are stepsizes in the time- and x-directions respectively, N is the 
number of the basis functions used in the v-direction, a = 1 or 2 depending on the 
order of the truncation errors associated with the finite difference approximations 
in time, and y > 0 is a large number depending on the regularity of the exact 
solution of (1.6). In order to obtain the first part of the error bounds O(At' + Ax), 
we will do the following: 

* Use the energy-type methods to deal with the hyperbolic system induced by 
the spectral approximation in velocity: 

Of Of + A = Bf + G. 
at 0Ox 
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With the classical energy analysis, we can show that the errors for suitable 
numerical approximations should be bounded by the truncation error times 
ellBIljt with 

IIBII, being some norm of B. The problem is that the norm 
for B may be proportional to N, the number of expansion terms for the 
spectral expansions. As a consequence, the classical results may not be applied 
directly. Instead some special treatment for the matrix B should be employed 
in order to obtain appropriate energy estimates. 
Use some new estimates developed in the next section to bound the coefficients 
of the Hermite expansions. In order to estimate the spectral convergence rate, 
one of the key ingredients is the use of the approximation theory results of 
Lubinsky et al. [29, 30]. 

The contents of this paper are organized as follows. In Section 2, we establish 
some results on the Hermite approximation. In Section 3, we consider several dis- 
crete hyperbolic systems and the properties of their solutions. Results in these two 
sections will play important roles in the error analysis. Then we construct the com- 
bined Hermite spectral-upwinding difference schemes and prove their convergence 
rates in Section 4. Numerical experiments are carried out in Section 5, which are 
used to verify the theoretical results obtained in Section 4. Some discussions on 
the selections of the scaling factors in Hermite functions are also included in this 
section. We point out that the theoretical results on the Hermite approximation 
and some techniques developed in this paper are also useful for analyzing other 
problems in unbounded domains. 

2. SOME RESULTS ON HERMITE APPROXIMATION 

Based on the choice of the weight function w(v) there exist several kinds of 
Hermite approximations. The first one is to use the standard Hermite polynomials 
as the base functions (see Szeg6 [38], Gottlieb and Orszag [19], Canuto et al. [11], 

2 
Bernardi and Maday [3], and Guo [22]). In this case, w(v) e-v. Recently, 
Guo [23] established some approximation results in the corresponding weighted 
Sobolev space, which were successfully used in the analysis of the Hermite spectral 
method for some nonlinear problems. Funaro and Kavian employed the Hermite 
functions as the basis functions with the weight function w(v) = ev2/4. They 
also derived some approximation results important in the analysis of the related 
Hermite spectral method for differential equations. Tang et al. [39] and Tang 
[40] considered orthogonal systems with the weight functions w(v) - ea2V2 and 
w(v) = 1, respectively. The orthogonal systems have been used for numerical 
simulations on certain differential equations. In general, the choice of w(v) depends 
on the asymptotic behaviour of the solutions of the considered problems. In many 
problems arising in quantum mechanics and statistical physics, the solutions decay 
exponentially as Ivl - oo. In this case, it is reasonable to take the basis functions 
as those used in Funaro and Kavian [17], or as in Tang et al. [40]. 

In this paper, we will confine our work to the case w(v) - e" 2U with ac > O. We 
begin by introducing some notation. Let 

L2 (R)- {u uis measurable and Ilu |,,R < oC 
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be equipped with the norm 

IIUlwR (JR2(v) w d) 
IJIluw,,R -- u2 (v)w(v)dv . 

The associated inner product is 

(u, w),,R = 

R 
u(v)w(v)w(v)dv. 

For any nonnegative integer m, 

Hm(R) = u 
d 

c~ e2(R), O<k<m I dvk 
w- I 

with the following semi-norm and norm, 1 
m u 'lull 

,m IUlm,w,R = 8mm ,I IgI?m,w,R IUIw,R) 
w,R=O 

In particular, IIUllo,w,R = IIUII,a. Moreover, for any r > 0, we define the space 
H, (R) and its norm IIUIIr,,R by space interpolation as in Adams [2]. 

Now let Hn (v) be the Hermite polynomial of degree n, 

(2.8) Hn(v) = (-1)nev2 dn (e-v2). 

The generalized Hermite function H (v) is given by 

(2.9) Hin(v) = 
dnHn(av)e-2v2 a > 0, n > 0, 

where d, = 1/ 2nn!. The function H- (v) is the n-th eigenfunction of the following 
singular Liouville problem: 

(2.10) 

dv 

e-a2 2+v 
2 v 

2u(v))) 
+ Au(v) = 0, v E R. (2.10) 

dv 
( dv2 

2 

( 
a 

The corresponding eigenvalues are 
An 

= 2a2n. It can be shown that, for all n > 0, 

n +1 n - 

avHn(v)= Hn+1(v) + -n-l(V), 2 V2 

dHn(v) = -_ 2(n + 
1)Hn+l(V), 

(2.11) dv 

dH(v) - /(n + 1)(n + 
2)Hn+2(v)- 

(n + 1)Hn(v), 
dv 

d2Hn (V) 
dv2 = 2a2 (n + 1)(n + 2)H +2(v), dv2 

where H,(v) - 0 for j < 0. The set of functions H,(v) is the L 2 (R)-orthogonal 
system, namely, 

(2.12) JR (v)Hn(v)w(v) 
dv = 

aSm,n 

where 6m,n is the Kronecker delta. By the second recurrence relation in (2.11), the 
set of derivatives for H, (v) is also an orthogonal system, i.e., 

(2.13) dHm (v) dH, (v) 
(3 dv dv- w(v)dv = 2a(n + 

1)/V 
6m,n. 
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For any u E L2, (R), we can expand u in the following form: rv llyUI~ W~~/ V CII ~UI~ U11VI~IIVVW1 V11 

00 

(2.14) u(v) = 
E UnH,(V) 

n=O 

with the Hermite coefficients 

S- 

a 

u(v)I-in(v)w(v)dv, 
n > 0. 

V/-n- 
JR 

We now turn to the approximation theory of the Hermite approximation. Let N be 
any positive integer and P• be the set of polynomials of degree at most N. Define 

(2.15) VN := {q(v)e-2v2 q(v) E 
PN}. 

To analyze the spectral convergence property for the Hermite spectral method, the 
following inverse inequalities and imbedding inequalities are needed. 

Lemma 2.1. For any E VN, 

11ll,w,R < a 2(N + 1)|llllw,R. 

Proof. Clearly $ E L'2 (R). Since q c VN, there exist coefficients qn such that VICLY Y ~UJII? UII~Y 1 I~L ~U VIIL~I L / w~lvlu 

N 

q(v) = O nnH (v) 
n=0 

This, together with (2.12)-(2.13), yields 
N N 

2lwR2= 
2aV E(n + 

1)n 
? 

2a•2(N 
+ 1) Z 

-- 
2a2(N + 1)111,12 

n=-0 n=0 

which implies the desired result. 

Lemma 2.2. For any u E H(R), 

IUIlw,R 2IUI1,w,R , 

IIVUIIw,R 1lUlilwR . a2 

Proof. Since u E H (R), u(v)wl/2(v) -- 0 as IvI --- o. By integration by parts, 

( 6 vu 2(v) W(v)dv 221? 
U2 

v)dw(v) 
1 

(v)du(v)w 

1 
(2.16) = 

c•?2du(v 
w(v)dv 

< 2 
l-u 

,RlU 
1,w,R. 

d2 R e 

The boundedness of the last term implies that vu2(v)w(v) --+ 0 as IvI -+ oo. As a 
result, using integration by parts gives 

[[vul[2 

1 f V V)dW (V IvuI,R = 2 u2(v)dw(v) 

1 1 du(v) 
- 2a u2 (v)w(v)dv- vu(v) w(v)dv, 

whence 
1 1 

IIVU 2,R ? 12 < IIVUIIRIUI1wR* 2a2 IIUIIw,R ?-a2 ''' 
Then the desired results follow from the above inequality and (2.16). 
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Lemma 2.3. For any u E H1 (R) and all v e R, 

IU(v)l 
_ v%-illl (IV)I ,wR 

. 
Proof. By Lemma 2.2, 

u2 M 2 v2 
dv )22 

u (v)e (u)ve202)dv 

S2Iv uduea2v2dv + 2a2 vu2e2v2dv 

f"- . 
dv -oo 

1 
2 + Ca HVUHR + IIUIIw,R 

K 21ull2W 2 1,IwR" 

This completes the proof of this lemma. E 

Next we consider the orthogonal projections. The L 2,(R)-orthogonal projection 
PN : L2(R) - VN is a mapping such that, for any u c 

L2(R), W W~lyu - Wr/ 

(u - PNU, ?)w,R = 0, Vq E VN. 

Equivalently, 
N 

PNU(v) = 
7UnHnI(v). n=O 

We also introduce the operator A as 

(2.17) Au(v) = - 
e- 

2v 2 (u(v)e2 2V2 

It follows from Lemma 2.2 that A is a continuous mapping from H, (R) to L2 (R). 
Let c be a generic positive constant independent of N, which may be different in 
different places. 

Theorem 2.1. For any u E H?(R) and r > 
0O 

(2.18) Iu - PNUI|,,R c(a2N)-: IUIr,w,R. 
Proof. It follows from the orthogonal relation (2.12) and the Hermite expansion 
(2.14) that 

oo 
(2.19) |u - PNUI 2R 2 u 

n=N+1 

We first consider any even integer r. Then by the singular Liouville equation (2.10) 
and integration by parts, 

u(v)H, (v)w(v)dv = 2 
AHn(v)u(v)w(v)dv 

22 JR d (u(v)w(v) 
d 

(HI(v)w(v))w-'(v)dv S2a2n Ri Jdv 

22n1 
( Au(v)- 

n 
(v)J(v)dv 

(2.20) = (2 2n)-2 JRAiu(v) ,(v) w(v)d. 
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Consequently 

(2.21) = (2 u(v)H(v)(v . 

Furthermore 
0O 

IIv - PNVII2,R < c(a2n)-Er 
fRA•u(v)Hn(v) 

(v)dv 
n= N+1 

(2.22) < c(a2n)-'IIAful|2, < c(o2n)-rllulwR 
Next, let r be any odd integer. Using Liouville equation (2.10) and arguments 
similar to above gives 

JR 
u(v)n 

(v)w(v)dv = 
(2a2-n) 

- 
R 

A2 

u(v)H•n(v)w(v)dv (2.23) 

= -(202 r+l - r 
(A~ u(v),w(v) Hd (in(v)w(v))w-'(v)dv. (2n)2JR dv (2dv 

By virtue of the first two recurrence equations in (2.11), we have 

w(v)-1 d (Hn(v)w(v)) = 2'2vH,(v) - 

o H2(n 

+ 

1)Hnl(v) - a ,f2Hl(v), 

(2.24) 
d (A ()()) d ) 2vAu() (2.24) w(v) A 2 u((v = A 2 u(v) + 2a 2vAr2 U(v) . 

Substituting the above two results into (2.23) and using Lemma 2.2 leads to the 
same result as (2.22) for the case that r is odd. Therefore, we have proved the 
inequality (2.18) when r is an integer. The inequality (2.18) can be established for 
any r > 0 by using space interpolation. D 

Theorem 2.2. For any u e H (R) and 0 _ p < r, 

H1u - PNUlII,,,R < 
c(ta2N) - IIUII,w,R- 

Proof. By space interpolation, we only have to use induction to prove the conclusion 
for any integer p. Obviously Theorem 2.1 implies the desired result with p = 0. 
Now assume it is true for p - 1, which yields 

(2.25) 
du- P 

d 
< <c(a2N)/2 d 

IIcI 
Ir,w,R. 

dv dv 
P -1,w,R -dvr-1,w,R 

It follows from the triangular inequality that 

du du I 
u - PNUII|R,,,R < - PN dv dv 

du d 
(2.26) + PN -- (PNu) + |U - PNUw,R. dv dv 



1506 J. C. M. FOK, B. GUO, AND T. TANG 

Using the second equation of (2.11) gives 
N 

duN 

PN 
vv(v) 

= 
--a 

: 
Ev2-n-lHn(V=), 

dv 
(PNU(V)) = -a 

V2-nUn--lHn(V) 
n=l 

As a consequence, 
du d 

(2.27) PN (v) - 
(PNU(v)) = a/2(N + 1)~NHkN+I(v). dv dv 

Next, using Theorem 2.1 yields 

(2.28) 

"IuN 2 
5 uN12 ? IU PN-lUII,R < 

c(a•N)rIIu,,.R. 
n=N 

Moreover, it follows from Lemma 2.1 and (2.12) that 

(2.29) IIHN c(2N)" HN-1 ,R c (a2N)-1 
((N+ 

, 

C 
-1 ,w,R 

--(2NL- 
(IIN+1I 

[w,R<--(2N 
-l 

Combining the results (2.27)-(2.29) leads to 

(230) PNdu dvd (PNu)l 
? 

c(a2N),O-IIul2•,R 

(dv dv 
A-1,w,R 

By inserting (2.25) and (2.30) into (2.26), and also by applying Theorem 2.1 to the 
last term of (2.26), we complete procedure for the induction. Ol 

In order to obtain the optimal error estimation of Hermite approximation to 
differential equations, we often need to compare the numerical solutions with the 

H, (R)-orthogonal projections of the exact solutions. The H '(R)-orthogonal pro- 
jection Pm : Hm(R) --+ VN is a mapping such that, for any u E HL(R), 

(dm dm , (2.31) =( - 
Pvu 

), = O, V E VN. dv dvm)w,R 

Now, let m = 1 and assume that 
N 

P u(v) = an HaH(v). 
n=O 

By the second equation of (2.11), 
N 

+Pk1 u(v) = -a E V2(n +1)anHn+l (v). n=0 

Similarly 
d 

oo 
dv u(v) = -a 2 

E V/2(n+-1)iUnHn+l(v). n=0 

By substituting the above two equalities into (2.31) and taking 0 = H,(v), 0 
_ n < N, we know from the second equation of (2.11) and (2.12) that an = Un for all 

0 < n < N. It means that Pk is exactly the same as PN. It is also true for P)m. So it 
suffices to compare the numerical solutions with the L2 (R)-orthogonal projections 
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of the exact solutions in the numerical analysis of Hermite spectral approximation 
to differential equations of any order. This feature is one of advantages of the 
Hermite function (2.9). 

Remark 2.1. If a = ?, then the H (v) becomes the Hermite function as discussed 
in Funaro and Kavian [17]. Theorem 2.1 generalizes the corresponding results in 
[17], while other results in this section are new, which make the use of the method 
of Funaro and Kavian possible for more general problems. 

3. SOME RESULTS ON DISCRETE HYPERBOLIC SYSTEMS 

In this section, we investigate some discrete hyperbolic systems arising in the 
combined Hermite spectral-upwinding difference schemes for (1.6). Without loss 
of generality, we assume that the solution interval in x is [-1, 1], i.e., Y = 1 in 
(1.6). To begin with, we introduce some notation useful in our error analysis. Let 
I = (-1, 1) and h = 1/M, with M a fixed positive integer. Let 

Ih 
= x =jh -M + 1 jM- -1 and ih =-Ih 

U {-1,1}. 

For any scalar functions u, w E C(I), the discrete inner product and the discrete 
norm are defined by 

1 

(U, W)h = h j U(x)v(x), IUllh = (U,U)2 
XEIh 

For any vector functions u = [uo,..., UN]T and w = [w0,... , 
WNg]T 

(U, W)h = h u u(x)w(x), IlUllh 
= (u, u) . 

XEIh 

Next, let 7 be the mesh size of the variable t, 

Q= {tkr 
1 < k < 

]} and Q,=Q U{0}. 

We shall use the following notation: 

1 
Au(x, t)=1 (u(x + h, t) - u(x, t)), Vxu(x, t) = 

Axu(x 
- h, t), 

h 

Atu(x, t) = -(u(x, t + 7) - u(x, t)), Vtu(x, t) = Atu(x, t - 7), 
T 

(3.32) ii(x, t) = -(u(x, t) + u(x, t + 7)), 2 

where the first four represent the usual forward or backward difference quotients, 
and the last one is the average in time. Let An be (N + 1) distinct real numbers, 
arranged as 

Ao < A1 < -. < Aq < 0 < Aq+1 < ..- < AN. 

We then split the diagonal matrix A = diag(Ao, A1, - - - , AN) into the positive and 
nagative parts respectively, i.e., A = A+ + A-, where 

A+ = diag(A, 4A,... ,4) 
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with A+ = max(A,O) and A- = min(A,O). We also denote D1 and D2 as the 
following constant matrices: 

(3.33) 
D1 = diag[1,...,1, 0,...,0], D2 = diag[0,...,0, 1,...,1]. 

q+l N-q 

The main purpose of this section is to provide an energy-type analysis for the 
numerical approximations of the hyperbolic system of the following type: 

Of Of 
(3.34) +A = Bf + G. at Ox 
In dealing with the above equation, the matrix B requires some special attention 
since the matrix norm of B may be dependent of N, the number of terms for the 
Hermite spectral expansion. We make two assumptions on B: 

* (H1): The 2-norm of the coefficient matrix B is uniformly bounded with 
respect to N. Namely, there exists a constant C1, independent of N, such 
that for any vector u E R(N+l) 

(u, Bu)h ? Cl ll|uI|. 
* (H2): The 2-norm of the coefficient matrix B is not uniformly bounded 

with respect to N, but instead there exist a constant C2, independent of N, 
and a constant dN, such that for any vectors u, v E R(N+I) 

(u, (d + B)v)2 + IIV112 ) + C 2 + VI.112 ) (Ul (dNI + B)V)h < 
2 \Ilh h IVIh TV I lh h IVIh 

For implicit schemes below, it can be verified that the assumption (H1) is satisfied, 
i.e., the standard 2-norm of the matrix B is bounded. However, for an explicit 
scheme, the 2-norm of the matrix B is no longer bounded, which gives some dif- 
ficulties in the energy-method analysis. This is the reason that we propose the 
assumption (H2). It will be verified in next section that the matrix B associated 
with the explicit scheme satisfies the assumption (H2). 

3.1. Implicit scheme I. Let f(x,t) be a vector function with the components 

fn(x, t), 0 < n < N, defined on Ih x Q,. The first discrete hyperbolic system is as 
follows: 

(3.35) 
1 1 

Atf (x, t) + -AAxf (x, t) + -A+Vxf(x, t) = B(x)f(x, t) + G(x, t), 

Sx E Ih,t E Q,, 
Dif(1, t) = 

gl(t), D2f(-1,t) = g2(t), t E Q,, 
f(x, 0) = fo(x), x E Ih, 

where a > 0 is a positive constant, B(x) is a given matrix dependent on x, G(x, t) 
is a given source term, f and G are the averages defined by (3.32), and gl(t) and 
g2(t) are given vector functions with the following form: 

gl(t) 
= 

[gl9,, , g1,q, 0,. . .0]T 

g2(t) = [0,..., 0, g2,q+l, *... 92,N]T 

Clearly (3.35) is only a usual upwinding scheme which is implicit in time. There are 
many existing results concerning the continuous dependence of ][f(t)I h on |IB|Ih, 
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IIG(t)llh, Ilg1(t)llh, |Ig2(t)llh 
and |Ifo(t)llh (see, e.g., Thombe [42] and Guo [21]). It 

is easy to establish the following result. 

Theorem 3.1. Let f(x, t) be the solution of (3.35) and time step T be sufficiently 
small. If the matrix B satisfies the assumption (H1), then, for all t E Q,, 

I|f(t)ll < cect1h,M(t), 
where c is a positive constant independent of h, 7 and N, and Gh,,(t) is defined by 

(3.36) 

gh,r(t)= Ifo01 ?+ (1G(q)1 + |A-gi(T)l12 
+ 

1_A+g2 ()112) 

3.2. Implicit scheme II. The second finite-difference system to be considered is 
of the following form: 

(3.37) 
1 1 

Vtf(x, t) + -A- Axf(x, t) + -A+Vxf(x, t) - B(x)f(x, t) + G(x, t), 

SE Ih, t E Q, 
Dlf(1, t) = gi(t), D2f(-1,t) -= 2(t), t E Q7 

f(x, O) = fo(x), x E Ih. 
In other words, this is a finite difference approximation with backward Euler in 
time and upwinding in space. Again with the standard energy estimates we have 
the following result. 

Theorem 3.2. Let f(x, t) be the solution of (3.37) and time step 7 be sufficiently 
small. If the matrix B satisfies the assumption (H1), then for all t E Q, 

If(t)ll cect,(t) 
where Gh,, is defined by (3.36). 

3.3. Explicit scheme. In this subsection we consider the following explicit system 

(3.38) 
1 1 

At f(x, t) + -A-Axf(x, t) + -AVxff(x, t) = B(x)f(x, t) + G(x, t), 
X Ih,t E QT, 

Dlf(1, t) = g1(t), D2f(-1,t) 
= g2(t), t E QT, 

f(x, 0) = fo(x), x E Ih. 
This is the standard forward Euler approximation in time and upwinding in space. 
For any (x, t) E Ih x Q,, it follows from (3.38) that 

T T7 T 

f(x,t+i) ah-Af(x+h,t)+ I+ A- A +TB f(x,t) ah ah ah 
T 

(3.39) + -A+f(x - h, t) + G(x, t) . ha 

Assume that (H2) is satisfied. Then there exist dN and C2 such that 

(f(t + T), (dNI + B)f(t))h 

(3.40) < dN f (f(t + 
7)1 

+ f?(t) 1) + C2 (lf(t + 7)1 + If(t) ) 2 \1 Ih h+C 
) 
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If we further assume that the generalized CFL condition 

(3.41) max A[j + TdN 5 1 
(3.41) h OjN 

is satisfied, then we have 

(f(t + T), (I + 
-A-- -A+ 

- 
TdNI)f(t)) 

- 
f (t + 

T), 
(I TA- 

' 
A + - rdNl)f (t + 7))h 2 ah ah h 

1 

A+TdN)f(t))h 
(3.42) +- (f(t), (I + - - dI)f(t)). 2 ah ah (t)ah ah 

It is also observed that 

-(f(t + r), A-f( + h,t))h 

(3.43) < - f(t + T), A-f(t +) -l(f (t),A-f (t)) + hllA-gl(t)112, 
(3.43) 2)h2 

(f(t + r), A+f(. 
- h, t))h 

(3.44) (f(t+ ), A (t + f) + 
1 

(t), A+f(t) + hllAg2 (t) 112 

Take the discrete inner product for (3.39) by multiplying it with f(x, t + r). Then 
by using (3.40), together with the estimates (3.42)-(3.44) we obtain 

IIf(t + -) ll + C2T f(+ + C2T7 Ilf(t)112 
+ I|G(t)I1 + 

-| 
(IA-g1(t) l| + |IA+g2 2 a 

We obtain the following result from the above Gronwall type inequality. 

Theorem 3.3. Assume that (H2) and the generalized CFL condition (3.41) are 
satisfied. Then for all t E Q, 

IIf(t)2 11 cec'tGh,(t) 
where Gh,, is defined by (3.36). 

Remark 3.1. If A0 < A1 < ... < Aq-1 Aq = 0 < Aq+1 < ... < 
A•, 

then 
by slightly modifying the definitions of D1, D2, gl and g2, we can recover all the 
results obtained in this section. 

4. THE HERMITE SPECTRAL-FINITE DIFFERENCE SCHEMES 

In this section, we consider the Hermite spectral-finite difference schemes for 
(1.6) and their error analysis. We begin by introducing some notation. Let Ot = 

, a- = and at ax 

(4.1) 

V4mr = Cm (I; Hr(R)) 
with norm IIu(*,, t) Im,r,w = max maxIIOu(x, *, t) r,w,R 0<k<m xEI 
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We further define 

IulIp,m,r,, = max max Ilatu (, ,t m,r,w, 
O<k<p O<t<T 

(4.2) 1 
(4.2) I ,r,w = 

max (h E IIu(x, , 
t)l•)12 xElh 

For W E L2 (R), we can expand it in Hermite functions 

00 

(4.3) W(x(, v, t) Z n(x, t) H(v). 
n=O 

Its truncated expansion is 

N 

(4.4) WN(X, v, t) = 
E W7 (x, t)tH. (v). 
n=O 

If W C(O, T; Vowr), then by Theorem 2.2 we have, for all x E I, 0 < t <T and 
0 < p < r, 

(4.5) IIW(x, 0, t) - WN(X, 0, t) IIw,R ? C(o2N)N # |IW(x, i, t) Ir,w,R. 

Furthermore, it follows from (2.28) that 

(4.6) |In(x, t)l < Cal/2-r2-r/2n-r/211 W(x, *, t) r,w,R, 

4.1. Hermite spectral expansion. By substituting the expansion (4.3) into 
(1.6), we obtain from the recurrence relation (2.11) that 

(4.7) 

OWn 
1 [ On - + 

2I?nlOWn+l1 ++ - = -on + avl2nF(x) ,_ at a L 2 ax 
- 

2 a x -nWn /F(x)WnI 
+ ?(2a2p - 1) n(n-n)Wn2, x I, O < t < T, n > 0, 

ZWn(-1,t)HIn(v) 
= bL(v,t), for v > 0, t E (0,T], 

n=O 

Z Wn(1,t) Hn(v) = bR(V,t), for v <O, tE (0,T], 
n=-O 

Wn(X, 0) = Wo,n(X), x E I , n >2 0. 

where W_1 = W-2 = 0. The system (4.7) is an infinite hyperbolic system and in 
order to solve it we have to ignore some terms in (4.7). More precisely, let 

F(x, t) = []Fo, 71,..., ,N]T; 
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then the Hermite spectral method is to solve the following finite system of hyper- 
bolic equations: 

(4.8) 

a-Fn + I n a.F n-T~l n+I 
_ atFa- 

1 
+-•- 

=F 
--nx 

3 nnFni 
+ a 

2nF(x)F~n-,1 a dc 2 cc 

+ 
P(2a2- 

- 1)))n-2, xz I, O < t < T, O < n < N, 
N 

SF,(-1, t)H,(v)= bL(v,t), for v > 0, tE (0,T], 
n=O 

N 

E3 Tn(1,t)H•in(v) 
= bR(v, t), for v< 0, t (0, T], 

n=O 

Fcn(X, 0) = Wo, n(x), x E c, O < n < N. 
where 

F-1 = --2 = 0, FVN+1 0. We are now in a position to specify the boundary 
conditions for n (+l, t). We will do so by using the collocation idea to the second 
and third equations in (4.8). To this end, we first denote by Ak the zeros of the 
Hermite polynomial HN+1 (A). By Szego [38] and Timan [43], they are distinct real 
numbers, situated around the origin symmetrically, arranged as 

Ao < A•1 < ... < AN-1 < AN, AN = -N-n. 
For simplicity, we assume that N is an odd integer. Then A, < 0 for 0 < n < 

N1 := (N - 1)/2 and A• > 0 for N1 + I n < N. Letting v = Ak/a in the third 

equation of (4.8) gives 
N 

(4.9) 
ckdnHn(Ak)•Tn(1,t) 

= ckbR(Ak/a, t)eA~, 0 < k < 
N1 

n=O 

where 1 
(4.10) ck d 

2 
H,2 (k) O < k < N. 

(n=o 
It follows from Christoffel-Darboux formula (see, e.g., Abramowitz and Stegun [1]) 
and L'Hospital's rule that 

Ck ((N + 
1)dNHN(Ak))-1. 

The above formula is useful in computation. Similarly we derive that 

(4.11) 
N 

ckdnHn(Ak)TFn(-1,t)= ckbL(Ak/a, t)e, N1 < k < N. 
n=O 

Furthermore, we define the matrix U in the following way: 

(4.12) Uk = [UO,k,' ', UN,k]T , U [UO, U1, * *, UN] 

where 

Un,k = CkdnHn(Ak). 

Using the definition of U, we make a linear transformation for T to get F := UTET. 
Now we want to obtain governing equations and boundary conditions for F, which 
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are also the equations for the numerical computations. Clearly, it follows from (4.9) 
and (4.11) that the boundary conditions for F are 

(4.13) 

D1F(1,t)= 
[cobR(Ao/a,t)eoA,...,CNlbR(AN,/la,tt)eCIN, 

0,--. ,0 ,t 

D2F(-1, t)-= 
0,.- 

,O-,, cN 
lb(ANl+I/a,t)e 2N1+I,... 

, CNbL(AN/a,t)eA 
2N 

where the matrices D1, D2 are defined by (3.33). We now need to obtain governing 
equations for F. Let 

(4.14) 
0 a s80 

a1 0 a2 Y71 81S 
R= 

". 
. . 

, S-= 52 72 S2 

aON-1 
0 aN 

aN 0 N 
"YN 

S N 

where 

(4.15) 

an -=\ , sn -- --n, 7=. -a F F(x), n =-- (2a2 1)Vn(n-1). 
Lemma 4.1. The matrix R satisfies the following properties: 

(i) The eigenvalues of R are Ak, the zeros of the Hermite polynomial HN+1(A); 
(ii) The eigenvectors of R corresponding to the eigenvalue Ak are Uk, defined by 

(4.12); 
(iii) U is an orthogonal matrix. 

Proof. The above results can be obtained in a way similar to that provided in Tang 
et al. [40]. D 

It follows from the first equations of (4.8) that 

(4.16) + - R = SF. 
09t O ax 

Using Lemma 4.1 gives 
UTRU = A= A + A- 

where 

A- 

diag(Ao,.-.,AIN1,0,"??, 

0), 
A+ 

diag(0,.. 
NOIAN -I, 

1 
,,I AN) 

By premultiplying (4.16) by UT, we obtain 

OF 1 OF 
(4.17) + -a A = BF, Ot a 

where F = UTF and B = UTSU. Combining (4.13) and (4.17) gives the following 
system for F, which will be used for numerical computation: 

OF 1 OF 
+ -A = BF at a ax 

(4.18) DIF(1, t) - VR , D2F(-1, t) = VL , 

F(x, 0) - UTW(O)(X), 
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where 

(4.19) VR:= [cobR(Ao/a,t)e0,..., CNbR(AN I/a,,t)e Ni,0, 
, 

... 1 

(4.20) VL := 
[0,.-. 

,0, CN,+lbL(ANI+l/a,t)eN1+1 ,... CNbL(AN/a,t)ex 
N 

(4.21) W(O)(x) := 
[Wo,o(X), 

- , 
Wo,N(X)]T 

Here W(0) (x) are the coefficients of the Hermite expansion for W(x, v, 0). 

4.2. Combined spectral-difference schemes. We are now in a position to solve 

(4.18) numerically. Using the upwinding method introduced in the last section, 
the numerical solution f(x, t), which is the approximation for F in (4.17), can be 
determined by one of the following discrete hyperbolic systems 

(4.22) Second-order in time 
1 1 

Atf(x, t) + -A-A f(x, t) + - AVxf(x,t) = B(x)f(x, t), 
SE Ih, tE Qr, 

(4.23) Backward Euler 
1 1 

Vtf(x, t) + --AAf(x, t) + -A+Vxf(x, t) = B(x)f(x, t), 

x E Ih, t E Q, 

(4.24) Forward Euler 

1 1 
Atf(x, t) + -A-Axf(x, t) + -A+Vxf(x, t) = B(x)f(x, t), 

SC Ih,tE Q . 

In all cases, the boundary and initial conditions are the same: 

Dlf(1, t) = VR , D2f(-1, t) = VL, t Q, 
f(x, 0) = UTW(O)(x) , Z E Ih, 

where VL, VR and W(O)(x) are defined by (4.19)-(4.21). Then the numerical ap- 
proximation of (1.6) is given by 

N 

(4.25) 
WA•(x, 

v, t) = A',n (x, 
t)-Hn(v), n=O 

where 

JA 
= [,oA ,1,-- 

,, 
A,N]T 

:= Uf. 

4.3. Error analysis. We now turn to the error analysis. Let 

w := [Wo(, xt), ... WN (x, t) W), 
(4.26) A= [o0,... ,O,-(v/2a)-'axOVN? WN+1(X,t)]T 

gl 
= [a,,- 

--,raN 
,0, 

' 

i ..,0]T , 

g2 = 
[0,0, 

- - - 
,0,0N1+1, 

,aON]T , 
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where W, are the Hermite expansion coefficients for W, given by (4.3), and 
00 

O'k = 
-ck E dnH,(Ak)Wn(1,t), t)l O< n < N1, 

(4.27) n=N+l 

-k = 
k Ck dnHn(Ak)Wn(-1t), N1 + 1 < k <N. 

n=N+1 

Having the above notation, we obtain from (4.7) that 

09W 1 OW 
+ -R 

-= 
SW + UTA, x I,t E (0, T], 

(4.28) DuTw(1, t) = VR + gl 0 <t <T, 
D2UTW(-1, t) = VL + g2 0 < t < T, 

W(x, 0) = W(O)(x) . 
Now let W = UTW. By premultiplying (4.28) by UT, we obtain 

oW 1 oW + -1A = BW + UTA, x E I, t (O,T], at a ax 

(4.29) DlW(1, t) = VR+gl 0 < t T, 
D2W(-1,t) = VL + 2 0 < t < T, 

W(x, 0) = UTW() (x) , 
where as before B = UTSU. 

Now at the grid points (x, t) E I x Q, we let the error between F and W 
be e, i.e., e := W - F, and we will estimate the error e. We first consider the 
second-order (in time) scheme (4.22). It satisfies 

(4.30) 
1 1 

Ate(x, t) + -A-Ae(x, t) + -A+Vxe(x, t) = Be + UTA + TA(x, t) , 

x Elh,t E QT, 
Die(1, t) = gi , D2e(-1,t) = g2 t , 

e(x, 0) = 0, 

where TA are the truncation errors induced by finite difference approximations in 
(4.22): 

TA(xj, tk) T 
72rt3W(xj,t) + a-lhAax2W(x, tk), 

where t, xj are some intermediate values. 

Lemma 4.2. If the solution of (1.6) satisfies W E C3(0, T; V',O) n Co(0, T; V,2'1), 
then for 0 < tk T 

(4.31) ITl(e, tk)llh < Cc72 + Ch. 

Proof. Due to the orthogonality of U, we have 

I! Ow(*, t) llh = 
IIaW(., 

t) Ilh . 
Since the solution of (1.6) satisfies W E C3(0, T; VWo), we obtain, by observing 
that W is a vector of the Hermite expansion coefficients of W, that 

I0t3/(-, t)]]h < C max 110t3W(x, 0, t)iO,w,R 
- 

xEI 
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By the notations (4.1) and (4.2), we have for any 0 < t < T that 

(4.32) 

|I|0tW(o, 
t)| lh Cmax llOt3W(x, 0,t)llo,w,a < CllOatW(o, , t)E1o,o,w < CIW113,,0,0, xEI 

Furthermore, using the facts that W = UT W and UTRU - A we have 

(A0 W)T(A0 W) = (0xW)TA TAoW 
(4.33) = (O2W)TUATUTUAUT W = (R& W)T(RO2W). 

Let W(x, t) = [wo, wl, - - , WN]T. By the definition of the tri-diagonal matrix R, 
we obtain from (4.33) that 

N 

j n=0 <CZxWn(XW , 
t)2 

j n=O 

hE Ce n-1Wn-l(X*,t)+ .nlOx 
Wn+l (Xjt) 

j n=0 
N 

< Ch 
1E n=2on(x t)2 

j n=O 

where 
an 

= 0 except an 
= V•/2 for 0 < n < N. Since W E Co(0, T; V2,'1 

we have from the above estimate and the second equation of (2.11) that, for any 
t c (O,T], 

(4.34) 
N 

Wn tn= Ch j Il a , t3ll < 
o,2, j n=0 j 

Combining (4.32) and (4.34) we obtain the desired result. O 

Lemma 4.3. If the solution of (1.6) satisfies W E Co(0, T; V?,ro), where ro > 2, 
then 

(4.35) IIA-glll < CN11/12-ro/2, IIAg211 CN11/12-ro/2 

Proof. We will prove the first inequality in (4.35); the second one can be obtained 
in a similar way. Consider IAkakI, 0 < k < NI1 (N - 1)/2, where ak are defined 
by (4.27). By the recurrence formula for H,(v), we have 

(4.36) 

Akk 
2 

d 
n(1, 

t) Hn+1(Ak)t+ 2nHn_1(Ak) 
n=N+1 

It is known that for large n (see, e.g., Abramowitz and Stegun [1]) 

(4.37) 
Hn(v) ev2/2 n!cos (2n+1)v- n7r). 

Due to the above asymptotic formula and the Stirling formula, 

(4.38) n! rnn+? e-n, 
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we obtain 

(4.39) dn|Hn+ (Ak)l ? Ce/2( ?), <CAc2 ( 2n - 

Similarly 

(4.40) 
2nd,nHn_(Ak) 

I< CeCX/2. 
Furthermore, by Lemma 2.5 of Lubinsky and Moricz [30], we have, for all N > 1 
and Iv| 

_< 
-\2N + 2, 

(4.41) 

2d (v)) 2 ((N )2/3, 1 (2+ 2)/21/2 

Edn2 
2(v) 

~ 
e1kmax (N 

+ 

1)-2/3,1-Iv|(2N 

+ 
2)-1/2 

n=0 

Using the following fact (see Levin and Lubinsky [29]) 

Ak 
< 2N + 2(1- N), 0< k < N, 

we obtain from (4.41) and the definition of ck, (4.10), that 

(4.42) ck CN-1/12e-A•/2 
For W E Co(0, T; VO'ro) and a constant 1 < q < ro, we use Cauchy inequality to 
obtain 

IAkkM(t) I<CN-1/1 E n(11 t)l 
n=N+1 

< CN-1/6 n-q nqlWn(t)12 
n=N+1 n=N+1 

(4.43) < CN5/6-q + CNq-ro? lW(1, ., t) Ijro,w,R 
Choose q = ro/2 + 5/12. It follows from ro 0 2 that 1 < q < ro. The result (4.43) 
implies 

|kuak(t)l ? CN5/12-ro/2 

Therefore, by the definition of gi, namely (4.26), we have 

(4.44) IIA-gl(t)ll CN11/12-ro/2 

This completes the proof of Lemma 4.3. 

We further observe that if W E Co(0, T; 
V'1rl"), 

then 

(4.45) 

UTA(t)Ih = (v-a)-vN ?+ | ll WN+1(0. , t)llh < CN1/2-r1/2 

where in the last step we have used the inequality (4.6). 
In order to obtain convergence-rate estimates for numerical scheme (4.22) by 

using the energy estimate in Theorem 3.1, we need to verify the assumption (H1). 

Lemma 4.4. Let B = UTSU, where U is an orthogonal matrix and S is defined 
by (4.14). If p in (1.6) satisfies 0 < a < -1/2, then there exists a constant C1, 
such that for any u E RNgl, 

(u, BU)h S C?1 ullh . 
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Proof. Let y = [yo, Y1, , YN]T := Uu. Since B = UTSU and U is orthogonal, it 

can be verified that 

(u, Bu)h = (Uu, SUu)h = (y, Sy)h 
N N N 

- 

(snYn(X)()2 
?1- •nYn-l(X)Yn(X) 

+ 

:n--lYn-2Yn(X)) XEIh n=0 n=l n=2 

N 

(4.46) < O (X) 
xEIh n=0O 

where, for n > 2, 

Un = 
- 2on + 

at- c• 
llFllo + a v2n + 

21IF||• (~2pn+a1(n-1)(n- 2)+ 2p n(n 
+/312a 1a-1 (n - 1) (n - 2) + 312a,. -1I ~n+1)). 

For large n, 

n n( - 1 + 122 -1). 

Therefore, if 0 < a < p--1/2, then 
an 

0 provided that n is sufficiently large. This 

proves that acn C for all n > 0. This result, together with (4.46), yields 

(u, BU)h < CllyI• 
= CIIUII . 

This completes the proof of Lemma 4.4. O 

We are now ready to state and prove the convergence result for the numerical 
scheme (4.22). 

Theorem 4.1. Let W be the solution of (1.6) and WA be the numerical approxi- 
mation given by (4.25) with f being computed by scheme (4.22). If 0 < a < p-1l/2 
and W E C3(0, T; V,') n Co(0, T; VO,ro n Vi,,1 o V2,1), then, for all t E Q, 

IW(o, 
*,t) - 

WA(0, 
0,t) 

h,ow 
C 2 

?-- 

hT 
+NNl1/12-ro 

/2 

• 
r/2-r/2 

Proof. It follows from (4.5) that 

(4.47) 1IW(*, ., t) - WA(*, *, t)llh,O,, < CN-~ IIW(*, *, t) lh,O,w. 

By (4.25), noting ~A = Uf, T- = UW and U is orthogonal we have 

IIWN (@, , t) - Wt (, *, t) |h,o,w = C|F[A (., t) - .(., t)l|h 
= Clf - W|h = ClIe(e, t)llh 

where e satisfies (4.30). It follows from Theorem (3.1), Lemmas 4.2-4.4 and (4.45) 
that 

(4.48) Ile(*,t)IIh ? 
C(72 

+ h N11/12-ro/2 +N 
N1/2-r/2). 

Using the triangular inequality for (4.47) and (4.48) we obtain the desired result. fO 

Similarly, we can prove the following result for the backward Euler method (4.23). 
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Theorem 4.2. Let W be the solution of (1.6) and WA be the numerical approxi- 
mation given by (4.25) with f being computed by scheme (4.23). If 0 < a < p-1/2 
and W C2(0, T; Vo0) n CO(0, T; V,'ro n V' n V21), then, for all t Q r, 

IW(O, 
, t) -WA(,,t) 

,,w 
C (T + h + N11/12-r0/2 + 

N1/2-rl/2). 

Finally, we will bound the errors introduced by the spectral-difference approxi- 
mation (4.24). In order to apply the energy estimate in Theorem 3.3, we need to 
verify that the matrix B = UTSU, where S is given by (4.14), satisfies (H2). 
Lemma 4.5. Let B = UTSU, where U is an orthogonal matrix and S is defined 
by (4.14). If p in (1.6) satisfies 0 < a < p-1/2, then there exist a constant C2 
(independent of N) and a constant dN = -3N (P is given in (1.6)), such that for 
any vectors u, v E R(N+1) 

(u, (d+ B)v) 2 
+ |v112 + C2 Ii11+ v ). (Ul (dNI + B)V)h < 

2 ~lh h VIllTV~\Ilh h IVIh 

Proof. Let y = [yo, Yl,* , yN]T := Uu and z = [zo, zl, 
' 

, ZN]T := Uu. Since 
B = UTSU and U is orthogonal, it can be verified that 

(u, (dNI + B)v)h = (y, (dNI + S)z)h . 

Since the diagonal elements of the matrix dNI + S are positive, we can use the 
definition of S to obtain 

N N N 

(y, (dNI 
+ S)Z)h = ((dN 

+ 
sn)ynzn 

? 
nYn-lZn 

+ 
En-lYn-2Zn 

XElh n=0 n=1 n=2 

N 

< (IN z + 5 52 + 
pny2?+qnZ2) SE n0 yn n 

XEIh n=0 

where for n > 2 

pn 
=• 

-n+a 2n+ 2IFII, + /312a2u - ljvn(n+ 1) 

•q 

= 

-On+e(-?F2nl 
m+ + 12 

2-11,(n- 
1)n -2 )) 

Similar to the proof for Lemma 4.4, we have p, < C and q , C for all n > 0, 
provided that 0 < a < p-1/2. These results, together with ||YlIh = JIUI|h and 

IIlzIh 
= 

IU|llh, yield the desired inequality. O: 
The error estimate below follows from Theorem 3.3 and the above lemma. 

Theorem 4.3. Let W be the solution of (1.6) and WA be the numerical approxima- 
tion given by (4.25) with f being computed by scheme (4.24). If W E C2(0, T; Vo,o0) 
CO(0, T; V,ro o n V,'r n V2,1) and if the generalized CFL condition 

T 
(4.49) max IA ? + P3NT < 1 

h oi<j<N 

is satisfied, then, for all t E Q,, 

I W(,*, t) 
- WA(,,t) 

,o?,w 
T C ? h+ 

h+N11,/12-ro/2 +N1/2-r1/2) 

Remark 4.1. Since max I A j I 2N, Theorem 4.3 implies that the time step used 
in the explicit scheme (4.24) is of the order 7- T ah/(2/N + a 3Nh) . 
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5. NUMERICAL RESULTS 

In this section, we will consider some issues for the numerical implementation 
of the numerical methods considered in this work. First, we will discuss the use of 
the scaling factor, a, which is important in applying the Hermite spectral methods 

(see, e.g., [5, 39]). Secondly, we will test our Hermite expansion methods for a 

simplified Fokker-Planck equations where the distribution function W depends on 
v only. Finally, we will use the combined spectral-difference schemes to solve a test 

problem, in order to verify our convergence theory. Particular attention has been 

paid to the implementation of the Hermite spectral methods. 

5.1. Scaling factor. Although the Hermite methods presented above enjoy a the- 
oretical spectral convergence rate, the actual error decays considerably slower than 
the Chebyshev or Legendre method for similar problems in finite intervals. The 

poor resolution property of Hermite functions, which was pointed out by Gottlieb 
and Orszag in [19], is one of the main reasons why Hermite functions are rarely 
used in practice. However, the resolution of Hermite functions can be greatly im- 

proved by using a proper scaling factor [39]. We will extend the theory developed 
in [39] to deal with the spectral approximations for the Fokker-Planck equation (see 
subection 5.3). In this subsection, we will discuss how to choose the scaling factor 
for a given Gaussian type function. If the initial condition for the Fokker-Planck 

equation is of Gaussian type, then its solution can be bounded by a Gaussian type 
function and its stationary solution is of the form of Gaussian type also. It is there- 
fore a basic requirement that the expansion methods should approximate function 

exp(-sv2) accurately and efficiently for any given (positive) values of s. To analyze 
the effectiveness of the Hermite expansion, we expand 

00 

(5.1) exp (-sv2) = 
bnIH(v), 

n=0 

where 

Hn(v) = 

MHn(av)e-22 V2n! 
It is seen that the basis functions 

Hn(v) 
involve a parameter a which should be 

chosen with some caution. We can re-write (5.1) into the following form: 
oo 

1 2 S 
(5.2) exp (-siv2) 

= 
n b 1 Hn(v)e- , S 

n= O 2 n n!1 

A direct calculation gives that b2k+l - 0 and 

(5.3) b2k = 
/22k(2k)!1 81 k (2)! 

for k > 0. An application of the Sterling's formula yields 

1 
1-- sk l. (5.4) b2k r" 

( 121/4 

1 
, k > 1. 

(7rks 2) 
/ sl 

The above equation indicates that the Hermite expansion cannot produce any rea- 
sonable approximations in the case sl < 0.5. Further, since 02k(v) = O(k-1/4) the 

2k-th term of (5.1) is of order O(k-1/2) in the case sl = 0.5. This implies that 

spectral accuracy cannot be observed in the case sl = 0.5. 
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TABLE 1. Maximum error obtained by using the Hermite expan- 
sion (5.1) with a = 1 for f(v) = exp(-sv2). 

N s = 0.4 s = 0.5 s = 0.6 s = 1.5 
10 1.7D+0 1.7D-1 1.6D-2 3.7D-4 
20 9.4D+0 1.2D-1 1.5D-3 1.1D-6 
30 5.9D+1 1.OD-1 1.7D-4 3.9D-9 
40 3.9D+2 8.8D-2 1.9D-5 1.4D-11 

The above analysis suggests that for a Gaussion function exp(-sv2), the scaling 
factor a in the basis function H,(v) must satisfy a < v2s. To give a quantitative 
understanding of this statement, we approximate the Gaussian distribution func- 
tion f(v) = exp(-sv2) using the Hermite expansion (5.1) without a scaling 
factor, i.e., a = 1. We present in Table 1 the maximum errors, defined by 
maxvE[-3,3] If(v) - fN(v)l. We choose s = 0.4,0.5,0.6 and 1.5 in the numerical 
experiments, and the numerical results in Table 1 suggest that the truncated series 
is divergent when a = 0.4. In the case a = 0.5 spectral accuracy cannot be ob- 
served. These observations support our earlier analysis that a must be less than 
V12s. 

5.2. Application to a simplified Fokker-Planck equation. One of the sim- 
plest FP equations is of the form (1.2). In 1-D, it is given by 

(W O(vW) 02W (5.5) o 7 +t 70 
Ot = v + 

v2 
where W(v, t) is the distributive function, v E (-oo, oc) is the particle velocity, 
7-1 the particle relaxation time and V/1 the thermal velocity. By solving (5.5), 
together with the initial distribution W(v, 0), one may obtain the distributive func- 
tion W(v, t) for all later times. 

Let the exact solution W of (5.5) be approximated by 
N 

(5.6) WN(v, t) Z= an (t)Hn (v), 
n=o 

where again we set the scaling factor a in H, (v) as 1. We want to show that with the 
constant scaling factor some Gaussian type solutions cannot be well approximated. 
Using the Hermite expansion methods we obtain from (5.5) and (5.6) that 

(5.7) 
dao(t) 

dt 

(5.8) dan(t) = 
(203- 1)y/(n 

- 1)nan2(t) - 

nyan(t), dt 
for n = 1, ... , N, with an(t) = 0 whenever n < 0 or n > N. 

To see the performance of the Hermite spectral methods with velocity scaling, 
we consider the following test problem. 

Example 5.1. Consider (5.5) with 'y = 0.01 (which corresponds to a relaxation 
time of 100), / = 0.5 and the following initial condition: 

(5.9) W(v, 0) = (1 + sin(rrv)) exp (-sv2), 
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3.5 

3 

2.5 't=15,N=40' + 
't=15,N=60' - 

2 

1.5 + 
W(v,t) 1 

+?_+ 

+ 

0.5+ 

-0.5 
-1 

-1.5 
-3 -2 -1 0 1 2 3 

v-axis 

1.4 

1.2 - 't=20,N=40' + 

1 't=20,N=60' 

0.8 
W(v,t) 

0.6 

0.4 

0.2 

01 
-3 -2 -1 0 1 2 3 

v-axis 

1.4 1 I 

1.2 -- 
't=30,N=20' + 

1 't=30,N=60' - 

0.8 
W(v,t) 

0.6 

0.4 

0.2 

0 
-3 -2 -1 0 1 2 3 

v-axis 

1.6 I I 

1.4 
-'t=100,N=10' + 

1.2 't=100,N=40' - 

1 

W(v,t) 0.8 

0.6 

0.4 

0.2 

-3 -2 -1 0 1 2 3 
v-axis 

FIGURE 1. Numerical solution at different time levels for Example 
5.1 with initial function (5.11). 
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where s is a positive constant. The stationary solution of (5.5) and (5.9) is 

(5.10) W(v, t) exp (-v2), t > 0. 

As in the last subsection, we test the above problem by using s = 0.4, 0.5,0.6 
and 1.5. It is observed that for s > 0.5 very accurate numerical approximations are 
obtained by using about 20 expansion terms (i.e., N = 20). However, for s = 0.4 
convergent results cannot be obtained before the solution reaches the stationary 
sate. Figure 1 shows the numerical results with various values of N for 

(5.11) W(v, 0) = (1 + sin(irv)) exp (-0.4v2). 

Since the initial data has the power constant s = 0.4, it is expected from the 
experience of the last subsection that the Hermite expansion with the scaling factor 
a = 1 will not be convergent, at least for small values of the time t. However, it 
is seen that the stationary solution (5.10) has the power constant s = 1, and as 
a result it is expected that when t becomes large the Hermite spectral methods 
with scaling factor a = 1 will lead to accurate approximations. These theoretical 
predictions are well verified in the plots of Figure 1. 

5.3. Application of the Hermite spectral-finite difference methods. In this 
section, we consider a numerical example by using the combined spectral-difference 
schemes (4.22)-(4.24). We would verify the Theorem 4.1-4.3; i.e., the numeri- 
cal schemes are of spectral accuracy in v-direction, first order in x-direction and 
first/second order in t-direction. To this end, we consider the following test prob- 
lem. 

Example 5.2. Consider the Fokker-Planck equation 

Ow Ow O(vw) 02w (5.12) = 
-vt 

+ 0 + v' I x< 1, I < 00, 
at 0X -v v22 

I 

with the initial and boundary conditions (for x = -1, v > 0 and x = 1, v O0) such 
that the exact solution is 

(5.13) 

w(x,v,t) = 1 + cos ((x- (1- e-t)v)) q(t)] exp (-v2/2) 2) - 72" 

where 

q(t)2 (exp - 2t 3)] q(t) 
- 

exp - t + 2e- 4 2 / 
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The main reason for choosing the above test example is that its analytic solution 
can be found which enables us to test the accuracy of the numerical schemes. In the 
following numerical calculations, the length of the x-interval is chosen to be 0.4 and 
the scaling factor a (see (2.9)) is chosen as 1/v/". The effects of using other values 
of the scaling factor a will be also investigated (see Figure 5). Although the results 
reported below are obtained by using the numerical scheme (4.22), similar results 
supporting Theorems 4.2 and 4.3 have been also computed. Due to the limitation 
of the space, we will not include them here. 

Convergence rate for the spectral approximation. In Figure 2, we plot the 12- 
errors for the mixed finite-difference-spectral method (4.22), with parameters N = 
9, h = 7 = 0.001. The step sizes in both x and t directions are chosen to be very 

For N=9, dx=0.001 and dt=0.001 

104 

106 

0 
10 

10 10 

1012 

0 2 4 6 8 10 12 14 16 18 20 
T 

FIGURE 2. The 12-error in time for Example 5.2. 

For N=9, dx=0. 001 and dt=0 001 

x 10 6 

0- 

02 

2 0.1 

4 0 

14002 v . 
. 

0- 
- 

FIGURE 3. The pointwise error for Example 5.2 at t = 5. 



HERMITE SPECTRAL-FINITE DIFFERENCE METHOD 1525 

small so that we can verify the exponential rate of convergence for the spectral 
approximations in the v direction. Indeed it is observed in Figure 2 that spec- 
tral convergence is achieved. For t > 12, the 12-error remains the order of about 
0(10-14), which is about the machine accuracy in double precision. It is seen 
from the exact solution of this problem that the asymptotic solution for large t is 
1 exp(-v2/2), i.e., a pure Gaussian type function. As a result the spectral approach 
in v direction will give very accurate approximation for large time solution as seen 
in Figure 1. Pointwise error at t = 5 is plotted in Figure 3. As expected, the largest 
errors occur at the zero axis for v (see also the similar observation in [40]). 

Convergence rates for the finite-difference approximation. Our theoretical 
predictions in last section indicate that there will have only first-order spatial 
and temporal accuracy for the schemes (4.22)-(4.24), except for (4.22) for which 
((h+ ?_2) can be achieved. This result is well understood in finite-difference theory, 
so we just simply plot the 12-errors as a function of N with h = 0.01, 0.02 and 0.04 
in Figure 4. A first-order convergence rate in x-direction is observed, which is in 

For dt=0.001 and T=1 

- dx=0.001 dx=0.002 
- dx=0.004 

10 2 

10 

104 

3 4 5 6 7 8 9 10 11 
N 

For dt=0.001 and T=5 
10 

- dx=0.001 
- dx=0.002 

- - dx=0.004 

105 

10 

3 4 5 6 7 8 9 10 11 
N 

FIGURE 4. The 12-error as a function of N with different values of 
h. The top picture is for t = 1 and the bottom one is for t = 5. 
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agreement with the theoretical predications. Similarly, a second-order convergence 
rate in time, i.e., O(T2), have been also observed in our numerical computations. 

Variation with the scaling factor. Finally, we investigate the role of the scaling 
factor a for the test problem Example 5.2. In Figure 5, we plot the 12-errors 
obtained by the scheme (4.22), with the use of the parameters N = 7, h = 0.005 
and 7 = 0.001. Using the discussions in subsection 5.2, together with the exact 
solution (5.13), we can conclude that the optimal choice of a is 1/V'/ 0.7071 for 
Example 5.2. Indeed this predication is verified by our computational results given 
in Figure 5. 

In practice, the scaling factors may not be a constant with respect to time 
and therefore some adaptive computation for the scaling factor should be used 
during the time integration to enhance spectral accuracy. We will not give further 
discussion on this issue due to the limitation of space, but just point out a recent 
paper of Schumer and Holloway [36] where a variable scaling factor for the Hermite 
basis was constructed for solving the nonlinear Vlasov-Poisson equations. The 

For N=7, dx=0.005 and dt=0.001 
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FIGURE 5. The 12-error as a function of a, for t = 1 (top) and t = 5 (bottom). 
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principal ideas in [36] are also useful for Hermite spectral approximations to the 
Fokker-Planck equations. Scaling factors are also used in a recent work of Shen [37] 
for the Laguerre spectral approximations, which also greatly enhance the resolution 
capacities of the Laguerre functions. 
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