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A ONE-PARAMETER QUADRATIC-BASE VERSION 
OF THE BAILLIE-PSW PROBABLE PRIME TEST 

ZHENXIANG ZHANG 

ABSTRACT. The well-known Baillie-PSW probable prime test is a combination 
of a Rabin-Miller test and a "true" (i.e., with (D/n) = -1) Lucas test. Arnault 
mentioned in a recent paper that no precise result is known about its prob- 
ability of error. Grantham recently provided a probable prime test (RQFT) 
with probability of error less than 1/7710, and pointed out that the lack of 

counter-examples to the Baillie-PSW test indicates that the true probability 
of error may be much lower. 

In this paper we first define pseudoprimes and strong pseudoprimes to qua- 
dratic bases with one parameter: Tu = T mod (T2 - uT + 1), and define the 

base-counting functions: 

B(n) = #{u: 0 < u < n, n is a 
psp(Tu)} 

and 

SB(n) = #{u: 0 K u < n, n is an spsp(Tu)}. 

Then we give explicit formulas to compute B(n) and SB(n), and prove that, 
for odd composites n, 

B(n) < n/2 and SB(n) < n/8, 

and point out that these are best possible. Finally, based on one-parameter 
quadratic-base pseudoprimes, we provide a probable prime test, called the One- 
Parameter Quadratic-Base Test (OPQBT), which passed by all primes > 5 

= 
prl 

r2..rd and passed by an odd composite n P= plp2 ... Ps (P < p2 < '" < Ps odd 
primes) with probability of error T(n). We give explicit formulas to compute 
7(n), and prove that 

1/n4/3, for n nonsquare free with s = 1; 

1/n2/3, for n square free with s = 2; 

1/n2/7, for n square free with s = 3; 
r(n) < -4 

1 for n square free with s even > 4; 
8s-4.166(pl.l) 119726 for n square free with s odd > 5; 168-5 119726 ' 

4 =1 2(ri-1), otherwise, i.e., for n nonsquare free with s > 2. 
Pi 

The running time of the OPQBT is asymptotically 4 times that of a Rabin- 
Miller test for worst cases, but twice that of a Rabin-Miller test for most 

composites. We point out that the OPQBT has clear finite group (field) struc- 
ture and nice symmetry, and is indeed a more general and strict version of the 
Baillie-PSW test. Comparisons with Gantham's RQFT are given. 
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1. INTRODUCTION 

Pseudoprimes, Lucas pseudoprimes, and their strong versions have long been 
studied as special cases in simple primality tests for large numbers [2, 4, 5, 6, 9, 10, 
15, 19, 23]. If n is prime, then for every rational integer b with gcd(n, b) = 1, 

(1.1) bn- = 1 mod n, 

and 

(1.2) either bQ E 1 mod n or b2iq 
- 

-1 modn for some i = 0, 1,-.. , k - 1, 

where we write n - 1 = 2kq with q odd. If n is composite such that (1.1) holds then 
we call n a pseudoprime to base b, or psp(b) for short. There are composite integers, 
called Carmichael numbers, such that (1.1) holds for every b with gcd(n, b) = 1. Al- 
ford, Granville and Pomerance [1] proved that there are infinitely many Carmichael 
numbers. If (1.2) holds, then we say that n passes the Rabin-Miller (strong prob- 
able prime) test [15] to base b; if in addition, n is composite, then we say n is a 

strong pseudoprime to base b, or spsp(b) for short. 
Monier [16] gave a formula for counting the number of bases b such that n is 

an spsp(b). Both Rabin [20] and Monier [16] proved that if n is an odd composite 
positive integer, then n passes the Rabin-Miller test for at most (n - 1)/4 bases b 
with 1 <b <n-1. 

We shall use both and # to denote cardinality of a set, reserving the latter 

symbol for sets written with braces. Jacobi's symbol is denoted by (n) or (*/n) 
with n odd. 

Lucas pseudoprimes and strong Lucas pseudoprimes are traditionally defined via 
Lucas sequences with two parameters. Let P and Q be integers and D = P2 - 4Q = 
0. The Lucas sequences Ui and Vi are defined by 

Uo = 0, U1 = 1, Vo = 2, V = P, 

Ui = 
PUi-1 

- QUi-2, 
Vi 

= PVi-1 - QVi-2 for i > 2. 

If n is prime and relatively prime to 2QD, then 

(1.4) Un-(D/n) - 0 mod n, 

and 

(1.5) either n I Uq or n I V2i for some i with 0 < i < k, 

where we write n - (D/n) = 2kq with q odd. If n is composite and relatively prime 
to 2QD such that condition (1.4) or (1.5) holds, then we call n a Lucas pseudoprime 
[4, 19] or a strong Lucas pseudoprime [3, 4] to parameters P and Q, or lpsp(P, Q) 
or slpsp(P, Q) for short. 

Let D be an integer, and n a composite number relatively prime to 2D and 
distinct from 9. Arnault [3] gave a formula to compute the base-counting function 

(1.6) 
SL(D, n) = #{(P, Q) : 0 P,Q < n, P2 - 4Q - D mod n, n is an slpsp(P, Q)}, 

and proved that, for all integers D, 

(1.7) SL(D, n) 
_ 

4n/15, 
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except if n is the product n = (2klqi - 1)(2klq1 + 1) of twin primes with qi odd 
and such that the Legendre symbols satisfy (D/2klqi - 1) = -1, (D/2klql + 1) = 1. 
Also the following inequality is always true: 

(1.8) SL(D, n) < n/2. 

A prp (sprp, lprp, slprp) is either a prime or a psp (spsp, lpsp, slpsp). 
Baillie, Pomerance, Selfridge and Wagstaff [4, 19] suggested a probable prime test 

which is a combination of a Rabin-Miller test and a "true" (i.e., with (D/n) = -1) 
Lucas test, and which seems much more secure than one might expect considering 
each test separately. Although Pomerance [18] gave a heuristic argument to show 
that the number of counter-examples up to x to the Baillie-PSW test is >> xl- 
for any 6 > 0, not a single counter-example has yet been found. As mentioned by 
Arnault at the end of his paper [3], no precise result is known about its probability 
of error. 

Grantham [9] provided a probable prime test (RQFT) using quadratic polynomi- 
als with two parameters, the running time of which is asymptotically 3 times that 
of the Rabin-Miller test for all composites. The RQFT, along with a fixed number 
of trial divisions, is passed by composites with probability of error less than 1/7710. 
Grantham [9] pointed out that the lack of counter-examples to the Baillie-PSW test 
indicates that the true probability of error may be much lower. 

In this paper we provide a version of the Baillie-PSW test (OPQBT) based on 

strong pseudoprimes to quadratic bases with one parameter in the ring 

Z[T]/(T2 - uT + 1). 
We state our definitions and main results (Theorems 1- 5) in Section 2. In Sections 
3 - 7 we prove the five theorems. Comparisons with Grantham's RQFT are given 
in Section 8. Brief conclusions are given in Section 9. 

Remark 1.1. The ring Z[T]/(T2 - uT + 1) was first used by the author for factoring 
large integers near group orders [24]. The idea of using this ring in primality 
testing is motivated from the Lucas-Lehmer Test described in [7, 8], where the ring 
Z[T]/(T2 - uT - 1) was used. Lenstra's Galois Theory Test [14] is a method of 

proving primality using finite fields. 

2. DEFINITIONS AND MAIN RESULTS 

Let u (• ?2) E Z. Put Tu = T mod (T2 - uT + 1) and 

(2.1) R, = Z[T]/(T2 - uT + 1) = (a + bT : a, b E Z}, 

a ring of quadratic algebraic integers associated with the parameter u. 
Given an odd integer n > 1, let u be an integer with 

O<u<n and E= {1,4 -1}. n 

It is clear that if n is prime, then we have, in the ring R., 

(2.2) Tn-E - 1 mod n, 

and 

(2.3) either T q1 modn or 
T2Q--1 

modnforsomei=0,1,-,k- 1, 
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where we write n - e = 2kq with q odd. There are composites which satisfy (2.2) 
or both conditions (note that (2.3) implies (2.2)). These facts lead us to make the 
following definition. 

Definition 2.1. If n is composite such that (2.2) holds, then we call n a pseu- 
doprime to the base Ts, or psp(T,) for short. If n is composite such that (2.3) 
holds, then we call n a strong pseudoprime to the base Ts, or spsp(T,) for short. 
A prp(T,) is a prime or a psp(T,); an sprp(T,) is a prime or an spsp(T,). For odd 
n > 3 and E E {1, -1}, define the base-counting functions: 

(2.4) B(n,e) = #u: 0u< ( n, 
4 

- = , and (2.2) holds 
, n 

(2.5) SB(n,) = #u: 0 <u< n, ( = , and (2.3) holds 
, n 

(2.6) B(n) = B(n, 1) + B(n, -1) = #{u: 0 K u < n, n is a psp(T,)}, 

(2.7) SB(n) = SB(n, 1) + SB(n, -1) = #{u : 0 < u < n, n is an spsp(Tu)}, 

B(ns 

B 

T( 
n,) 

SB(n,) 
(2.8) T0(n,C) = (n-e-2)/2' (n-T-2)/2' 

To(n) =- To(n, 1)To(n, -1), and T(n) = r(n, 1)T(n, -1). 

Note that an spsp(T,) must be a psp(T,). Thus we have 

(2.9) SB(n, E) < B(n, e), SB(n) 5 B(n), T(n, e) < To(n, E), and T(n) < To(n). 
rl r2 r, Let n = 

p1P2 . . be the prime decomposition of odd n > 1. For E {1, -1} 
and 1 K i < s, write 

(2.10) pi - e = 2ki-- qi,, with qi,, odd, and n - e = 2k cq, with q, odd. 

For 
E1,62," 

' ,s E {1, -1}, put 

(2.11) m(e1,E2,... ,es) = min{ki,E, : 1 i < s}. 
It is clear that there exists one and only one s-tuple (el, e2,... , es) with 

m(el,e2, 
* * , e) 2, and that m(1,E2, ... ,Es) = 1 for all other 2- - 1 s-tuples 

(E1, 62,1 ... Es). 

Definition 2.2. Given an odd n > 5. The One-Parameter Quadratic-Base Test 
(OPQBT) consists of the following: 

Step 1 (Nonperfect square pretest). Check if n is a perfect square using Newton's 
method. If it is, declare n to be composite and stop. 

Step 2 (First sprp subtest). Select a random integer u with 0 < u < n, u +?2 
mod n and gcd(u2 - 4, n) = 1. Put e = 

(U2-); 

then E {1, -1}. If n is not an 
sprp(Tu), i.e., condition (2.3) does not hold, declare n to be composite and stop. 

Step 3 (Second sprp subtest). Select several random integers v with 0 < v < 
n,v 4 ?2 mod n, until one finds a v with (vn4) = -e. (By Lemma 6.1 in 
Section 6, it is easy to find such a v, since n is not a perfect square.) If n is not an 
sprp(T,), declare n to be composite and stop. 

If n is not declared composite in Steps 1-3, declare n to be a strong probable 
prime, and say that n passes (one iteration of) the OPQBT. 



A VERSION OF THE BAILLIE-PSW TEST 1703 

With the above notations and definitions we state our main results as the fol- 
lowing five theorems. 

Theorem 1. We have, for odd n > 1 and E E {1, -1}, 

(2.12) B(n, e) 
1,2, , 1,--1 i 

cd - p - ) 

rl Er2 ... 6 s s r1 r2 rs 6 
6162 ''s= 

and 

(2.13) 
SB(n, e) 

=- 
2I 

gd1gcd(q}, 
)1qi'2gis(m-1- 

l gcd(q,, QiE) 1 
E1,E2," 

2 
,2s 

E1,-- 
1 i=1 Ir1 

61 •2 " 

where m = m(el,E2,2... , Es), as defined in (2.11). 

Theorem 2. We have, for odd positive composite n (i.e., s > 2 or rl > 2), 

(2.14) B(n) < n/2 and SB(n) < n/8. 

Theorem 3. We have, for odd positive composite n (i.e., s > 2 or rl > 2), 

1/n4/3, for n nonsquare free with s = 1; 

1/n2/3, for n square free with s = 2; 

(2.15) ro(n) < 1/n2/7, for n square free with s = 3; 

•+1' 
for n square free with s even > 4; 

4 H-1 =1 
2(r-) 

, otherwise; 
Pi 

and 

(2.16) 

To (un), for n nonsquare free with s = 1 

or n square free with s = 2, 3; 

,T(n) s-4-166(pi+)1 for n square free with s even > 4; 

16-5119726 for n square free with s odd > 5; 
8 

2(~ 1 -1), otherwise, i.e., for n nonsquare free with s > 2. 
Pi 

Theorem 4. The OPQBT is always passed by primes > 5, and passed by odd 
composites with probability of error 7(n). 

Theorem 5. It takes (2 + o(1)) log2 n multiplications modn to do an sprp test in 
Step 2 or 3, assuming that addition takes o(1) multiplications mod n. Thus (an 
iteration of) the One-Parameter Quadratic-Base Test can be completed in the time 
it takes to perform at most (4 + o(1)) log2 n multiplications mod n. 

Remark 2.1. If n is a psp(b) (resp. an spsp(b)), then n is a psp(T,) (resp. an 

spsp(Tu)) with u = b + b-1 mod n. If n is a psp(T,) (resp. an spsp(T,)), n is 
not necessary a psp (resp. an spsp) to a rational base even if 

(-n4) 
= 1, unless 

( ) = 1 for every prime factor p of n. In particular, n is a psp(2) - n is a 

psp(T(n+5)/2). 



1704 ZHENXIANG ZHANG 

Remark 2.2. If n is a psp(Tu), then n is an lpsp(u, 1) and an lpsp(1, Q) with Q = 
u-2 mod n if gcd(u, n) = 1. But the converse is not true. For examples, both 21 
and 329 are lpsp(3, 1), but neither is a psp(T3). There are 155 psp(T3)'s among 279 

lpsp(3, 1)'s < 106. Arnault [3] and Grantham [9, 10] cited a preprint of Mo and 
Jones, who introduced a test via slpsp(u, 1), which has probability of error < 1/8. 
So far I have not been able to access the preprint. I sent e-mails to Jones for a 
copy, he replied that they were still working on it. 

Remark 2.3. There are 4152 psp(T3)'s < 109, among which 1165 numbers are 

spsp(T3)'S. 

Remark 2.4. Can B(n)/n be arbitrarily close to 1/2? The answer would be affir- 
mative, if there are Carmichael numbers n with a fixed number of prime factors 
with the smallest factor arbitrarily large, and with the stronger requirement that 

p n implies (p2 - 1) 1 (n - 1). Alford, Granville and Pomerance [1] have proved 
that there are infinitely many Carmichael numbers with the stronger requirement 
that p I n implies (p2 - 1) I (n - 1) (also cf. [11, A13]), but no one has yet been able 
to show that there are infinitely many Carmichael numbers n with a fixed number 
of prime factors. 

Remark 2.5. If there are infinitely many pairs of twin primes pi and P2 = 1 P + 2 
with Pl -- 1 mod 4, then SB(plp2) will be arbitrarily close to 1/8, cf. Example 3.1 

PlP2 
in Section 3 and the proof of Lemma 4.5 in Section 4. 

3. PROOF OF THEOREM 1 

Let p be an odd prime, k (? 1) E Z, and G(u, pk) the multiplicative group of 
invertible elements of the ring 

(3.1) Ru/(Pk) = {a + bT,,pk : a, b E Z/(pk) } 
with 0 u < pk, -- ) e { 1, -11} and 

Tupk 
= T mod pk 

For e e {1,-1} and a positive odd integer q, define 

(3.2) J(q,e)=# u: O u < q, u- 4 
=4 I ) 

= 

To prove Theorem 1 we need six lemmas. 

Lemma 3.1. Let p be an odd prime. Then 

(p - 1)/2, for e = 

-1, 

J(p, 0) = 2, J(p,p) = 
(p/- 

( - 2)/2 = )/2, for 
(p - 3) /2, for E =1 

Proof. It is well known [12] that 

(u2 
-\ 4 

= -1. 

u=O 
P 

Since J(p, 0) = 2, we have J(p, -1) = (p - 1)/2 and J(p, 1) = (p - 3)/2. O 

Lemma 3.2. Let p be an odd prime and e E {1, -1}. If J(p, e) > 0, then there 
exists an integer u such that 0 < u < p, (u2~) = e, and Tu,p is of order p - E in 
the group G(u, p). 
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Proof. Case E = 1. It is well known that the multiplicative group GF*(p) = 

(Z/(p))*, of nonzero elements of the finite field GF(p) = Z/(p), is cyclic, of order 
p - 1. Let 0 be one of its generators. Then 0 is of order p - 1. Since J(p, 1) > 0, it 
follows that p - 1 > 2 and 0 80-1. Put u = 0 + 0-1 E Z/(p); then 

0 < u < p, 
U - 4 ( - 1 and 82 - + 1 modp. 

Sp p 

The lemma follows. 
Case e = -1. It is well known that the multiplicative group GF* (p2) of nonzero 
elements of the finite field GF(p2) is cyclic, of order p2 - 1. Let 0 be one of its 
generators. Put a = OP-'. Then a is of order p + 1. Put u = a + a-1 = a + op E 

Z/(p); then 

0 < u < p, aL2 - U + 1 0 mod p and - -1. 
P 

The lemma follows. O 

Lemma 3.3. Let p be an odd prime, k (> 2) e Z, and E E {1, -1}. If J(p, e) > 0, 
then there exists an integer u such that 

OSu<p2 
U2--4 

and T.,pk is of order pk-l(p - e) in the group G(u,pk). 

Proof. By Lemma 3.2, there exists an integer v such that 0 

_ 

v < p, (v ) = , 
and a = Tv,p 

is of order p - E in the group G(v, p), with a2 - va + 1 - 0 mod p. 
Put al = v - a = a-1 mod p, the other root of x2 - vx + 1 0 mod p. 

Case E = 1. If aP-l1 : 1 mod p2, take 

/3= a and 31 = al + hp with h = a------- mod p; 
p 

otherwise take 

S= a + p, 1 al+hpwith h =-a(a + aa -1 mod p. 

We have pi 31 1 mod p2. Let u = P + 31 mod p2. 
Case E = -1. If aP+l A 1 mod p2, take 3 = a and u = v; otherwise take 

a+p 
-E(a+p)(1-2-1vp) (1-2-1vp)a+p modp2 

-a +plp 

O1 - (1 - 2-1vp)al + p mod p2 

and 

u = p + 31 = (1 - 2-1vp)v + 2p mod p2, 

where 2-1 stands for 2-1 mod p. Then 

p+l ? (a + p)p+l(1 
- 

2--vp)p+ E- 1 m + Pp - 
2--vp 

1 + (2-1v - a)pk 1 mod p2 
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In both cases (e = 1 and e = -1), we have 

u<p2, 
2-4 

=, and2 - u +l 0 mod p2. 
I( P )=E 

Write /P-E = 1 + yp with p 7y. By induction on k it is easy to prove that 1 + yp 
(mod pk) is of order pk-1. Thus /pk-l(p_E) E 1 mod pk. To prove that the order 
of 3 (mod pk) is pk-l(p _ -), it is sufficient to prove that 

if Om - 1 mod pk, then pk-l(p - ) I m. 

Since (1+ yp)m = p(p-e)m = 1 mod pk, we have pk-1 Im. Write m = pk-lm' 
Since 0 (- a) (modp) is of order p - e, OP - 

= modp. Thus 1 - ' 
=m 

k ' 
k--i 

(p/k-l)m _ (m)Ek1 mod p, and therefore pm' 
= 

1 mod p. We have (p-e) m' 
and pk-1(p - e) I m, as required. The lemma follows. O 

Lemma 3.4. Let p be an odd prime, k (> 1) e Z, and EE {1, -1} with J(p, E) > 0. 
Let an integer u be such that ( 4) 

= E and T,k is of order pkl(p - e) in the 

group G(u, pk) (cf. Lemma 3.3). Let ( E R,/(pk), and let H be the cyclic (sub-) 
group generated by Tu,pk. Then the necessary and sufficient condition for 

E H and =+?1 modp 

is that 

(2 - w( + 1 = 0 mod pk for some integer w 

with 0 < w < pk and ( 4 . P 

Proof. Put 3 = TZ,pk. Then H = (/) is of order pk-l(p 
- ). If ( e H, then ( = Ot 

for some integer t. Let w = + -1 t + t mod pk. Then 0 w <pk and 

(2 - w? + 1 - 0 mod pk. Put 

A = :EHand f 1 modp} 

and 

B = w :0 w < p, 2 -W+ 1 0 modpk for some E A}. 

Then I A = pk-(p - e - 2) and I B I-I A 1 /2 = pk-(p - e - 2)/2. Put 

C = w:_ 0w<p = E 

By induction on j, we see that 

(3.3) /1j _- /- 
= 

(/ - 0- 1)(/j-1 + 0--(j--1)) + /j-2 _ 0-(j-2) 
- 

a(/-3 
-1) 

for some a3 E 
Z/(pk). 

If w E B, then there exists a E H such that $ ?1 (mod p) and (2 - W(+1 - 0 
mod pk. Since $ 4?1 (mod p), ( $? -1 (mod p). Thus gcd(( - (-1, p) = 1 and 

(w2 - 4 ((~+ -1)2 -4 4 
((_--1)2 

S ))p 
= 

(u4 = 
(P 

- p-1)2 2 - 4 

p p 
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by (3.3). Therefore w E C. This means that B C C. On the other hand, I C = 

pk-l(p 
- e - 2)/2 = B I by Lemma 3.1. Thus C = B, and the lemma follows. O 

Lemma 3.5. Let p be an odd prime, k (> 1) C Z, e E {1, -1}, and m a positive 
integer with gcd(m, p) = 1. Put 

(3.4) X(pk,e,m) =# : u < <pk,( 
U 

-4)=E ,T 1 mod pk i1 
Then 

{ gcd(p-e,m) - 

1, 
for m even, 

gcd(p-e,m)-1 for m odd. 

Proof. If J(p, e) O0, then p = 3, E = 1 and X(3k, 1, m) = 0, so the lemma is valid. 
Now suppose J(p, e) > 0. By Lemmas 3.2 and 3.3 there exists an integer v such 

that 

0 v<p2 (v2-4) 

and T,,pk is of order pk-l(p -_ ) in the group G(v,pk). Put 

d = gcd(pk-l(p - e), m) = gcd(p - e, m); 

h = pk-l(p - e)/d; and 3 = 
Tv,pk 

= T= mod 
pk. 

Since H = (p3) is a cyclic group of order pk-l(p - e), the equation xm - 1 mod pk 
has exactly d solutions in H : 3h, 32h, ... , dh - 1, including +1 (mod pk) for m 
even or including +1 (mod pk ) for m odd. Since both Pih and O(d-i)h satisfy the 
same equation 

y2 _ uiy + 1 - 0 mod pk 

where 
Ui ih +p(d-i)h mod pk 

and the ui (mod pk) are distinct for 1 < i < d/2, we have, by Lemma 3.4, 

d-2 __ gcd(p-e,m) - for 1 even 
X(pk, e,M) - 

2 2 for1m2 
d-1 - gcd(p-e,m)-1 for m odd. 2 2 

Lemma 3.6. Let p be an odd prime, k (> 1) E Z, e E {1, -1}, p - e = 2't with t 

odd, and q a positive odd integer with gcd(q, p) = 1. For i > 0, put 

S(p e, U: <pk, - T2i -1 mod pk 
P 

Then 

gcd(q,t), for i 0; 

yi(pk' q) - 2i- gcd(q,t), for 1 <i < r; 

0, for i > r. 
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Proof. If J(p, E) = 0, then p = 3, e = 1, r = t = 1 and Yi(3k, 1, q) = 0 for i > 0, so 
the lemma is valid. 

Now suppose J(p, e) > 0. By Lemmas 3.2 and 3.3 there exists an integer v such 
that 

0v<p2 v2 v--4) 

and T,,pk is of order pk-l(p - e) in the group G(v,pk). 

Put 0 = 
TV,pk 

= TV mod pk. Since H = (f) is a cyclic group of order pk-l(p -), 
the equation 

x2q -1 modpk 

has exactly di solutions in H, where di = 0 for i > r, and 

di= # EH: 
?2 -+lq1 

mod pk -# (cH: 
2'~=-1 

modpk 

= gcd(2i+lq, k-l(p - )) - gcd(2iq, pk-l(p - 

= 2i+1 gcd(q, t) - 2i gcd(q, t) = 2i gcd(q, t), for 0 

_ 

i < r; 

but for i = 0, including the solution x = -1 (mod pk) 
Since both ( and (-1 satisfy the same equation 

y2 _- uy + 1 0 mod pk 

where u? = ( + (-1 (mod pk), the lemma follows by Lemma 3.4. 

Now we are ready to prove Theorem 1. 

Proof of Theorem 1. By the Chinese Remainder Theorem and Lemmas 3.5 and 3.6 
we have 

B(n,E) = E IX(pIi, n - E) 
6l,12,"" ,&sE{1,-1} 

i=1 

-r 6,2 -}jjgcd(n 
- epi - 

Ei) 

= 

r22-r1 ;s 
e1 E22 

E1,E2,"' ,sEf1,--1 i rl r2 rs 
1 2 -4 s 

- 
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and 

SB(n, e) = eXi(p m, , ql) + EYj 
(pri, s, Iq) 

61,E2, ,sE{1,-1} i= j=0 i=1 

rl r2 rs 

1 22 

. 
s 

- 
2 

61,62, 
,6• {1,-1} i=1 

1 221 

m(ei,.1 ,es)-1 S 

+ 2i gcd(q,qi,qe) 
j=l i=l1 

E 211 
gcd(q,, qi,E ) - I 

1 E2 
"". 

s =- 

m(e+,.- I ,e )-2 $ 

+ z 2" 1Jgcd(qeiJ,) 
j=O0 i=1 

1,2, gcd(q,, iE){1,--1} 
E11 r2 

...g:s -- 

2s(m(E1,' ,es)-l) - 1 

I + 25 -1 ]7Jgcd(q6, qi,6) 
? i=-1 

Corollary 3.1. Let n = pip2 be the product of two different odd primes with pi - i 
as expressed in equation (2.10). Then we have 

B(n, 1)= (gcd(p, 
- 

1,p2 -1) 2 
+(gcd(pl+ 1,P2+l) 1 )2 

2 2 

B(n, -1) =(gcd(pl - 1,2 + 1) 1)2 + gcd(pi+ 1, 
pl) 

1)2; 

SB(n, 1) 
(gcd(ql,,q2,1) 

1)2 + 4min{kl,,k2,1}-1- 
1 

(gcd(ql,lq2,1))2 SB(n, gcd1) = (gd(q,, q2,1 
- 1)2 1 

(gcd(q1, q2,1))2 

1 4min2{k 3,k2,-1-_l- 1 
2 

SB(n, -1)= 2 (gcd(ql,1, q2,-1)2 + 3 
(gcd(q,), 

q2,-13 
+ 

(gcd(ql,-, 
q2,1) 1)2 3 4min{kl-1,k2,1}1 

- 1 

(gcd(q,-1, 

q2,1))2 

The following two examples give comparisons of SL(n) with B(n) and SB(n). 
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Example 3.1. Let n = 1000037 -1000039 = 1000076001443. Then 

B(n, 1) = 0, B(n) = B(n, -1) 1 + (500019 - 1)2 = 250018000325, 

SB(n, 1) = 0, SB(n) = SB(n, -1) = 1 + (500019 - 1)2/2 = 125009000163. 

Note that, as shown in [3], SL(2, n) = 500037000685 and 1/2 - SL(2, n)/n < 10-6. 
Thus we have 

SL(2, n) SL(2, n) > (2n) > 4, and 1/8 - SB(n)/n < 5. 10-7. B(n) SB(n) 

This example also explains Remark 2.5. 

Example 3.2. Let n = 5 - 41 - 101 = 20705. Then 

B(n, 1) = 3, B(n, -1) = 2000, B(n) = 3 + 2000 = 2003; 

SB(n, 1) = 1, SB(n, -1) = 500, SB(n) = 1 + 500 = 501. 

Note that, as shown in [3], SL(7, n) = 5213 and SL(7, n)/n = 0.25177.... Thus we 
have 

SL(7, n) SL(7, n) n SL(7, n) = 2.60... SL(7,n) 10.405 
..- 

= 41.327 - - 
B(n) SB(n) SB(n) 

4. PROOF OF THEOREM 2 

Lemma 4.1. Let n = pk with p an odd prime and k > 2. Then B(n) = p - 2 

_ 3n/25. 
Proof. By Theorem 1, we have, for odd k, 

B 1)gcd(p 
- 1,pk-1) p-3 

2 2 

B(pk, 
1)= 

gcd(p + 1, pk + 1) p-1 
2 2 

and for even k, 

B( 1) gcd(p - 1, pk - 1) gcd(p + 1, pk 1) B(pk 1)- 1+ - 2 2 
p-3 p-1 - + 2 p - 2, 2 2 

B(pk, -1) = 0. , 0 

In both cases (either odd k or even k), we have 

B(pk)= B(pk,1)+B(pk,-1)=p-2, and B(n) 
=-2 

3 
n p - 25 

Lemma 4.2. If a, b, and c are positive integers with a I c and b I c, then 

a + b < c + gcd(a, b). 

Proof. Obvious. 
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Lemma 4.3. Let n = p1 p2 "..Ps be the prime decomposition of an odd number 

n, with s > 2 and each ri > 1. Then 

1 
8 

B(n) < 2 (pi 
_ 1) < 2 

i=-1 

Proof. For E1,2, 
. ,s 

E {1,-1} and E- 1E2"... E, define 

h(l,,E21""... 

Es) 
-I( 

gcd(n 
- E, 

i- i) 
- 

1) 
i 

(gcd( 
n-E 

Pi- 
Ei 

-1). 
i=1 i=1 

Then 

h(E* , 
E2,'" 

", Es-1, 1) + h(E1, 2, 
" , 

Es-1, -1) 
= h(E1, .., Es-1, es) + h(El, .., Es-1, -es) 

s--1 n- E p.-E.s 

g 
n-E pi-Ei 

=(gcd( 

n , 
)-)IIf(gcd(2 2)-1) i=1 

s--1 
(gcd(n + e 

ps+e8 

n+E - i 

i=1 

s-1l 
p - 1 ( n- 

A - Ei 

(n 

i 

p-i 
2) 

2 2 2 2 2 
i=1 

s-1l 

S- An( - -2 2 2 
i=1 

s-1l 

2 2 
i=1 

(the next to last inequality holds by Lemma 4.2, since gcd(n- , ne) = 1). Thus 

we have 

B(n) = B(n, 1) + B(n, -1) 

<- (h(ezE21... 

1 
Es-1, 

1) + h(E 2,E2,'" ,Es-,-1)) 

61,2,"" 
,is-1 E{1,-1} 

p s -1 1 n 

Pi-1) (Pi-1)<2 i=1 i=1 

Example 4.1. Let n = 443372888629441 = 17 - 31 - 41 - 43 - 89 . 97 - 167 - 331. It is 
a Carmichael number ([11, A13] and [17]) with (p2 - 1) l(n - 1) for every prime 
p I n. We have B(n) = B(n, 1) = 156038017948313, and B(n)/n = 1/2.84..-. (cf. 
Remark 2.4) 

Lemma 4.4. Let n = p11p22 . .p.s be the prime decomposition of an odd number 
n, with s > 2 and each ri > 1. Then 

SB(n) < 
1(pi 

- 1). 
i= 1 
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Proof. For E E {1, -1} and 1 < i < s, let k,q, ki,k,, qij, be as given in (2.10). For 

e1,E2,' ... s E {1, -1} and E = ElE2-... E, define 

8 gcd(q,, i,Ei) - 1 
2s(m(el,'',es)-1) --1 

l 
f(1,62," ,s) 2 2 1 gcd(q,,) 

i= 1 i= 1 

where m(ei, 2,... , E) = min {kl,,, Ik2,e2, .. ,kE,,I } as defined in (2.11). 
As mentioned in Section 2, there exist el,e2,... ,e ( {1,-1} such that 

m(ei, e2,'... es) = mo > 2, and 
m(el,e2, 

... ,IEs) = 1 for all other 2 - 1 s-tuples 

(E1, 
2,... ,E ). Put e = 

ele2 ***es, e' = (-1)-le. We bound SB(n) via three 
parts: 

SB(n) S1 + S2 + S3 

with 

Sz 
= f(el, , e,_l, e,) + f(el, - - - , e,_, -es) = Sio + Sil, 

where 

I8 gcd(qgq, 
-el 

qi--- 
Slo 

= 2 
gcd(q, qi, e) - 

+(gcd(q-e, 
,, 

-es 
1) gcd(qe,i,)- 1 

i= 1 i= 1 

and 

Sill 

-2s(mo-1) 
- 1 

Igcd(q, qi,) S( = 2e(l-e, - 1, ) fgcd(qe, i,e ,) - 
i= 1 

S2 = f(-e1, ... ,-e8-1, es) + f(-el, ... ,-e8-l, -e,); 

and 

S3 = (f(El,'' .. -1, 1) ? -1,e -1)). 
el,e2," ,Es-1E{1,-1 

(• 1,82 ," ,s--1 )? t 81 ,82,*"" ,es--1 ) 

If pi = 3, then ql,?i = 1. Thus Slo = S2 = S3 = 0, and therefore 

28(mo-l) - 1 8 
28(mo-1) -1 Pii- ei 

SB(n) = S1 
<- 28- 1 qi 

,e_ 

< 
25 8- 1 2mo 

i=1 i=1 

2smo 
- 2s 

s 8 
(Pi - 1) pi +1 

=(Pi2 - e,) < 8i y1 
(28 - 1)22smo P(2s - 1)28 pi -1 i=1 pi-3 mod 4 

< i=l1(Pi-1) 3+1 7 + 
1)S-1 <8/9 

i 
1 

(25 - 1)2s 3-1 7 -1 
- 

2 
i=1 



A VERSION OF THE BAILLIE-PSW TEST 1713 

Now suppose pi > 5. Note that m(-el, -e2, .. ,-es-1, ?1) = 1. Then we have 

i= 1 
s-1 

Sgcd(q -e, q ,ei,) - 1 

i= 1 

s-1 s-1 
fJs(q gcd(qeI, 1i,- 1 ) -( L+ g cd(q- e., g e',) 

1 

s-1 

<gd, 
- 

1 

,qi_-e 
i + +ggcdd(qq-,, ,,_ 

-2 ) 5 
28 

Hgcd 
(qe 

qi,-e )+gcd(q-e qi,-ei)-2 i=1 

s- 
-1 

< 
2s (qi,-e 

- 1) (by Lemma 4.2, since gcd(qe,, _,-e) = 1) 
i=1 

S-1 s 

(Pi +ei 1) 1 
(pi-1) i2s 2 22s-1 "(pi i=1 i=1 

In the summation of S3 there are 25-1 - 2 pairs of f-functions. Since 

(E1, E2, ''" , Es-1) = 

-(el1,e2,'"- 
, es-1) 

there exists at least one j with 1 < j < s - 1 such that ej = ey, and thus kj,,, 2 
mo > 2. We have 

f(1 I, ,s-1, 1) + 
f(El,--, s 1,-1) 

s- 1 s-1 

28 
f(qi,,- 1)< 2s2s-22mo (pi - 1) 

i=1 i=1 

21(Pi - 1). 
i= 1 

Thus we have 

2S-1 - 2 s 

3 < 22s (i- 1), i=1 

and therefore 

0.51 (4.1) S2 + S3 (pi - 1). 
i=1 

Suppose s > 3 (still pi > 5). By the same arguments as in the evaluation of S2 
we have 

pS -1 pi -- -e 

Slo < 

P2sfI(qi,•e-)< 
2f- 

2m 1 

1 1 0.0625 
l 2s+(-1)mo (Pi - 1) < 23s-2 (P- 1) i 1) 

i=1 i=1 i=1 



1714 ZHENXIANG ZHANG 

and 

2s(mo-) - 1 
- 

2s(mo-1) - 1 
8 

Si 22 - 1 ]jgcd (q, qi) 2S 1 i,e. 
i=1 i=1 

2s(mo-1) - 1 " 
Pi 

- 
ei 2smo 

- 2s 

2 - 1 r 2mo 
(2* 

- 
1)2"2smo i-ei) i=1 i=1 

1 7+1 11+1 19+1 s-2 s 
(28 -1)2 *7-1 11-1 19 - 1 f( 

i= 1 

(5/9)"(8/5)(9/10)2 
8 

0.223 0.255 
s 

2s - 1(pi 1- 1) < 
2 i -1 2 ( 

i=1 i=1 i=1 

Adding the three parts together, we have 

0.255 + 0.0625 + 0.5 0.818 s 
SB(n) < 2 (pi - 1) < 

2 ( 1). 
i=1 i=1 

Now suppose s = 2 (still pi > 5). We have 

S, = I(gcd(qe, ql, e,)- 1)(gcd(qe, q2, e2) 1) 
4m0-1 - 1 

+ 
3 

gcd(qe, ql, e) gcd(qe, q2, e2) 

+ (gcd(q-e, qI, e)- 1)(gcd(q-e, q2, -e2) 1). 

If ql, el I e, then gcd(q-e, ql, e) - 1 = 0, and thus 

1 4m-1 - 1 

S1 <: (ql, e - 1)(q2,e 
- 1) +2, e 

1 pl - 1 P2 - 1 4mo-1 - 1 pi - 
el p2 - e2 

- 2 2mo 2mo 3 2mo 2mo 

< (p 
- 

1)(p2 -1) ( 1 7 7+1 

11+1_ 

31/120 
4 8 12 7-1 11 -1 4 

If ql,, e qe, then gcd(qe, ql, el) < 
-, 

and thus 

P -1 4mo-1 _ 1 qlil 
S1 

P2 
(q1, e - 1)+ 

- 
' q2, e2 4 3 3 

P2 - 1 pl - 1 4mo-1 - 1 pl - el P2 - e2 

4 4 9 2mo 2mo 
< (p 

- 
1)(p2 

-1)( 
1+1 7+1 11+1 77/180 

4 4 9 7-1 111-1 4 

By (4.1) we have, for either qi, eI q or qi, 
el 

t qe, 

SB(n) = S, + S2 + S3 <( (P2 
4 

for s = 2. O 

Corollary 4.1. In Lemma 4.4, if s > 3 or s = 2 with rl + r2 > 3, then SB(n) < 

n/8. 
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The following six lemmas are devoted to the proof of Theorem 2 for the case 
when n = PIP2, the product of two different primes. 

Lemma 4.5. Let n = plp2 be the product of two twin primes with pl + 1 = p2 - 1. 
Then 

B(n) < (Pl-1)(P2 -1) < n/4 and 

SB(n)_< (Pl-1)(P28 

-1) < n/8. 4 8 
Proof. Since n = PiP2 with pl + 1 = P2 - 1, we have, by Corollary 3.1 to Theorem 
1, 

B(n) = B(n, 
-1)- 

gcd(pl - l,p + 
3) 

p+ 1 2 2 

r- 
, for)p,_-3 

mod 4; 
2 + 1, for p1 - 1 mod 4 

2 +1< 4 

Write pi + 1 = p2 - 1 = 2kq with q odd. We have 

(q-1) 4k-1-1 q2 for pl 3 mod 4; 
q 

2 1, forpl-1 mod4. 
Case pl = 1 mod 4. In this case, we have k = 1, and 

( 

)2 2 2- 8 

Case pi - 3 mod 4. In this case, we have k > 2. 
If pi = 3 (and thus P2 = 5, n = 15), then SB(n) = 1 = (pl - 1)(p2 - 1)/8. Now 

suppose pi > 7. Then we have 

1 pl+ 1 
2 

(4k-1- _1)(pl + 1)2 
SB(n) =- 1 + 

2 2k 3.4k 

1 (pi - 3)2 2(pl + 1)2 1lp 
2 - 2pl + 35 (P- 1)(p2 1) < 4 + 96 < 8 8( 4 3 96 8 

Lemma 4.6. Let n = PiP2 be the product of two odd primes with P2 -1 = k(pi - 1) 
and k > 2. Then B(n) < (pi - 1)(p2 - 1)/8 < n/8. 

Proof. Since n = pip2 with p2 - 1 = k(pi - 1) and k > 2, we have 

B(n) = 
2 

2 2 

pl -3 {pl + 1 pll 
B(n) = P2- + gcd 2P, +k -1 + gcd 2P, +k -1 - 1. 

Case k = 2. In this case we have 

(P - 
322 +1 P- 6p + 13 (pl - 

1)(p2 - 1) 
B(n) < 2 + 1 = 

?4 
< 

8 

Case k = 3. In this case we have 

B(n) = 
< (p1 - 1)(p2 - 1)/8, for 

pl 
= 3 (P2 = 7, n= 21); 

5 < (Pl - 1)(p2 - 1)/8, for pi = 5 (P2 = 13, n = 65); 
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and, for p1 ? 7, 

S( 
3 

+5p p2 
- 

6p1 + 29 (Pl - 
1)(P2 

- 1) 
() < 

2 
+ 5 = 

4 
< 

12 

Case k > 4. In this case we have, by Lemma 4.2, 

B(n) 
l 

( 
P1/3P1+l 

2)2 
(P1-3)(P-l 

)2 

(p1-1)2 

p 
- 

3 2 
Pl 

I 

22 

p 
l- 

33 
2 

P 

1 2 1 
(n) < 

2 )2 +1-22 2 + 2 < 2 

(Pl 
- 

1)(p2 
- 1) 

<(Pl 
- 1)(P2 - 1) 

2k - 8 

Lemma 4.7. Let n = piP2 be the product of two odd primes with P2 -1 = k(pl +1) 
and k > 2. If n = 119 = 7 - 17, then B(n) < (p1 - 1)(p2 - 1)/7 and SB(n) < 
(pl - 1)(P2 - 1)/8. Otherwise we have B(n) < (Pl - 1)(p2 - 1)/8. 

Proof. Since n = 
P-P2 

with p2 - 1 = k(pi + 1) and k > 2, we have 

2i)(p- + gcd 2 ;)' ? ~ 2 ' ",~) 

2 2 2 

B(n)=-(P 
+ 

(gcd 
, 2k) - 

1) 
+ gcd , 

2k + 1 

-1) 
Case k = 2. In this case we have, for pl = 5 (P2 = 13, n = 65), 

B(n) = 5 < (Pl - 1)(P2 - 
1)/9 

and, for pl = 7 (P2 = 17, n = 119), 

B(n) = 13 < (Pl - 1)(P2 - 
1)/7 

and 

SB(n) = SB(n, -1) = 7 < (pi - 1)(P2 - 1)/8; 

and, for pi ? 11, 

(P-1 2 +5 
- 

2p1+?21 (pl-1)(P2-1) 

Case k = 3. In this case we have 

B(n) 
1 < 

(Pl 
- 

1)(p2 - 1)/8, for p = 3 (P2 
= 13, n = 39); 

5 < 
(Pl 

- 1)(p2 - 1)/8, for p, = 5 (p2 = 19, n = 95); 

and, for p, ? 11, 

(Pi 
- 1 2 p - 

2p1 + 53 (pl - 1)(P2-1) 
B(n<) ? 2 2 

+13= 4 K 

Case k > 4. In this case we have, by Lemma 4.2, 

B(n) < 
(p1_1 

P2 +1 2 
P 

+2 
p, -3 

--,, 2 
+i pl--1,) pl--1 pl--3 

( 2 + 1-2 
2 2 

p - 
4pl + 5 

< (Pl - 1)(pl + 1) (Pl 
- 1)(P2 - 

1) < (Pl 1)(P2 - 
2 - 2 2k - 8 



A VERSION OF THE BAILLIE-PSW TEST 1717 

Lemma 4.8. Let n = plP2 be the product of two odd primes with p2 +1 = k(pi - 1) 
and k > 2, except for the case where pl = 5 and p2 = 7 (cf. Lemma 4.5) and 
except for the case where pl = 7 and p2 = 17 (cf. Lemma 4.7). Then we have 

B(n) ? (Pl - 1)(p2 - 1)/8 < n/8. 

Proof. Since n = PiP2 with p2 + 1 = k(pi - 1) and k > 2, we have 

B(n) p- 3 
+ gcd 

,k 
-1 + gcd 2 

k+1 1 
2 + (gd 

2 

)p1 1 k l - 

Case k = 2. In this case we have p, > 7, since pl 
-= 

5. Thus we have 

= 5 < (Pl - 1)(p2 - 1)/8, for pl 7 (p2 11, nr 77); 

B(n) pl-3 + 5 = pi-6p,+29 < (p-l)(p2-1) for p 
11. 

1?p2 +48 ori?1 

Case k = 3. In this case we have pl, 7 (P2 5 17, n 5 119). Thus 

B(rn) 
= 1 (p - 1)(p2 - 1)/8, for pl = 3 (p2 

= 
5, n= 15); 

5 = (p1 - 1)(p2 - 1)/8, for p1 = 5 (P2 = 11, n = 55); 
and, for pi > 11, 

B(n)?p-3 

- 
B(n) 

2 

+ 22 
+ 32 

- 
p + 13 

2-2 +1 

p2 
- 

6pl + 61 (pl - 1)(p2 - 1) 
4 8 

Case k > 4. In this case we have, by Lemma 4.2, 

p 
(P 

+-3 
pl+ 

)I plP-3 pl-1) 2 2 2 2 

p1 -4p+5 (pl-1)(p2-1) (pl 
- 

1)(p2-1) 
2 2k - 8 

Lemma 4.9. Let n = 
pip2 be the product of two odd primes with P2 +1 = k(pi +1) 

and k > 2. Then B(n) < (pi - 1)(P2 - 1)/8< n/8. 

Proof. Since n = pip2 with p2 + 1 = k(pi + 1) and k > 2, we have 

( ) 2 2 2 
B(n)=- Pi2- 

+ gcd 
P2-1,k 

-1 + gcd 
P2, 

k-1, 

-1 ?ii( 2 )'( ?( 2 ) 
Case k = 2. If pl = 3 (p2 = 7), then the lemma is valid by Lemma 4.6; else we 
have 

B(n)(P- 1 p - 2p1 + 5 (p - l)(P2 - 1) 
4 )48 

Case k = 3. In this case we have 

B() 
< 

(Pl 
- 1)(p2- 1)/8, for p1 i 3 (p2 = 11, rn= 33); 

5 < (Pl - 1)(p2 - 1)/8, for p1 = 5 (P2 = 17, n = 85); 
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and, for p > 7, 

(I ( -12 2 p - 2p + 21 (P - 1)(p2-1) 
Bn<( 2 +5 1 

4 8 

Case k > 4. In this case we have, by Lemma 4.2, 

B(n)< (P1 1)2 + 
P 1 -2 2( 

P 
)2 ( ) 

- 
( 2=( 22 + 2 
p2 - 4pl + 5 (Pl - 1)(p2 - 1) (P - l)(p2 - 1) 

2 2k 8 

Lemma 4.10. Let n = PiP2 be the product of two odd primes p1 < p2, not 
considered in Lemmas 4.5-4.9, i.e., pl ? 1 not dividing P2 + 1. Then we have 
B(n) < (Pl - 1)(P2 - 1)/8 < n/8. 

Proof. Write pl - 1 = 2kq with q odd. Put x = gcd(pl - 1,P2 - 1) and y - 
gcd(p1 - 1, p2 + 1). Then gcd(x, y) = 2 and x + y < 2k-lq + 2 = (pl + 3)/2, since 

P1 - 1 does not divide P2 ? 1. Thus 
2 2 

x -2 
2 

p-52 

By the same reasoning, we have 

gcd(pl+ 1, P2-1) ( gcd(pl + 1, P2 + l)-32 ~)ip- 
4 

Therefore by Corollary 3.1 to Theorem 1, we have 

B(n) gcd(Pl 
- ,P2 -1))gcd(pl 

- 
+ 1 ), P2 1) 

gcd(p + 1,p2 - 1) gcd(pl + 1, p2 + 1) 

(pI - 5)2 + (p1 - 3)2 (p - 1)(p2 - 1) 
16 16 8 

Now we are ready to prove Theorem 2. 

Proof of Theorem 2. The theorem follows by Lemmas 4.1, 4.3, 4.4, 4.5, 4.6, 4.7, 
4.8, 4.9, and 4.10, and from the fact that SB(n) < B(n). O 

5. PROOF OF THEOREM 3 

Theorem 3 follows by (2.9) and the following Lemmas 5.1, 5.2, 5.4, 5.6, 5.7, 5.8, 
and 5.9. 

Lemma 5.1. We have To (n) < 1 for n = pk with p an odd prime and k > 1. 
Lemma5.1.We hae •o 

n4/3 
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Proof. If k is even, then B(n, -1) = 0, and thus TO(n) = 0. Now suppose k is odd 
> 3. For E E {1, -1}, we have, by Theorem 1, 

B(pk, E) p - e - 2 1 1 

T0 
(n - E - 2)/2 

n- 
- -2 pk-1 

1-1/k" Thus 
1 1 

To(n) = To(n, 1)To(n, -1) < 
n22/k 4/3 n2-2/k -n4/3' 

Lemma 5.2. We have To(n) < for n = PiP2 with p1 < P2 odd primes. 

Proof. If pi = 3, then either B(n, 1) = 0 or B(n, -1) = 0; thus To(n) = 0. Now 

suppose pi > 5 and P2 > 7. Put 

gcd(pi - 1,P2 - 1) 
b- 

gcd(p + 1, p2 + 1) 
2 ' 2 

gcd(p - 1,P2 + 1) d gcd(pi + 1,P2 - 1) 
2 2 

Since both a and d divide (P2 - 1)/2, and gcd(a, d) = 1, we have ad < (P2 - 1)/2. 
Thus 

(5.1) (a - 1)(d- 1) = ad- a - d + 1 < (P2 
- 7)/2. 

Since a divides (pl - 1)/2 and d divides (pl + 1)/2, we have ad < (p2- 1)/4. Thus 

(5.2) (a- 1)(d- 1) = ad- a- d + 1 < (p2 - 13)/4. 

By (5.1) and (5.2) we have 

(p2 - 13)(p2 - 7)2 2 - 13n 
(a - 1)3(d - 1)3 16 16 16 

Thus 

(5.3) (a - 1)2(d - 1)2 < (n2- 13n)2/3 
4.22/3 

Analogously we have 

(5.4) (b - 1)2(C - 1)2 < (n2- 13n)2/3 - 4.22/3 

Since both a and c divide (pl - 1)/2, and gcd(a, c) = 1, we have ac < (pl - 1)/2. 
Since both b and d divide (pl + 1)/2, and gcd(b, d) = 1, we have bd 5 (pl + 1)/2. 
Thus 

(a - 1)(c- 1)= ac- a - c + 1 < (pl -5)/2 

and 

(b-1)(d-1)= bd-b-d+1 <(pi-5)/2; 
therefore 

(5.5) (a - 1)2(C - 1)2 + (b - 1)2(d- 1)2 (pi-5)2 < n 35 
2 2 

and 

(Pl 
- 5)2 n - 35 

(5.6) (a- 1)(d-1)(b- 1)(c- 1) (pi5)2 < 
4 4 
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By (5.3), (5.4) and (5.6) we have 

(5.7) 
(n2 - 13n)2/3 (n- 35)2/16 

(a- 1)2(d -1)2 + (b- 1)2(C- _ 1)2 )2/3 
4 .22/3 (n2 - 13n)2/3/(4 -22/3) 

By Theorem 1, (5.5) and (5.7) we have 

To(n) - 
(a- 1)2(d- 1)2 +(b- )2(c - 1)2 + (a- 1)2(c- 1)2 + (b- 1)2(d- 1)2 

(n- 1)(n- 3)/4 
(n2 -13n)2/3 22/3(n-35)2 (n - 35) 

22/3 + (n2-13n)2/3 2 
(n- 1)(n - 3) 

Thus 

To (n)n2/3 < (n3 - 13n2)2/3 
22/3(n - 35)2 2(n - 35)n2/3 

22/3(n- 1)(n- 3) (n- 1)(n- 3)(n - 13)2/3 (n- 1)(n- 3) 
1 + 22/3 

S1+ 23)2/3 + < 0.97, for n > 300; 

0.95, for 35 < n < 300. 

The lemma follows. O 

Now let n = P1P2P3 be the product of three odd primes with P1 < P2 < P3. For 
i = 1, 2, 3, put 

ai gcd(n-1 
pi-1 ,a = gcd( n+l pi-1 

2 2 ai2 2 

b = gcd( 
n - piI, b = gcd( nl, pi 1, 

--2 2 
2 ' bi =gc 

2 2 1, 

xi = ai - 
1, x=a- ,Yi = bi 

- 
1, y = b' - 1. 

Then 

(58) B(n, 1) = 
xlx2X3 + x1Y2Y3 + ylx2Y3 + y1Y2X3, 

(5.8) B(n, -1) 
= 

y'Y2Y3 
+ 

yx2X3 
+ 

xljY2X3 

x/ 

x2Y3. 
1 2 3 1 2 3 1 2 3 1 2l 3* 

Since gcd(n-, n+ = 1, we have 2 • 2 

Pi - 1 pi +I 

2 bb 
xixa1i 2 

_ 
- 2 

Since 

ai =gcd(n/pi-1 pi -1) a = gcd( n/pi+l Pi-1) 2 -2 2 j2( 

b = gcd(n/pi+pi+ b = gcd (n/pi 
- 

1,pi 

+1 
), gcd(pi 

- 
1 Pi 

+1)=1, 2 2 2 2 2 2 

we have 

xy < 
aib - 1 = gcd 

n/P-, 
- < in n/p1 < min pi , 

j ? a~b~ -1 I i _2/4 -1Pi 
Syi a - 1 = gcd , 

1 min , < min 
,24/ 
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By (5.9) and (5.10) we have 

(5.11) 
p- 1 P2-3 P3-3 - 3 2P3 n4/3 

XX2X3 2X3 (Xll)(X2X2)(X3) < 4 2 2 16 16 
Similarly we have 

n4/3 n4/3 34/3 
(5.12) Y2Y3YY2Y3 3 1 23 < YlY2 3 

1Y2X3 <16 16 16 

Also by (5.9) and (5.10) we have 

S(P1 -3 P2-3 .min pp2 1p -1 
1 2 3 1 23 

(XlX 
l 

)(X2X12)(x3Y3) 
< 

-- - 
min 

2 2XlY2 2 2 4 
2 2/8 and xx2312/16,sothat Thus XlX2X3XlX2 <p P2 X1X2X3XX Y3 < plP2/l6, so that 

(1x2f3 W<Y,)3 <n4/211 (XlX2X3Xlx2Y3) 

Therefore 

n4/3 n4/3 
(5.13) Z lX2X3ZlX2Y3 211/3 12.6 

Similarly we have 

X Y1X 2X3 < 1-.6 Xl1Y2Y3X1Y2X3 < 12.6' 4/3 n4/3 

(5.14) XlY2Y3 2Y3 lX2Y3YY3 12.6 f I n4/3 n4/3 Kl n4/3 
Yl12Y3YlX'X3 < 12.6 Yl1Y2 3YlY2Y3 < 12.6; YlY2X3YX12X3 < 12.63 

Lemma 5.3. We have 

n8/5 nS/5 
X1i2X2X3y1Y2Y3 < XY2Y3YX2x 3 

3.917"' lY2Y3Y23 
2.569 

n8/5 n8/5 

yx2Y3X 2.569' YlY2X3XlX2Y3 < 7.155< 

Proof. If pi < n1/5, then by (5.10) we have 

2 33 8/5 

x x xI 
1 Pi P2 PiP3 p n n8/5 

23YlY2Y3 (XlYl)(X2Y2)(3Y3) < 4 2 2- 16 16' 
and similarly 

n 6/5 n/5 n /5 
xlY2Y3Y1X2X3 < ; 

ylx2Y3XlY2X3 
< 6 ; YlY2X3XX2Y3 < 123 16 

1 
16 16~ 

Now suppose pl > nl/5. By calculation the lemma is valid for n = P1P2P3 < 106. 
Now suppose n = plp2P3 > 106. For i = 1, 2, and 3 put 

hi- =gcd(2(n/pi - 1), p2 - 1), ui = - 2(n/pi - 1)hi, vi = (p 1)/hi 

h•= gcd(2(n/pi + 1),p2 - 1), u' = 2(n/pi + 1)/h , v, = (p2 - 1)/h. i i i 

Since (p - )(p - 1) < (pip-1)2 for 1 i #j 3, we have 

(p2 - 1)(pA - 1)(p - 1) < (P1P2 - 1)(P2P3 - 1)(P1P3 
(5.15) 

? (PIP2 + 1)(p2P3 + 1 
)(piP3 + 

1). 
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Then UlU2U3 > 8VlV2V3 + 1, and thus 

1 U1U2U3 (PlP2 - )(p2P3 - 1)(P3 - 1) 

8Vl1V2V3 - 8v1V2V3 (p2 - 1)(p2 _ 1)(p - 1) 
n2 

n2 222 22 22 n2 - P2 -P2P3 -pp3P3 
1 1 

1 - (1/p + 1/p2 + 1/p2) 1 - (2/n2/5 + 1/n2/3)' 

Therefore 

1 n2/5 2/5 
(5.16) 8vlV2V3 > = -1> 

2/n2/5 + 1/n2/3 2 + 1/n4/15 2.042 

Now by (5.10) and (5.16) we have 

X1X2X3Y1y2Y3 = 
(X1Y)(X2Y)(3y3) 

< gcd 
n/p -1 p 

i= 1 

h 33 8/5 
hlh2h3 1i=l(p2(•) - 

n 

43 43vlv2v3 <3.917 

Thus the first inequality of the lemma is proved. 
Since pi > n1/5, we have p < p23 < n4/5; SO P2 < n2/5. But PlP2 > n2/5, and 

thus P3 < n3/5. By (5.15) we have 

1 u/ u UI 
_ (PIP2 

+ l)(p2P3 - 1)(P1P3 + 1) 
1+ < 

2 
= 

8vlv2V3 2 311 23 

n2 + n(p2 + p3) 
2 2 2 2 2 2 2 

- P2 - P2P3 - PiP3 
1 + (P2 + p3)/n 1 + 1/n3/5 + 1/n2/5 

1- (1/p2 + 1/p + 1/p1) 1- (2/n2/5 + 12/3)' 

and therefore 

(517) 8v2/5 - 2- 1/n4/15 n2/5 
(5.17) 2V3 > 3+ 1/n1/5 + 1/n4/15 3.114 

Now by (5.10) and (5.17) we have 

hi h'I 1 3 _ 8/5 
2 
, 

h 3 
- 

i=(p2 
- 1) 

XY2Y343 43V1 2.569 43 43VvivI 3 2.569' 

which is the second inequality of the lemma. 
Again by (5.15) we have 

1 n2 + n(pl +p3) 1+ 1/n3/5 + 1/n2/5 
12+ 2<< < 8v'v2 n2 p2 - p23 - 1 - (2/n2/5 + /n2/3)' 1 1223 plP2 p pZ3 PlIJP3 

Thus 

n2/5 h h 3( 
2- 

1 n38/5 

8v'nv2v' 
> andd ylx2Y3 

l12 
3 

i= 
3.114 43 

43VV2V~3 
2.569' 

which is the third inequality of the lemma. 
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Once again by (5.15) and the facts that pi < n1/3 and P2 < n2/5 we have 

1 n2 + n(pl + P2) 1+ 1/n2/3 + 1/n3/5 1+ <p 
8vv 2 - 

-2 
P2P 

- PP2 
2 1 - (2/n2/5 + /n2/3)' 1 2V223 PP 112 p23 P 

therefore 

(5.18) 
8vvIv 

n 
n2/5- 1- 1/n4/15 n2/5 

1 + 1/nl/5 + 2/n4/15 1.118 

Now by (5.10) and (5.18) we have 

hhh3 -=( -1) 8/5 
YlY2X3XX2Y3 < 3 43 3 7.155 

43 
- 

43v~vIv3 < 7.155' 
which is the last inequality of the lemma. O 

Lemma 5.4. We have Tro(n) < 
' 

for n = plP2P3 the product of three different 
odd primes. 

Proof. By computer calculation the lemma is valid for n = PIP2P3 < 106. Now 
suppose n = P1P2P3 > 106. By (5.8), (5.11), (5.12), (5.13), (5.14) and Lemma 5.3, 
we have 

B(n, 1)B(n, -1) n4/3( 16 + n8/5 ( 1+2 
7.+ 

) 0.995 

(n - 1)(n - 3)/4 < (n - 1)(n-3)/4 n2/7 

Remark 5.1. In Lemma 5.4, n2/7 can be improved to n1/3, if one uses more com- 
plicated analysis and computation. But it cannot be improved to n2/3, e.g., 

n = 62164241 = 41. 881. 1721, B(n, 1) = 636519, B(n, -1) = 176000, 
18.19 -. (n) 2/3 

Remark 5.2. Williams [22] asked whether there are any Carmichael numbers 
n with an odd number of prime divisors and the additional property that for 
p n, p + 1 n + 1. Lemma 5.4 shows that if such a Carmichael number ex- 

ists, it must have at least 5 prime divisors. But Pinch [17] found no such numbers 
up to 1015. 

Lemma 5.5. Let n be odd with prime p I n. Then 

(gcd(p - 1, n - 1) 
l+gcd(p 

+ 
1, n-1) 2 2 

(gcd(p - 1, n + 1) +gcd(p + 1, n + 1)l) (p-1)(p-3) 
S 

2 2(- 4 

Proof. Let y be the value of the left part of the inequality and 

a 
gcd(p - 1, n - 1) 

b- 
gcd(p + l,n - 1) 

2 2 
gcd(p - 1, n + 1) gcd(p + 1,n + 1) 

2 2 
Then 

S(a-1+c-1+b-l1+d-1)2 <1 
(p-3 p-1 )2 (p-2)2 

S4 -4 2 2 4 
Since y is an integer and p is odd, the lemma follows. 
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Lemma 5.6. Let n = p1 P2 " . ps be the prime decomposition of an odd number 

n. If s > 3 or s = 2 with rl + rT2 > 3, then 

o(n) < 
iand 

7(n)< I 
i=1 Pi i=1 Pi 

Proof. By Theorem 1 and Lemma 5.5 we have 

B(n, 1)B(n, -1) 

<li(gcd(pi 

- 1, n - 1) gcd(pi + 1, n- 1) 1) 
2 2 

i= 1 

(ged(pi-1,n+1) 
,+gcd(pi+l,n+l) 

_ 
1 ) 

2 2 

< 

(Pi- 1)(Pi- 3) 
i= 1 4 i--1 

Thus 

B(n, 1)B(n, -1) 
W= 

((Pi - 1)(pi - 3) 1 s 1 

(n - 1)(n - 3)/4 - 
4-l(n 

- 1)(n- 3) < 4-1 1 2(r-1) i=1 Pi 

Since s > 3 or s = 2 with rl + r2 > 3, we have 
1 1 1 s 4 

+ .+ .> p)2 > - 
p 
+ 

2P (pip2 ' 'p s 2/s 

Thus by Lemma 4.4 we have 

SB(n, 1) . SB(n, -1) (SB(n))2 (Pi _ 1)2 
=(p2 

5) 
7 (n)= <<< i 

(n - 1)(n - 3)/4 n2-4n - 48(n2-4n) 4(n2 -4n) 

< 1 - 4/n i=1 Pi i/=1 Pi 

Lemma 5.7. Let n = PP2... Ps with pi < P2 < ... < P odd primes and s even 
>4. Then To(n) < 2 

pi+l* 

Proof. Let Ee2, ,E,se,ee2, * , es E {1, -1} with le2 .. Es = 1 and ele2 e, 
= -1. Define 

i=gcd(pi- 
Ei, 

i=-1 

and 

(e,, e (gcd(pi 
- ein + 

= 2 
i= 1 

If Ei = ei, then 

gcd(pi - Ei, n - 1) )(gcd(pi 
- ei, n + pi 

- i Pi - 
2 2 2 2 

If Ei = -ei, then 

(gcd(pi-6i, n-)- 1)(gcd(pi -ei,n + 
1)) 

)p? -p 1 p1 2-5 
2 2 - 4 4 
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Since s is even, there exists at least one j such that Ej = ej. Since 2 < p-5 
we have 

pI - 1 p - 5 
_ 

(p - 1) @ j(p - 5) 
1, )g(e,2 4 22s-l(pj + 1) 

ifj 
(p -1)=2 

2 - 4n 
22s-1(pj + 1) 22s-l(pI + 1)" 

Thus 

B(n, 1)B(n, -1) 
(n- 1)(n- 3)/4 

4 

(n -1)(n - 3) f(el, ,s)g(el,"es) 
E1,-" ,es,el,"" 

,esE{1,-1} 
El...Es=l; el...es=-- 

4 2s2 n2 - 4n 2 
< - -2 < . 
(n - 1)(n - 3) 22s-1(pl + 1) Pi + 1 

In the following two lemmas let E, 6 E {1, -1} and qs, qi,6 be as given in (2.10). 
Put 

d =)-gcd(q6, qi,6), and a() d() - 1. 
', 

2i,E i, 
- 

Then we have 

(5.19) 
d~ d l) < q ; (1)a (-1) 

< qi,6 1; a 

(1 

a(-1) 
< 

-qi, 

1 < 9) 

diled•,1)7-1q 
, 

E 
'I, 

E 

,i's i,--E 
-8 

By Lemma 4.2 and the fact that gcd(ql, q-_) = 1 we have 

(5.20) d() + d ) < qi, + 1; a () + a 
, 1. ijE ij ilE i~e 

Put 

(5.21) So= 
-al, 

aE 
- la 

. 

El,"",Es,el,';- ,e.E{1,-1} 
i=1 

el..es=l; el...es=-1 

Let m(E1, . , E) be as given by (2.11). 

Lemma 5.8. Let n = PIP2... Ps with pi < p2 < ... < Ps odd primes, and s even 
> 4. Then 

(n) < + 1 1 
23s-4 22s-3(2s 

- 1) p + 1 8s-4 .166(pi + 
1)" 

Proof. Let e1, E, - - ,E,, e,le2,i * 
,e, E {1, -1} with 12 '...Es -- 1 and ele2 

... 
e, 

= -1. Since s is even, there exists at least one j such that Ej = ej. For this j we 
have, by (5.19), 

(1) (-1) 
qj - 

Pi 
--1 aJ aJ q _- --1< Jj ,ej 
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Since Pi- < - and a) a 
,- 

< - , we have 
2 - 8 , %,-- 8 K 8 

8I1 1 p- - H (p2-1) n2 - 4n 

=la 
aEi - 2 

ij8 

23s-2(pj + 1) <23s-2(pj + 1) 
i=1i 

Then 

n2 - 4n 
n24n (5.22) So < 22s-2 

2 - 4n 2 - 4n 
23s-2(p1+ 1) 2 (pl + 1) 

As mentioned in Section 2, there exist 61, 2,'... ,s E {1,-1} such that 

m(61, 62,1 " , 6s) = m0 ?> 2, and 
m(1,,E2,. 

E ,es) = 1 for all other 2s - 1 s-tuples 
(E1, E2, ,Es). Put 6 = 6162...6s, and 

2S(mo-1)- 1 sd1 

i=-1 

Then 

SB(n, 6) = W+ 
2 

+f a(; 
el,---,esE{1,-1} i=1 

El 
.1"•Es=5 

SB(n, -6) 
2=s1 

el,"" ,esE{1,-1} i=1 
el e---. =-6 

Thus 

SB(n, 1)SB(n, -1) = 

so_2 

a(-6) 
22s-2,e {1,-1} i ei 

el ..es,=-6 

22s-2 2+ -1(2 - 1) I 
dsiJ 

adi ,) 
e2,'" 

,el E{1,-1} i=1 
el ...e---e =-6 

where So is bounded by (5.22). Since 162 '... = -ele2 ... es and s is even, there 
exists at least one j such that ej = j. For this j we have, by (5.19), 

dj() 
a 

_) =_d 

d -J < qj,6, -1 P< -1 ,j i,ej 
d 

,eje-- 2mo 

If ei = 
--i 

then 

i,a• 

= 
did 

- 1 ? qi, 
, 
qi,-3 - 1 2m 

p(1. 
ie ,- - -) --2mo +li- 

Since pi-i 1 < pi-1 1, we have 

Sa -2mo) Pj - 1 - 2mo+1 2s(+13 9) 
P-) 

(-J< Pi - P 
1 - 2 m? p Si,ei - 

-- 2mo+l 2s(mo+l)-I i=1 isj isJ 

i=l (p - 9) 2nm2 - 4n 

2s(mo+l)-l(pj + 3) 2s(mo+l)-l(pi + 1)' 
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Thus 

So 2s(mo-1) - 1 n2 - 4n 
SB(n, 1)SB(n, -1)< + -) 21 SB(n, 1)SB(n,-1) < 22s-2 + 2-1(2S - 1) 2s(mo+l)-l(pi + 1) 

( 
1 1 n2 - 4n 

23 -2 22s-1(28-1)) pI+I ' 

and therefore 

SB(n, 1)SB(n, -1) 

(n - 1)(n - 3)/4 

(1 1 
) 

1 1 

<23s-4+ 22-3(2s - 1) pl + 1 8s-4 166(pl + 1) 

Remark 5.3. In Lemma 5.8, if pl > 2000 by trial divisions, then T(n) < 
8s-4.332332 

Lemma 5.9. Let n = PlP2 ... p be square free with each Pi an odd prime and s 
odd > 5. Then 

1 1 1 
(5.23) 7-(n) < + < 

25s-4 23s-3(2s 
- 1) 16s-5 -119726 

Proof. Let 61, 62, 
.- , 6 c {1, -1} be such that m(61,62, 

.-,6s) 
= mo > 2. Thus 

m(ei, E2, .. , ) = 1 for all Other 2' -1 s-tuples (EI, E2," 
, E). Put 6 = 6162 '.' 6. 

By (5.20) and (5.19) we have 

)a(1)+al) a(l) 

a(1) 
(-) 

(-) 
(1U -1) 

+a1) 
(-1) 

ill 

,,i) 
a 

i 

i,-+ai 

, 

1+ 

a 

,-1i,- S(qi,- 1)(qi,-- 1) + q,- 1 + q,- - 1 qi,lqi,- - 1 

< Pi -I 
1< 

- - 2mo+1 
- 

2mo+1 

Let So be as given by (5.21); then 

(/(1 ) 
2-9 n2 - 4n 

(5.24) So < ( a) + a a 1 (a(' + a(-') < 
Pi 

< 

i,=•- i, 
l 

i,--1 
1 2mo+l 2(mo+l)s 

i--1 i=1 

Again by (5.20) and (5.19) we have 

d(j) (a-6) + a(-) (d ) - 1 + d -1 

= d( d(-6) d + d ) d - 

- 

-9 
S+ q,,, (q - 1 qqi,6 - 1iqi,lqi,-1 - 2mo+1 
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Thus 

SB(n, 1)SB(n, -1) S + 2(m1) 1 
1 

,(6) 

a- 

So 
2s(m0-l) - 1 I 

(-3) 
(-) 

2 + 
(2- 

1) 11~I a + a 
i= 1 

So 2s(m--1) - 1 p2 9 

22s-2 + 2-1(2 - 1)I 2mo+ 

( o 
+ 

23-1(2- 
)(n2- 4n), 2(mo+3)s-2 23s-1(2s - 1) 

where So is bounded by (5.24). Therefore 

SB(n, 1)SB(n, -1) 1 1 
(n - 1)(n - 3)/4 2(mo+3)s-4 23s-3(2 _- 1) 

1 1 1 

- 25s-4 23s-3(28 - 1) 16s-5 .119726 

Remark 5.4. From the proof of Lemma 5.9 we see that if n in Lemma 5.9 satisfies 
the additional condition 

(5.25) ki, 6i = m0 (> 2), qi, q 
5q, 

and qi, -i q-6, for all 1 < i < s, 

where 
k,, 

q, 6 are given by (2.10), then it seems that (5.23) is the limit of the 
analysis in this paper and cannot be significantly improved. Otherwise if n in 
Lemma 5.9 does not satisfy condition (5.25), or in other words, if it satisfies the 
condition 

(5.26) kI,3, > mo (2 2), or qj,, j q, or qj, _6 t q-_, 
for some j : 1 < j s, 

then 
2 

SI + aq < 
- < 

1 p- 
,1 

if kj, sj > mo; 
,d( 

,s , l 
+ a 

,- 
12m O+ 

- -, 
jj aj, qqj,-/3- 1 -25 

-12mo+1.3< if qj,s3 {qj, or qj,-6,jtq- ; 
thus 

(5.27) 
1 1 1 1 1 

7(n) <2 + 2< + < -5 2(mo+3)s-4 23s-2(2s - 1) 
- 

25s-4 23s-2(25 - 1) 16s- -226521 

Remark 5.5. Since condition (5.25) is very strict, most composites of Lemma 5.9 
satisfy (5.26) instead of (5.25). So, T(n) is bounded by (5.27) for most square free 
composites n having an odd number s > 5 of prime factors. 

6. PROOF OF THEOREM 4 

For E E {1,-1} and odd n > 1, let J(n,e) be as defined in (3.2). To prove 
Theorem 4 we need a lemma. 

Lemma 6.1. Let n > 1 be odd and E E {1, -1}. If n is not a perfect square, then 

J(n, e) < (n - E - 2)/2. 
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Proof. Case (I). n = pk with p prime and k odd. By Lemma 3.1 we have 

J(p, E) (p - E - 2)/2. 

Thus we have 

J(n, E) = pk-l(p _ E - 2)/2 < (n - e - 2)/2. 

Case (II). n -= pkq with p prime, k odd, q > 1, and gcd(p, q) = 1. By the Chinese 
Remainder Theorem we have 

pk - 3 pk 
_ 1 J(n, E) 

- 
j(pk, 1)J(q, )+ J(pk,-1)J(q, -E) < J(q, E) + J(q, -e) 

2 2 

pk _ 1pk- 1 n-3 n-e-2 
< (J(q, 1)+ J(q, -1)) < (q- 2) < - . 2 2 2 2 

Proof of Theorem 4. If n is a prime > 5, then u and v in Steps 2 and 3 exist. Since 
the prime n is not a perfect square but a probable prime to both Tu and T,, it 
passes the OPQBT. 

If n is not declared composite in Steps 1 - 3, then n is almost certainly prime 
with probability of error T(n, e)7(n, -e) = T(n). O 

Remark 6.1. One may relax the OPQBT so that the probable prime subtests in 
Steps 2 and 3 are no longer strong. Then the probability of error will be To(n). 
In Step 2 one may chose u = 3 for odd n > 5. Thus E = (5/n). In Step 3 one 
chooses v = 4, 5, .. in succession. There are 4152 psp(T3)'s < 109, not a single one 
of which passes Step 3 to bases as chosen in this way. 

7. PROOF OF THEOREM 5 

Lemma 7.1. It takes (2 + o(1)) log2 q multiplications mod n to check if T =- ?1 
mod n in the ring R, = Z[T]/(T2 - uT + 1), assuming that addition takes o(1) 
multiplications mod n. 

Proof. The Lucas sequences Ui, Vi with parameters P = u and Q = 1 defined by 
(1.3) are 

Uo = 0, U = 1, Vo = 2, V1 = u, 

Ui = 
uUi-1 

- Ui-2, Vi = uVi-1 - Vi-2, for i > 2. 

Then (cf. Chap.12 of [5], or [24]) 

(7.2) U2i UVi, V2i Vi2 - 2; 

(7.3) Ui+j 2 (UiV + UV), V - (VVj + (u2 - 4)UiUj); 
and in the ring R, 

(7.4) Tq = UqTu + 
1 

(V -UUq). (7.4) u 

Thus 

Tq=?1 modn=-> Uq-O0 modnandVq- 2 modn. 

So, our task is to compute Uq mod n and Vq mod n. We use easily constructed 
addition chains (cf. page 441 of [13]) as follows. 
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Take h = [ log210og2q , m =- 2h <log/2 q. Write 2 2Vj uj J 

q = domt + dimt-1 + 
. 

+ dt-ilm + dt, with 0 < di < m, O < i < t, do > 1; 

then t = 
[logm 

qJ + 1 < log + 1. 
Step 1. Using (7.1) to compute Ui, Vi for 2 < i < m - 1 takes 2(m - 2) 

multiplications mod n. 
Step 2.1. Using (7.2) to compute U2 do, V2jdo for 1 < j < h takes 2h multipli- 

cations mod n. 
Step 2.2. Using (7.3) to compute Umdo+di, Vmdo+dl takes 7 multiplications 

mod n. 
Step 3.1. Using (7.2) to compute U2i(mdo+dl), V2i(mdo+dl) for 1 < j < h takes 

2h multiplications mod n. 
Step 3.2. Using (7.3) to compute Um2do+mdi+d2, Vm2do+mdi+d2 takes 7 multi- 

plications mod n. 

Step t.1. Using (7.2) to compute 

U2J(mt-ldo+mt-2dl+...+dt-_), V2J(mt-ldo+mt-2dl+...+dt-1) 

for 1 
<_ 

j h takes 2h multiplications mod n. 
Step t.2. Using (7.3) to compute Uq, V, takes 7 multiplications mod n. 
So it takes in total 

2(m - 2) + (2h + 7)(t - 1) < (2 + 7/h) log2q + 2 log2/2 q - 4 = (2 + o())log2q 

multiplications mod n. O 

Proof of Theorem 5. Write n-E = 2kq with q odd. By Lemma 7.1, it takes (2+o(1)) 
multiplications mod n to compute Uq, V,, and thus to check if Tq = 1l mod n in 
the ring Ru = Z[T]/(T2 - uT + 1). By (7.4), we have 

T iQq-1 modn<== U2iq 0 modrnandV2q --2 
mod n. 

So the remaining task is using (7.2) to compute U2iq mod n and V2iq mod n for 
1 < i < k - 1, which takes 2(k - 1) multiplications mod n. Since k + log2 q 
log2(n - E) < log2(n + 1) < log2 n + 1, we get 

(2 + o(1))log2 q + 2(k - 1) < 2(k + log2 q) + o(1)log2 q < (2 + o(1))log2 n. 

This means that it takes (2 + o(1)) log2 n multiplications mod n to do an sprp 
subtest in Step 2 or 3. Since the time it takes to check if n is a perfect square and 
to compute the Jacobi symbols is negligible, (an iteration of) the One-Parameter 
Quadratic-Base Test can be completed in the time it takes to perform at most 
(4 + o(1)) log2 n multiplications mod n. O 

8. COMPARISONS 

It is clear that comparisons between the OPQBT and either the Rabin-Miller 
test or the Lucas test are crucial. So, the main task of this section is to give 
comparisons between the RQFT and the OPQBT. 
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Let Gran(n) denote the error probability of the RQFT. From Lemma 2.7, Corol- 
lary 2.10, Lemma 2.11 and Lemma 2.12 of Grantham [9] we know that 

(8.1) 

4/p, for n nonsquare free with p2 In, p prime; 
2/B, for n square free with s even > 2; 

Gran(n) 2(B4-3B2)1) , for n square free with s = 3; 

1•+ 
4- + , for n square free with s odd > 5; 23s-2 + 24s-3 + B 

where B < pl - 1, the trial division bound (B = 50000 suggested by [9]). 
We see that for a nonsquare free composite n with a prime square factor p2 

Gran(n) < 4/p, whereas T(n) < 1/(4Sp2). Moreover Gran(n) is bounded by con- 
stants for all square free composites-it is bounded by 2/B when s is even, and by 
B + 

24---3 
as s - oc when s is odd; but T(n) -* 0 as s -- oc (s 

either even or odd, see Theorem 3). Most remarkable is that comparisons between 
Gran(n) and T(n) for square free composites with 2 or 3 prime factors are crucial. 

The worst case of both the RQFT and the OPQBT happens when n = PIP2P3P4P5 
is the product of 5 different odd primes. For such composites n, 

Gran(n) < 1/213 + 1/217 + 1/250002 m 1/7710, 

which needs the additional condition pl > B = 50000; but (cf. Lemma 5.9 and 
Remark 5.4) 

( 
1/119726, for n satisfying (5.25); 

( 1/226521, for n satisfying (5.26); 

which does not need the condition pl > 50000. If we take B = 3, then the bound 
for Gran(n) would be about 4/9, but the bound for T(n) still remains 1/119726 or 
1/226521. 

The Rabin-Miller test takes (1 + o(1)) log2 n multiplications mod n (Proposition 
3.1 of [9]). Thus the running time of the OPQBT is asymptotically at most 4 times 
that of the Rabin-Miller test. Since most composites are not spsp(T,), the OPQBT 
stops at Step 2, taking only twice the time it takes to do a Rabin-Miller test. But 
the running time of the RQFT is asymptotically 3 times that of the Rabin-Miller 
test for all numbers. So the OPQBT runs faster than the RQFT (3:2) for most 
composites. 

Since the running time of the RQFT is asymptotically faster (4:3) than the 
OPQBT for the worst cases, one may ask the follow question: With equal work, 
one test is how many times as confident as the other for a given number n? 

To make the answer unique, it is reasonable to make the following definition, 
which balances comparisons of the error probabilities and the running time of two 
tests. 

Definition 8.1. Given two tests Test1 and Test2. Testi has error probability < 
Pi = Pi(n) and running time ti = ti(n) for a given number n. Define the function 

(1/Pl) 2/ 1 
Balance(Test1, Test2, n) (/P1)2 1/P2 

If Balance(Test1, Test2, n) a k, then we say that, with equal work, Test1 is k times 
as confident as Test2 for the number n, and say that Test1 is Balance-better (resp. 
the same or worse) than Test2 for the number n if k > 1 (resp. k = 1, or k < 1). 
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Take 

(8.2) 
Test1 = RQFT, Test2 = OPQBT, t2/tl = 4/3, P1 = Gran(n), and P2 - --(n), 

then by Theorem 3 and (8.1) we have (with B = 50000 < pl - 1), 

Balance(RQFT, OPQBT, n) 

0.16for n nonsquare free with s = 1; 
731004 for n square free with s = 2; 
3.4951011, for n square free with s = 3; 
351 for n square free with s even > 4; 238, 

1.272, for n square free satisfying (5.25) with s = 5, 7, 9; 
0.673, for n square free satisfying (5.26) with s = 5, 7, 9; 

0.266 for n square free with s odd > 11; 16s-11l 
H 
•,on(pj 

/4)4/3 
3 

p2(ri-1) , otherwise, i.e., for n nonsquare free with s > 2. 
k4-9 ni~l Pi 

So, the RQFT is (slightly) Balance-better than the OPQBT only when n is square 
free satisfying (5.25) with s = 5, 7, 9. As mentioned in Remark 5.5, such numbers 
are rare. We challenge the reader to exhibit one. If there are none, then the OPQBT 
is Balance-better than the RQFT for all composites. 

Remark 8.1. Even for the rare composites n square free satisfying (5.25) with 
s = 5, 7, 9, it is possible that the OPQBT is Balance-better than the RQFT. The 
running time of the RQFT is asymptotically (3 + o(1)) log2 n multiplications mod 
n for all numbers n, and that of the OPQBT is asymptotically (4 + o(1)) log2 n 
multiplications mod n for numbers n of the worst cases. Here both o(1) represent 

log2 log2 n 

but with different constants related to the big-O notations. Since the RQFT 
works in the ring Z[x]/(n, x2 - bx - c) and needs the additional Step 5, whereas the 
OPQBT works in the ring Z[x]/(n, x2 -ux + 1), the constants related to the big-O 
notations for the RQFT are larger than that for the OPQBT. So it is possible in 
(8.2) that t2/tl, say, r 4.11/3.15, for a range of numbers n, say, n < 101000. Then 
for n square free satisfying (5.25) with s = 5, 7, 9 we have 

77104.11/3.15 
Balance(RQFT, OPQBT, n)- 

0 
0.985. 

119726 

Since both the RQFT and the OPQBT run very fast, it is not of great interests to 
analyze them in exact bit operations. 

Remark 8.2. From Definition 2.2 we see that the OPQBT is a combination of two 
subtests to one-parameter quadratic bases with opposite Jacobi signs. The RQFT, 
in a sense, is a combination of an sprp subtest to a two-parameter quadratic base 
with negative Jacobi sign, and a Rabin-Miller subtest. The key difference between 
the OPQBT and the RQFT is that the bases of two subtests of the OPQBT are 
independently chosen, whereas the base of the Rabin-Miller subtest of the RQFT is 
dependent on the quadratic base of the two-parameter-quadratic-base subtest. 
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9. CONCLUSIONS 

From Remarks 2.1 and 2.2 we see that an 
sprp(Tu) 

subtest with (n) = 1 
is a generalized Rabin-Miller test, and an sprp(T,) subtest with 

(U•2-4) 
= -1 is 

a stronger lprp(u,1) test. So, the OPQBT is in fact a more general and strict 
version of the Baille-PSW test. The worst case for each sprp(T,) subtest with 
either (24) = 1 or ( ) = -1 is the case where n = PlP2 is the product of two 
different odd primes; but this case becomes one of the best cases for the OPQBT. 
Thus Theorems 2, 3 and 4 have answered the question of why the Baille-PSW test 
seems much more secure than one might expect considering each subtest separately. 

Theorems 3 and 4 have also answered the question of why it is difficult to find 
counter-examples to the Baille-PSW test although many such numbers exist, since 
the best heuristics for constructing such numbers [18] would produce square free 
composites n with a large number s of prime factors, but Theorem 3 (Lemmas 5.8 
and 5.9) shows that r(n) decreases rapidly for such composites n while s increases. 
We challenge the reader to exhibit a composite which passes the OPQBT to bases 
as chosen in Remark 6.1. 

The OPQBT, based on one-parameter quadratic-base pseudoprimes, has clear 
finite group (field) structure and nice symmetry, so that explicit formulas for the 
base-counting functions and probability of error can be given, and thus bounds 
for these functions can be carefully investigated. While no explicit formulas are 
given, neither for the original versions of the Baille-PSW test nor for the RQFT, 
the OPQBT would be one of the most suitable candidates among existing probable 
prime tests, which would lead to infallible tests for primality. 
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