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THE ERROR BOUNDS AND TRACTABILITY 
OF QUASI-MONTE CARLO ALGORITHMS 

IN INFINITE DIMENSION 

FRED J. HICKERNELL AND XIAOQUN WANG 

ABSTRACT. Dimensionally unbounded problems are frequently encountered in 
practice, such as in simulations of stochastic processes, in particle and light 
transport problems and in the problems of mathematical finance. This pa- 
per considers quasi-Monte Carlo integration algorithms for weighted classes of 
functions of infinitely many variables, in which the dependence of functions 
on successive variables is increasingly limited. The dependence is modeled by 
a sequence of weights. The integrands belong to rather general reproducing 
kernel Hilbert spaces that can be decomposed as the direct sum of a series of 
their subspaces, each subspace containing functions of only a finite number of 
variables. The theory of reproducing kernels is used to derive a quadrature 
error bound, which is the product of two terms: the generalized discrepancy 
and the generalized variation. 

Tractability means that the minimal number of function evaluations needed 
to reduce the initial integration error by a factor e is bounded by Ce-P for 
some exponent p and some positive constant C. The e-exponent of tractability 
is defined as the smallest power of e-1 in these bounds. It is shown by using 
Monte Carlo quadrature that the e-exponent is no greater than 2 for these 
weighted classes of integrands. Under a somewhat stronger assumption on 
the weights and for a popular choice of the reproducing kernel it is shown 
constructively using the Halton sequence that the E-exponent of tractability is 
1, which implies that infinite dimensional integration is no harder than one- 
dimensional integration. 

1. INTRODUCTION 

The evaluation of complicated integrals is a common computational problem 
occurring in many areas of sciences such as computational physics, statistics, com- 
puter graphics and mathematical finance. The univariate case is well-developed 
[DR84], and the multivariate case has been extensively studied in recent years 
(see [CM097, FW94, Hic98, Nie92, SJ94, SW98, Sob98, Woi91] and the references 
therein). 

For high dimensional integration, 1,(f) - f[o,1]s f(x) dx, Monte Carlo (MC) 
and quasi-Monte Carlo (QMC) methods can be used to break the curse of dimen- 
sionality. MC and QMC use the sample mean, QN,S(f; P) = EZCZP f(z), to 
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approximate the integral Is,(f). For MC, the sample points P are independent 
random points distributed uniformly on [0, 1]8, and the asymptotic convergence 
rate is O(N-1/2), which is independent of the dimension. For QMC, P is a low 

discrepancy point set, and the error bound takes the form 

Is(f) - 
QN,8(f; 

P) 

_ 

D(P)V(f), 

where D(P) is the generalized discrepancy and V(f) is the generalized variation 
of f(x) [Hic98]. A special case of the above inequality is the well-known Koksma- 
Hlawka inequality, for which D(P) is the traditional star-discrepancy and V(f) 
is variation of f(x) in the sense of Hardy and Krause [Nie92]. The asymptotic 
convergence rate can be O(N-l(log N)'). 

Dimensionally unbounded problems are frequently encountered in practice. For 

example, in particle and light transport problems and in simulations of stochastic 

processes, there is no a priori bound on the number of random numbers needed 
in one path simulation. The corresponding integral is of infinitely many variables. 

Many problems in mathematical finance can be expressed as Feynman-Kac for- 
mulas (see [Duf96]), and their solutions can be reduced to evaluations of infinite 
dimensional integrals. This paper considers integrals of functions of infinitely many 
variables. The corresponding problems are often called path integrations or func- 
tional integrations [WW96, TW98]. 

The infinite dimensional integral takes the form 

(1) I (f) 
=: 

cC 

f (x) dx, 
Jo 

( 
cc 

where 

C" := [0,1]" = {x= 
(xl,x2,...)' 

:0?<xi 1,i = 
1,2,.1.. 

is the infinite dimensional unit cube, and dx = dxldx2 ... is the infinite product 
of Lebesgue measures. For example, the measure of the interval {a"n < x, < 

bn, 
n = 1, 2,... } equals Hn, (bn -an) (see [Sob69, Sob98]). For a finite dimensional 

function, depending only on the variables xl,... , x, the integral (1) reduces to the 
common s-dimensional integral Is(f). 

We are interested in QMC algorithms of the form 

1,N 
(2) QN,o(f) = QN,o(f; P) = f(Zi) 

i= 1 

where P = {zl, ... , ZN} is the set of N points in the infinite dimensional unit cube 

C". The weights of the QMC algorithms are equal to 1/N. It is natural to ask 
under what conditions on the integrands and on the points does this quadrature 
rule approximate the integral well. Specifically, one would like to have a bound on 
the quadrature error. It would also be interesting to know under what conditions 
infinite dimensional integration has roughly the same difficulty as one dimensional 

integration. This is related to the question of tractability. 
The concept of QMC tractability in infinite dimension is analogous to the finite 

dimensional case [NWOO, SW98]. Let N be a normed space of functions defined on 

C", and let the norm in N be denoted by 1 II1H. Let P be a set of N points in 

C". (Points in P may be repeated.) Define the worst-case error of the algorithm 
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QN,oo('; P) by its worst-case performance over the unit ball in 7H: 

(3) Err(QN,oo, -) 
= sup {100(f) 

- QN,o(f)f :f 7Et , ifi 1}. 
For a given sample size N, one would like to find the algorithm error for the best 
possible sample points P, that is, 

(4) Err(N, 7-) = inf Err(QN,oo, -) P 

= inf sup {Io(f) 
- 

QN,oo (f)l': 
f 

E-H, 
Ilf jj, 

- 
1}. 

For N = 0, we formally set Qo,oo (f) = 0, so the initial algorithm error is given as 
the norm of the functional I(f): 

Err(0, -) = sup{lI,(f) c : f E 7-, ?ll <? 1} = IlIl. 
One might ask what is the smallest N, for which there exists an algorithm QN,oo, 

such that the initial error is reduced by a factor e, where e E (0, 1], i.e., what is 

N(e, R-I) = min{N: Err(N, 7-) < Err(0, 7-)}? 
The problem of infinite dimensional integration, I,~(f), is QMC tractable if there 
exist nonnegative constants C and p such that 

(5) N(e, 7-) 
_ 

C e-p Ve (0, 1]. 

The infimum of p for which (5) holds is called the e-exponent of QMC tractability. 
A simple example of intractability in infinite dimension is due to Chentzov (see 

[Sob69, Sob98]). Consider the set of functions 

(6) 
" = {(xj - xm)2 : j,m = 1, 2,.. }, 

and suppose that the class 7I contains F. For an arbitrary sequence {Zi 
}iO1 

of 
points in C', and for any N, there exists a function f E F such that 

lI•(f) 

- QN, (f; {zi}I )l 1 - 12 
Thus, if c = supfE, Ilf11 is finite, it follows that Err(QN,oo, 7) ? (12c)-1, and 

N(E, 7I) = oc for all e < [12c Err(0, -H)]-1. Therefore, the integration problem for 
this function class I is not QMC tractable. 

In the example above all the coordinate directions have equal importance. How- 
ever, the tractability situation may change completely if the dependence of f(x) on 
successive variables is increasingly limited, i.e., the dependence of f(x) on xj be- 
comes weaker as j increases. Such situations often occur in practice. For example, 
in the simulation of the trajectories of particles, successive collisions become less 
influential to the quantity in which we are interested. In mathematical finance, the 
payoff of a certain derivative security is less influenced by the interest rate of the 
time periods close to the expiration time. Sobol' [Sob69, Sob98] studied some func- 
tions satisfying conditions of this type. In the finite dimensional case, Sloan and 
Woiniakowski [SW98] studied the strong tractability and tractability of weighted 
classes of functions. 

This paper investigates the error bounds and tractability of certain weighted 
classes of functions as in [SW98], but in infinite dimension. Section 2 defines the 
relevant Hilbert spaces of integrands with very general reproducing kernels. It is 
shown that such Hilbert spaces can be decomposed as the direct sum of a series 
of their subspaces, each subspace containing functions of only a finite number of 
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variables. In Section 3, the theory of reproducing kernel Hilbert spaces is used to 
derive a quadrature error bound, which takes the form of a product of a general- 
ized discrepancy and a generalized variation. The general theory is illustrated by 
two concrete kernels, which correspond to the star-discrepancy and the centered- 
discrepancy respectively. In Section 4, we establish the tractability of QMC algo- 
rithms for weighted classes of infinite dimensional functions, and prove that the 
E-exponent is less than 2 under a very natural assumption. Moreover, under a 
somewhat stronger assumption on the weights, it is shown that the e-exponent is 
1. The proof is constructive. 

2. THE PROJECTION DECOMPOSITION OF FUNCTIONS IN INFINITE DIMENSION 

In finite dimension, the derivation of QMC integration error bounds and the 
study of tractability of QMC algorithms rely on a decomposition of integrands 
into low dimensional parts and the theory of reproducing kernel Hilbert spaces 
[Hic98]. A similar approach is adopted here for the infinite dimensional case. The 
decomposition of the integrand into finite dimensional parts is called a projection 
decomposition. 

Let 1 : oc denote the infinite set {1, 2, ... } of coordinate indices, and let 1 : s 
denote the set {1, 2, ... , s} of the coordinate indices of the first s variables. For 
any u C 1 : oo, let Jul denote its cardinality, and let CU = [0, 1]U denote the Jul- 
dimensional unit cube involving the coordinates in u. Furthermore, let xu denote 
the vector containing the coordinates of x whose indices are in u. By (xu, 1) we 
mean the vector in C", where all the components xj with j V u are set equal to 1. 

In order to obtain good estimators for the integral (1), we must define appropriate 
spaces of integrands, such that the dependence of f(x) on successive variables, xj, or 
sets of variables, xU, becomes weaker with increasing j or lul. For any set u C 1 : oc 
with finite cardinality the nonnegative weight 7u indicates the importance of the 
variables indexed by j E u. This approach was introduced in [SW98]. For the 
purpose of standardization, we set ^y? = 1. An important special case is 

(7) 
'yu:='-nYa, uCl'oo, jEu 

for some nonnegative tYl, Y2, ..., but most of the results that follow are proved for 

arbitrary choices of Yu. These weights must satisfy a summability condition, given 
below. 

Define a reproducing kernel of the form 

(8) K(x,y)= S 
E fnflk(xj,yj,), 

O<lul<oo jcu 

where k(x, y) is a symmetric, real-valued positive definite function on [0, 1]2. In the 
remainder of this paper the one-dimensional kernel k and the weights y, are always 
assumed to satisfy the following condition. 

Assumption 1. The Hilbert space of univariate functions H(k), admitting the re- 
producing kernel k(x, y), does not contain any nonzero constant, that is 

(9) H(1) n H(k) = {0}, 

where H(1) is the Hilbert space with kernel 1. Moreover, it is assumed that the 
kernel is bounded over the unit square, integrable over the unit square, and integrable 
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along the diagonal: 

(10a) L := sup Ik(x, y)] < c0, 
(x,y)E[0,1]2 

(10b) m := f,, k(x,y) dx dy < L, k(x,x) dx < L. 

It is also assumed that 

(11) h( (11) h(x) = k(x, y) dy E H(k). 

The summability condition on the weights is 

(12) 7,LIUl < 0. 

O<lul<oo 

If the y, take the form (7), then this is equivalent to 
00 

(13) S < 
j=1 

Note that in fact m < M since k(x, y) is positive definite (see [HWOO]). It 
follows from condition (12) that the function K,,0(x, y) given by formula (8) is well 
defined. Moreover, it is positive definite. From the theory of reproducing kernel 
Hilbert spaces [Aro50, Sai88, Wah90] there exists a uniquely determined Hilbert 
space, admitting the reproducing kernel K0 (x, y). We denote this Hilbert space 
by H(Koo). 

To characterize the space H(Kco) consider first the reproducing kernel 

Ru(xu,, yu) = 
nk(xj, yj) 
jEu 

defined for finite sets u c 1 : oc. Denote the associated Hilbert space as Hu, with 
inner product and induced norm (',-)HU and 11-IHI., respectively. When u = 0, 
we define fO0 = 1, and the corresponding Hilbert space is H0 = H(1) - {f : 
f is a constant}. Also, consider the reproducing kernel 

Ru(x,, yu) -= ̂ ? (xI, y,) = -yu k(xj, yj). 
jEu 

Denote the associated Hilbert space as W,, with inner product and induced norm 
(-, -)w, and |II-||, respectively. The Hilbert space H, is closely related to the 
Hilbert space W,. In fact, if Tu > 0, then W, = HH, and their inner products are 
related by 

(f,g)w, = 
,u 

(f, g)H, 

If -y = 0, then W, = {0}. 

Lemma 2. Under Assumption 1 it follows that HunH, = {0} and WunW, = {0} 
for all u n v where u, v C 1 :oc and lul, |vI < oc. 

Proof. Let f be any function in H 0n H,, and without loss of generality suppose 
that ? E u - v. Since f E H,, it follows that f can be written as an infinite series 
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in terms of the reproducing kernel R,: 

f(x,) = ZciRu(Xu, yiu) = Ci f k(x3, yij) 
i i jEu 

i [ - k(xj,ij) (x,y ie). 

For any fixed x,_~e the above series represents some function of g(xt) E H(k). 
On the other hand, since f E Hv and e V v, the function g(xz) must be constant. 
By Assumption 1 it follows that g(xt) = 0. Since this holds no matter how x,_({e 
is fixed, the function f must be zero. O 

Now consider the s-dimensional reproducing kernel K,(xl:s, yl:s) defined as 

(14) Ks(x:s, yl:s) = E Ru(xu, yu). 
uCl:s 

It is shown in the lemma below that the Hilbert space H(K,), admitting this kernel 
is simply the direct sum of the appropriate W,. 

Lemma 3. The Hilbert space H(K,) with the reproducing kernel K,(xl:s, yl:s) can 
be decomposed as the direct sum of Hilbert spaces Wu with u C 1 :s, that is 

(15) H(K,) = 

W•,. uC1:s 

Any function f(xl:s) E H(Ks) has a unique decomposition 

(16) f(xl:s) 
= 

E fu, 
f,• 

W,. 
uCl:s 

This is called the projection decomposition. The inner product and norm for H(Ks) 
are related to the inner products and norms of the spaces Wu as follows: 

(f,9)H(K,)= (fgU)Wu liIH(K,)= I Wfullw 
uC1:s uCl:s 

Proof. Since it was shown in Lemma 2 that W, n W, = {0} for all u $ v, one may 
define the Hilbert space Ws = u. , :s Wu. Any f E W may be written uniquely 
as f = Euc l:s fu with f E Wu. One can then define an inner product and norm 
associated with W, in terms of the inner products and norms associated with the 

WU : 

S 
I(fgC 

If Ill = 5 fllfuII2 uCl:s uCl:s 

For this definition of the inner product it is straightforward to show that the re- 
producing kernel for W, is 

Ks 
as defined in (14). Since each reproducing kernel 

corresponds to a unique Hilbert space, H(K,) = WI. O 

Now we are ready to discuss the infinite dimensional case. Consider the kernel, 
defined in (8), which can be rewritten as 

(17) Koo(x,y)= E R.(xu, ,,) 
lul<oo 
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This is the limit of K8 when s -- oo. Note that there are no terms with lul = 00 in 
the sum of (17). Let 

(18) 
WVoo={ 

fuf: fu E Wu, j 
fu2oo 

< f OO} 
JulI<o IUi<•o 

Since Wu n W, = {0} for all u 4 v, any f E W, has a unique projection decompo- 
sition 

(19) f(x)= E f~, f, EWu. 
lul<oo 

Define the following inner product and norm for this space: 

(20) (f,g), = (fu,Ig)W , If I 2 S Ilf IIf2 
lul<oo lul<oo 

The following lemma shows that this Hilbert space has reproducing kernel (17). 

Lemma 4. The space WIfV with inner product and the square norm defined in (20) 
is a Hilbert space with reproducing kernel (17), i.e., H(Ko,) = Woo. 

Proof. The fact that Woo as defined is a Hilbert space is obvious. It remains 
to be shown that K. (x, y) is its reproducing kernel. For any fixed y E C' it 
must be shown that Ko(x,y) E Wc. From (17) it follows that Ko(x,y) = 

Iu I<0c Ru(xI,yu) and each R,(-, y,) E W,. Moreover, 

S 
IIRu(',yu)11 

2 WRu(.,yu),R (.,yu) 
lul<oo Ilu<oo 

= Ru(yI,y,) = K.(y,y) < oo 
lul<oo 

by summability condition (12). Therefore, K,(x, y) E W,, for any fixed y E C'. 
Next, for any f = flE< 1 f 

7 , W0 it follows that 

( f, Ko(-,Y)) oo 
= = (fu,Ru((,yu))w = fu(yu) = f(y), 

lul<oo Iul<oo 

so K,.(x, y) has the reproducing property. The relation H(Ko) = W follows from 
the uniqueness of Hilbert spaces admitting the same reproducing kernel K,, (x, y). 

Corollary 5. The space H(K,) may also be defined as 

5H(K)= H f u: f,~ EH<, 5yuI f112 
Hu 

{lul<oo Iul-<oo 
Yu>O >Yu>O 

If s < d < oo, then H(K,) is a subspace of H(Kd), which is a subspace of 
H(K,). The inner product for the Hilbert space H(K,) is the same as for H(Kd) 
and H(Ko) but restricted to the space of s-dimensional functions H(K,). 
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3. THE ERROR BOUNDS OF QUASI-MONTE CARLO ALGORITHMS 

IN INFINITE DIMENSION 

Having defined an appropriate space of integrands we now derive the error 
bounds for quasi-Monte Carlo integration (2) using the theory of reproducing kernel 
Hilbert spaces. First, some notation is defined. Let 

11-11P 
denote the LP-norm of a 

function on C" with lul < 00, that is 

lflip =[ If lPdxu, , Ilfll 
= inf{A : f < A almost everywhere}. 

This notation is extended to the case of a series of projection terms (f,) where the 

range of u is often 0 ul < oo00 or 0 < ul < oo00. If f, is a function on Cu let 

f, 
=If,•dxu 

Il (fu)llo = max Ifu 
ll• 

I fu 
IIP 

u 
cc 

3.1. General case. Consider now the infinite dimensional integration functional 

given by (1). Assumption (11) on h(x) implies that one-dimensional integration is 
well defined for the space H(k), and in fact h(x) is the representer of the integration 
functional. Note that 

Ilh() (h, h)H(k) h(x) 
dx k(x, y) 

dx dy= m. 

It is straightforward to show that the function -y, Hju h(xj) is the representer of 
the integration functional for the Hilbert space W,, and 

2 

y1l h(xj) m 
jEu 

Wu 
Define the function 

hoo(x) Koo(x, y) dy = : 'y h(xj) 
colul<oo jEU 

From the condition (12) it follows that |Ihool2H(Ko) 
--= 

Z-u< 
umnu 

< 00, SO 

hc E H(Ko). Integration on C"O is a continuous, linear functional with representer 
hoo, i.e., 

Io (f ) =(f, hco)H(K) with ho(y) = KocK(x,y)dx. 
JCc 0 

The square norm of this functional is 

(21) 1l112 = Ih o I1(K) = lul 
Sul<oo 

Because H(Kao) has a reproducing kernel, QN,oo is a continuous, linear func- 

tional, and so is the integration error I - QN,oo. By the Riesz Representation 
Theorem the quadrature error may be expressed as 

(Ioo - QN,oo)(f) = ( , f)H(Ko), Vf e H(Koo), 

where the representer of the error functional is 

(22) ((x) = ((, Koo (., X))H(K,,) = (00 
- QN,)(K)o(., x)). 
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Since QMC rules are exact for constants, the integration error for f is the same as 
that for 

f? 
:= f - f0, 

the nonconstant part of the integrand f. The Cauchy-Schwarz 
inequality implies the following error bound 

|Ioo(f) - QNoo(f) = (, f)H(Ko) I , f)H(Kc) < 
IIIH(KK 

) Ilfl'IH(Kc) " 
This error bound is tight, since equality holds if f(x) is a multiple of ((x), the 
worst-case integrand. 

The terms (a making up the projection decomposition of the worst-case inte- 
grand, ((x), are the errors in integrating R,(., x,). Indeed, 

((x) = (Io - QN,oo)(Koo(,x)) (oo - QN,oo) R(.,x) 
0<Iul<oo 

- (loo -QN,o)R(.-,x). 
O<Iul<oo 

Note that (Ioo - QN,oo)R,(., x,) E W,. According to the uniqueness of decompo- 
sition of functions in H(Ko), we have $= - 0, and for u / 0 

(23a) (u(x) = (loo - 
QN,oo)R(.(I,xu) 

= Y^ u (x), 

where 

(23b) 
(k(x)-= 

k(z, xj)dz 1 - k(zj,xz)1 
36Cu zP jEu 

To show how each projection term f, in the series for the integrand f contributes 
to the total integration error, the inner product ( , fi)H(K.) is expressed in terms 
of ((?, f,)w, using Lemma 4: 

lio(f) 
- 

QN,O(f) 
= I(, i)H(K)=I - f)H(K) 

0<iul<oo O<Iu1<oo 
Yu ?O 

< E D2,u(P)V2,u(f) 
O<I ul<oo 

u(24) <D2(P V2(f 
(24) ? D2(P, Koo)V2(f Koo), 

where 

D2,u (P)- Ill 
H•, 

V2,1(f)= IlfIll u 
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and 

1/2 

12 

(25) D2(P, Koo)= ?uD2,u(P) = u1 2 
O<lul<oo O<1ul<oo Hu 

1/2 

O<lul<oo 
-),, 

Y 0 U# 

1/2 1/2 

(26) V2(f, 
Koo)= 

) , 22 ,(f) =f2 
O<|u|<oo o<lul<oo 

= 

|I I f IIH(Ko,) 

Definition 6. For any point set P in the infinite dimensional unit cube CO", the 
L2-discrepancy is defined by (25) and is the norm of the worst-case integrand ((x). 
The L2-variation of f(x) is defined by (26) and is the norm of the nonconstant part 
of f(x). 

The discrepancy depends on the point set P, but not on the integrand, f(x), 
while the variation depends on the integrand but not on the point set. Both the 
discrepancy and the variation depend on the choice of the one-dimensional kernel, 
k, and the weights, y,. 

Note that in the above derivation, one at first writes the error as the inner 
product of the worst-case integrand, 6, with f?. The inner product is expanded as 
a sum of inner products over u with 0 < lul < oo, and the absolute value is taken 
inside the sum. The Cauchy-Schwarz inequality is applied to each inner product 
in the sum. The uth term in this sum is multiplied and divided by a factor 

Tu1/2 
Finally the Cauchy-Schwarz inequality is again applied to the sum to obtain the 
error bound. The term 

(,fu), 

u is the integration error for the projection term 

fu, and this does not depend on -,. This error is no larger than the product 
D2,u (P)V2, (f). Because the reproducing kernel Koo(x,y) is given by (8), the L2-discrepancy 
may be written in terms of integrals and sums involving the reproducing kernel: 

(27) D2(P,Koo) = (, /2 (I )- QN,(00 )) 1/2 
SKxy) 

d y H(Koo) 

2 
121 ={ J 

Koo(x, 
y) dx dy- j 

Ko(z, 
y) 

dy+-2 
K(z, ') 

zEP z,z'EP 

The following theorem summarizes these results. 

Theorem 7. For any function f(x) E H(Ko,), the infinite dimensional QMC in- 
tegration algorithm (2) has an error bound 

Ioo(f) - QN,oo(f)l = I(i, f)H(K,)lI ? 5D2(P, Koo)V2(f, Koo), 



QUASI-MONTE CARLO ALGORITHMS IN INFINITE DIMENSION 1651 

where D2(P, K,) and V2(f, K,) are L2-discrepancy and L2-variation, respectively. 
Equality holds when f(x) is a multiple of the worst-case integrand ((x) as given in 
(22). The worst-case error of QMC algorithm QN,, over the unit ball of H(K,) 
is the L2 -discrepancy: 

Err(QN,0, H(Kc)) = D2(P, K,). 

Remark. If f(x) is an s-dimensional function where s is finite, then the sums over u 
in formulas (25) and (26) need only be taken over u 

C_ 
1 : s. In this way we recover 

the error bounds of QMC algorithms for finite dimensional functions, which were 
studied by Hickernell [Hic98]. 

3.2. Star-discrepancy. Consider the following particular choice of kernel 

(28) K*(x, y)= : , yfk*(xj, yj), 
lul<oo jEu 

where k*(x, y) = min(1 - x, 1 - y). It is easy to check that k*(x, y) satisfies all 
the conditions in Assumption 1. Let H* denote the Hilbert space with the kernel 

I1jnC k* (xj, yj). The inner product and the square norm are given by 

(29) (fu, gu)H -- 
dX, 

xUg 
fx IIfH = 2dx ) , 

ICU a & axu U ( 
for f,, g, E H*. 

The projection term of the worst-case integrand ((x) can be computed using 
(23) for 0 < u < oo00 

( (x) = 
•,•u(x), u(x) 

= - 
•x 

- 1 
- max(xj, zj)1. 

iEu zEP jEu 

Therefore, 

alu= (-xj) - 
•1E -{z<x) = (-1)Iul Disc*(u, xu; Pu), 

DP={cEu N(zEP jEu 

D* 
- Disc*(u, xu; PU) dxu 

where 

Disc*(u, xu; PU) = Vol([0, xu)) - k P n [0, xu) , N 

and P, denotes the projection of the point set P on the cube CU, the notation IAI 
means the number of points in the set A counted with multiplicity. The geometric 
meaning of Disc* (u, xU; P,) is the absolute difference between the volume of a box 
[0, x,) and the proportion of points in P, that are also in that box (see [Hic98]). 
In this case the corresponding discrepancy is called the star-discrepancy. From the 
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definition of discrepancy (25), the L2-star-discrepancy takes the form 

1/2 

(30) D*(P)- 
[D,(P)]2 0<|ul<oo 

2 

C1/2 
-, % 

Disc* (u, xu; 
Pu) 

dxu 
O<|ul<oo 

1 

O< ul<oo zEP j e 

+N2 S min(1- zj,1- z1) 
z,z' PjEu 

Furthermore, from (27) the L2-star-discrepancy of P can be reduced to a double 
sum when the y, satisfy (7): 

[D*(P)]2 =+ 
i 2 

-3 1j 
) 

j=1 zEPj=1 

+ 
1-1 

+ 7 min(1- zj, 1 - z ) . 
z,z'EP j=l 

The above formula is the limiting discrepancy, defined by Sloan and Woiniakowski 
[SW98]. It is clear that D* (P) is finite if and only if 1• ?j < oc, as noted in 

[SW98], but obtained in a somewhat different manner. 
Now consider the variation of the integrand f(x). For a fixed subset u C 1 : 00 

with 0 < ul < oo00 recall that the reproducing kernel for Hu is Hj3e [1-max(xj, yj)]. 
Thus, for any f, E Hu, it follows that f(x,) = 0 when xj = 1 for any j E u. Thus, 
if f = leu l<oo fu is the projection decomposition of any f E H(K*), then 

f(xu, 1) = fv(Xv), ( -x, f(x, 1)= OIU 
vCu 

Therefore, from (26) the L2-variation can be written as 

V( 
() 

- i7 

2 
XIul ) V Y 

xu o< 1) <oo 

Tu, 
0 2 

What kind of function belongs to H(K* )? As an example, suppose that O(x) is 
a function of infinitely many variables with all partial derivatives &ul ,/Ox u 

con- 
tinuous and uniformly bounded. Then the function f(x) = ?(qixl, " " 

I , jxj , ' 
) 

belongs to H(K*) assuming that the y, are defined by (7) and that the yj satisfy 
Assumption 1. Indeed, 

alu fu alul o aI 
Y~_~ uq$ 

&X, Yda, 
so it is easy to see that 

|IfIIH(K*) 
is finite. Here we can also see the role of the 

weights ?j. 
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Since in this special case the inner product of H* takes the form (29), one can 
also define the so-called LP-star-discrepancy and Lq-variation in terms of the LP- 
norm. Following similar lines as in (24) and applying the H61der inequality instead 
of Cauchy-Schwarz inequality, we obtain the following family of error bounds 

I(f) - QN,o(f) ?< 
Dp(P)Vq*(f), 

p- + q1 = 1, p [1, o], 

where 

Dp(P)= 
• 

, V(f) 
Oxu 

o<u)<oo 
p 

W 
u 

0O< u<00 
0< lu <cx P Yu# 

- 

q 

The quantities Dp(P) 
and V*(f) are called the LP-star-discrepancy of the point 

set P and the Lq-variation of f(x), respectively. Using the formulas for 1Odl /Oxu 
and olulfulf/x, one obtains the formulas 

D (P) = 7( Disc* (u, xu; P) O< I \ / <|u<ooIp 

( U O<Iul <oo 
Tu =A0 q 

For p < oo, the pth power of the discrepancy, 
[Dp(P)]P, 

is the weighted sum of 
the terms IDisc* (u, x,; Pu)Ip, which are the pth powers of the traditional LP-star- 
discrepancy of the projections Pu (see [MC94]) . For p = oo, 

D*I(P)= sup max 
y'uDisc*(u,x,; P,). 

xECO O<IUI<OO 

3.3. Centered-discrepancy. Now consider another choice of kernel: 

(31) Kco(x, y) = 
- 

yu11 kc(xJ, yJ), 
lul<oo jEu 

with 
1 1 1 

k(x, y) = x - 1/21+ ly- 1/21 -Ix - yl 2 2 2 
It is also easy to check that kc(x, y) satisfies all the conditions in Assumption 1. Let 

Hc denote the Hilbert space with the kernel ljz kC(xj, yj). The inner product 
and the square norm are given by 

(fu, 9gu) H 
-c 

au 
dxu, ld xuu HfuI 

k,2( 

dxu, 

for any 
f,,gu 

E H,. 
The projection term of the worst-case integrand can be 

computed by using (23) for 0 < lul < oo: 

?u(X) = -yu ( X), 

I 

1 
1 

1 1 1 
(x) - xi - x 

- xI k'(xj, zj) 
Lj~u (zEP jEu 
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Therefore, 

alu•l 
xu 

= DiscC(u,xu; Pu), 
Ox, 

where 

Discc(u, xu; Pu) = J(-xy + 
1{x>1/2}) - ({X3>1/2} - 

1{>z}). jEu zEPjEu 

For the geometric meaning of Discc(u, xu; Pu) see Hickernell [Hic98]. In the same 
way as in the star-discrepancy case, one can obtain that for any f(x) e H(Ke) 
and 0 < lul < 00, 

S 
= ff (xu, 0.5). 

OxU, Odx, 
The error bounds can be derived similarly. The formulas for the LP-centered- 
discrepancy and the corresponding Lq-variation are 

Dp(P) 
= (IDiscC(u, xu; P) <u 

V(f=f 2 - f(x 0.5) . Vuf = 0 / 
O<lul|<oo0 

yU:AoO 

For p = 2 and y, of the form (7) the L2-centered-discrepancy takes the form 

[D (P)]2 N 1 - 
z 

2)] 

j=1 zEPj=[ 

+- 

i 

1+- 
z1 - 

+ 
z 

L 
- 

-- 
z - 

z 
. 

zz P 
j=1l 

Clearly, D (P) is finite if and only if oj=1 7j < 00. 

4. TRACTABILITY OF QUASI-MONTE CARLO ALGORITHMS 

IN INFINITE DIMENSION 

The concept of QMC tractability in infinite dimension was described in the 
introduction. An example of intractability is also given there. That example shows 
that we may have intractability of QMC algorithms even for a relatively simple 
class of functions, if all variables are equally important. It is natural to ask when 
are QMC algorithms tractable in infinite dimension, and when is the c-exponent 
the same as for the one-dimensional case? 

Let B(Koo) denote the unit ball in the space H(Ko), i.e., 

B(Ko) = {f E H(Ko) : IlfIIH(K,,) 1}. 
Note that by (4) and Theorem 7 it follows that 

(32) Err(N,H(K,)) = inf sup II(f) 
- QN,o(f) = 

infD2(P,Ko). P fEB(Koo) P 

Thus, the problem of tractability becomes one of determining how small the dis- 
crepancy can be made using N sample points. 
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4.1. When are QMC algorithms tractable? Consider the reproducing ker- 
nel K,,(x, y) defined in (8) and the corresponding weighted class of functions 
H(K,). We will show that for H(Koo) the infinite dimensional integration problem 
is tractable. 

Theorem 8. If Assumption 1 holds, then the infinite dimensional QMC integra- 
tion algorithm (2) is QMC tractable for Hilbert space H(Koo), and the e-exponent 
satisfies p* < 2. 

Proof. The proof is obtained by looking at the performance of a simple Monte Carlo 
algorithm. The same technique was employed in [SW98] in the finite dimensional 
case. 

Recall the formula for the discrepancy in terms of the reproducing kernel in (27). 
Assume that P consists of independent points all uniformly distributed on [0, 1)". 
Then take the expectation of the square discrepancy 

(33) Ep D2 (P, Koo) =o Koo(x, y) dx dy - 2 Koo(x, y) dx dy 

+ N2 ( Koo(x, x) dx + (N2 - N) Joo K(x, y) dx dy 

SK(xx) dx C K(xy) dx d 

This formula also appears in [Hic98] and elsewhere. 
Assumption 1 and (21) imply that the two integrals appearing above are finite, 

namely, 

/1 KIoo(x, x) dx = u ] k(xy, xj) dx = yMlI < 
u 

o, c= Jul<oo jE o 
lul<C> 

I0 12 
= 

C ooK(x,y) dx dy = Z 
yumIl <0 . 

lul<oo 

Under the assumption that 7y = 1, it follows that Illoo l > 1. 
The best discrepancy possible is certainly no worse than the root mean square 

discrepancy produced by Monte Carlo quadrature. Combining formulas (32) and 
(33) together with the above equations now implies that 

Err(N, H(Koo)) ]2 Ep[D2(P, Koo)]2 1 
Err(0, 

H(Koo)) < 
o 

<112 -•MtV 
- I[I 112 -N 

t•,<o 
This implies that Err(N, H(K,)) 5 e Err(O, H(K,)) for 

N = -2 1 uMIujI 
jul<0o 

So integration is tractable with the e-exponent satisfying p* < 2. O 

A lower bound on the e-exponent may be found by considering how small one 
can make the discrepancy for one-dimensional integration, i.e., by setting Y, = 0 
for all u / 0, {1}. The answer depends on the smoothness of the reproducing kernel 
k(x, y), or equivalently, the smoothness of the functions in H(k). For the examples 
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of the star- and centered-discrepancy given in the previous section, it is known that 

p* > 1. The next subsection answers the question of when the e-exponent equals 
one for the infinite dimensional case. 

4.2. When is the e-exponent of QMC tractability 1 for the star-discrep- 
ancy? This subsection considers the specific kernel K*~(x, y) defined by (28) and 
its corresponding Hilbert space H(Kl*). The corresponding discrepancy is the star- 

discrepancy. Consider the unit ball in H(Kr,), that is, B(K*R ) = {f f H(K*~ ) 

If 
flH(K-) 

< 1}. The notation Disc*(u, xu; P) retains the same meaning as in 
Section 3. Under a somewhat stronger assumption on the weights {j } than As- 
sumption 1, it is shown that the e-exponent of QMC tractability is 1. The proof is 
constructive. 

The multidimensional Halton sequence is defined in [Hal60]. This definition is 
now extended to infinite dimension. Let by be the jth prime number. Define the 

infinite dimensional Halton sequence to be the sequence S = {xo, xl, ... } with 

xn 
= 

( 

b,(n),b2(n),'",b(n),'"), 

n= 0, 1, 
2,., 

where 
{5b, 

(n) } is the van der Corput sequence in base bj. Let u be a subset of 
1 : oc with ul < o00. The projection of the infinite dimensional Halton sequence S 
on the cube Cu is a lul-dimensional Halton sequence (denoted by Su) in bases bj 
with j E u. 

Theorem 9. Assume that in the QMC algorithm (2), the points are taken to be 
the first N points of an infinite dimensional Halton sequence. If the weights %, 
satisfy 

00 

(34) Y = 
•' 

, yJ/2jlogj < Oo, 
jEu j=1 

or if there exists some s < 00 such that 

(35) 
Ju, l 

= 
u 

> 5, 
j=1 

then for any 6 > 0, there exists a constant C., such that 

D (SN)= sup o(f)- NC(f) C, N-1+. 
fEB(K* ) 

Consequently, the E-exponent of QMC tractability equals 1. 

Proof. Recall from (30) that the L2-star-discrepancy may be written as 

D*{(S 
Z )=D (Su )]2 

D (SN) -- S O<lul<c ,xUSN]du / | o 

} 1/2 

D*, (S N) 
= [Disc* (u, 

x,;,S •N)]2 
dxu 

The traditional (extreme) star-discrepancy of the first N points of the Halton se- 
quence can be bounded (see [Nie92]), and this serves as an upper bound for the 
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pieces making up the L2-star-discrepancy: 

(36) D2,u(SUN) < + Haj, for all N> 1, 
jEu 

where 

1 b -1 aj = jlog N + 1(bj + 1), Oj = -1bj. 2 2 log bj 

It is well known that the jth prime number bj is O(j log j) when j -+ o00, so50j j, 
and 

Df,u(SuN) 
? (cj ? 1) ? [Cljlog(j + 1)log(eN)], 

jEu jEu 

for some constant C1 > 0, where e P 2.718 is the antilogarithm of 1. This leads to 
a bound on the square L2-star-discrepancy of 

(37) [Du (SN)]2 -< 
1 E 0j7[Cljlog(j + 1) log(eN)]2. 

O<Iul<oo jEu 

If the y, satisfy (34), then for any 6 > 0 choose an ? such that 

S /2j 0log(j + 1)< 6/C1, 
j= +1 

and define 

j=1 

wi =C2 
- l ' /j , j-- + ,1 + 2,.... 

Note from these definitions that w, = 
-JI• 

wj C 2,, and 

00 00 

w3/20log(j + 1) = 
C2 y1/2j log(j + 1) + yj/2j 2log(j + 1) < 26/C1. 

j=1 j=1 
j=-+1 
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Using (37), the binomial theorem, and some elementary properties of exponentials 
and logarithms one may then derive the following upper bound on the discrepancy: 

[D*(SN)]2- N22 wu j [Cljlog(j + 1) log(eN)]2 
O<Iul<oo jEu 

00 

< N2 {1 +? wj [Clj log(j + 1) log(eN)]2} 2 j=1 

10) S 

N2C21 

exp log{1 + wj[Cljlog(j + 1)log(eN)]2 
j=1 

NC 
exp wj [Clj log(j + 1) log(eN)] 2 

j=l1 

= N2C2 exp C1 log(eN) E w/2j log(j + 1) 
Se og( j= 

<N1 
exp [26log(eN)] = C2 N-2+26 

where C, = 
e6/C2. 

This completes the proof under condition (34). 
When condition (35) is satisfied, note that this implies that 

8 00 

f 
u 

[j log(j + 1)]I2 
_ 

<j[jlog(j + 1)]2 < 2 0. 

O<|uj<oo jEu d=l j=l 

Define 

C3 = <Iu< H [J ilog(j + 1)2 
d=,max s 

2d ). 0< ul<oo j~u 

It now follows from (37) that 

d=1 
lul=d 

jEu 

C3 [2J1og(eN)]2d C3 N 2 d (2d)! 
e 

--exp[26log(eN)] 
= C,2N-2+26 

d=l (2d)! N2 

where C, = v/3e6. This completes the proof under the hypothesis (35). 

The proof of Theorem 9 is constructive. Some other low discrepancy sequences, 
for example, the Sobol' sequence [Sob69], some Niederreiter sequences [Nie92] and 
some Niederreiter-Xing sequences [NX96] also have infinite dimensional versions. 
The upper bounds for the traditional star-discrepancy of these sequences may be 
better than that of the Halton sequence. Thus, one may be able to construct 
an infinite dimensional QMC algorithm with e-exponent equal to 1 under slightly 
weaker assumptions on the weights than those above. Note, however, that the 
Faure sequence [Fau82] has no infinite dimensional version, since one must use a 
prime base no smaller than the dimension of the sequence. 
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FIGURE 1. The L2-star-discrepancy of the Halton sequence (solid) 
for the choice of weights (38a) for s = 1, 2, 4,..., 128 and N = 
1, 2, 4,..., 8192 and the root mean square L2-star-discrepancy of 
a simple random sample (dashed) for the same choice of weights 
with s = oc. 

4.3. Computational investigation of infinite dimensional low discrepancy 
sequences. Theorem 7 shows that the discrepancy is the worst-case error of the 
QMC algorithm over the unit ball in H(K,). Theorems 8 and 9 give upper bounds 
on the e-exponent under different conditions on the weights. It is interesting to 
investigate empirically the influence of the weights on the discrepancy of an actual 
infinite dimensional low discrepancy sequence. The traditional discrepancies in 
finite dimension were studied empirically in [MC94]. 

In practice, one cannot exactly compute the discrepancy of an infinite dimen- 
sional sequence. However, one may do the following. Suppose that the -u satisfy 
(7), and the yj satisfy one of two possibilities: 

(38a) j j-2, j = 1, 2,..., s, yj = 0, j= s + 1, s + 2,..., 

(38b) = 2-, j= 1, 2,.. ,s, yj= 0, j= s + 1,s+2,... 

for some fixed s. The L2-star-discrepancy of the Halton sequence is computed for 
these two choices of weights for s = 1, 2, 4, 8, 16, 32, 64, 128. As s increases the 
discrepancy approaches the infinite dimensional case. The root mean square L2- 
star-discrepancy of a simple random sample is also shown for reference. These plots 
are shown in Figures 1 and 2. 

According to Theorem 8 both choices of the weights in (38) insure that the 
infinite dimensional integration problem is QMC tractable and the corresponding 
e-exponent is no greater than 2. From the proof of this theorem the root mean 
square discrepancy of the random sample decays like O(N-1/2), as shown in both 
Figures 1 and 2. The discrepancy of the Halton sequence in Figure 1 decays roughly 
like O(N-1/2) for small N and at a faster rate for large N. It would seem that 
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FIGURE 2. The same as in Figure 1, but for the choice of weights (38b). 

the discrepancy for the Halton sequence decays at best like O(N-1/2) for weights 
(38a) and s oo. For the choice of weights in (38b), Theorem 9 guarantees that 
the infinite dimensional Halton sequence has a discrepancy that decreases nearly 
like O(N-1). The plot in Figure 2 is consistent with this conclusion. In fact, the 

discrepancy in this figure approaches the infinite dimensional case quite quickly; 
the cases s = 8,... ,128 are indistinguishable to the eye. 
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