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COMPUTATION OF CLASS NUMBERS 
OF QUADRATIC NUMBER FIELDS 

STEPHANE LOUBOUTIN 

ABSTRACT. We explain how one can dispense with the numerical computation 
of approximations to the transcendental integral functions involved when com- 

puting class numbers of quadratic number fields. We therefore end up with a 
simpler and faster method for computing class numbers of quadratic number 
fields. We also explain how to end up with a simpler and faster method for 
computing relative class numbers of imaginary abelian number fields. 

1. INTRODUCTION 

Currently, the best available rigorous methods for computing class numbers of 
quadratic number fields k of discriminants dk are of complexity O(|dk 0.5+e). How- 
ever, assuming suitable forms of the generalized Riemann hypothesis, one can de- 
vise conditional but more efficient methods of lower complexity (see [MoWi] where 
a conditional method of complexity O(dk.2+e) for computing class numbers of real 
quadratic fields is developed, and see [Coh, Sections 5.5 and 5.9] where the condi- 
tional sub-exponential methods of McCurley and J. Buchmann for computing class 
groups of quadratic fields are developed). These rigorous methods stem from the 
analytic class number formulae (see [Coh, Sections 5.3.3 and 5.6.2], [MoWi], [ScWa] 
and [WiBr]) and require the computation to sufficient accuracy of the transcenden- 
tal integral functions E(z) f- 7 e-xx-ldx (the exponential integral function) and 

erfc(z) = f e-2 dx (the complementary error function) by using the following 
power series expansions (if z is small) and continued fractional expansions (if z is 
large): 
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(here y = 0.577 ... denotes Euler's constant). In this paper we explain how one 
can dispense with these evaluations, thus greatly simplifying the implementation of 
these rigorous methods for computing class numbers of quadratic number fields, and 
making them faster but still of the same complexity O(Idk 0.5+e). In contrast with 
what is usually done, we will write all our class number formulae at s = 0. Indeed, 
values at s = 0 of L-functions associated with odd Dirichlet characters are algebraic 
numbers, and we explained in [Lou3] how useful this observation is for computing 
their exact values from the computation of their numerical approximations (see 
also [Lou5] where we use [Lou4] to generalize the method developed in [Lou3] for 
computing relative class numbers of nonabelian CM-fields). 

Let us now set some of the notation we will be using throughout this paper. We 
let X be a primitive Dirichlet character modulo f > 1. We set 

(5) Sn(x) = x(k) and Tn(X) = 
•(k). k= 1 k= 1 

We also set a = /f, en 
= - e22a2 and 

f-1 

-7() = x(x)e2x i/f 
x=1 

For t > 0 real and M > 0 real, we set 

B(t, M, f) = 
f(tlog(f/Sr) + 

M)/7r= a- 
•yM 

- 2t 

log•a and assume f $ 3, which implies f > 7r, 0 < a < 1, B(t,M,f) > Vf/r and 
e-m2a2 a2te-M for m > B(t, M, f). Finally, we will use: 

Lemma 1. Let a > 0 be real and g of class C2 in the range )0, +oo( be given. Then 
for any positive rational integer n > 1 we have 

S(n+l)a g((n + 1)a) + g(na) a2 (n+1)a 

I- g1a92- (101 < 1). 
nla Jnn ce 

Proof. Set B2(x) = x(x - 1)/2. Then the reader will check that we have 

I(n+l)c g((n + )a) + 
g(n)(( + 

n))dx. g()dx a 2 + 3 B2(x)g"(( + ))d. 
nc~ o 

Now, the bound 0 < IB2(x) I <1/8 for 0 < u < 1 yields the desired result. O 

2. IMAGINARY ABELIAN NUMBER FIELDS 

Let X be a primitive odd Dirichlet character modulo f > 3. Set W(X) 
i-17(X)/V/f, which has absolute value equal to one. We can express L(0, X) as 
the limit of rapidly absolutely convergent series (see [Dav] or [Lou3]) 

(6) L(0, 
X)- 

(= W(X) 
X(in + 2 (n) e-2d) 

n>l n>l na 

and 

(7) L(0, X) = e5 
w X +2 Sn(X)(n+l) ed 

n>l n>l nca 
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Proposition 2 (Compare with Proposition 7). Let X be a primitive odd Dirichlet 
character of conductor f. For some 0 satisfying 101 < 1, it holds that 

L(O, ) = W(X) 
•en n 
i a (en + en+1)Sn(X)) + 8f1/- n>1 n>l 

Proof. Applying Lemma 1 to g(x) = e-x2 and noticing that IS,(x)l 1 n, we obtain 

(8) 
2 Sn() e-X2dx - = 

a 
(en + en+l)Sn(X) + R' 

n>l na n>l 

with 101 < 1 and 

n>1 Tni 

n>l a 

d0ef < ~ I 
I 
g" (x) dx 

du - xlg"(x) 
|dx 

Rodd au0 

which, for g(x) = e-x2, yields 

(9) Rodd 
-= 

xl4x2 
- 21 e-Xdx = 

(4/V) 
- 1 = 1.426 

...- 3/2. 

Using (7), (8) and (9), we obtain the desired result. O 

Proposition 3. Assume f > 3, t > 0 and M > 1. For any positive rational integer 
m > B(t, M, f) it holds that 

SW(X 
kn)(n)en-e 

< e 2t-le-M 
a n a n 2 

n>m n>m 

and 

a E(en + en+1)Sn(X) < a 2nen < a2t-1 -M 

n>m n>m 

Proof. For m > B(t, M, f) we have 

1 1 e_-n22 1 c2< x 2 dx 
a n a x2 n>m 
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According to Propositions 2 and 3, we obtain 
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Theorem 4 (Compare with Theorem 9 below). Let M > 1 be given, let X be a 
primitive odd Dirichlet character of conductor f, let m be the least rational integer 
greater than or equal to B(!, M, f) = O(fo.5+E) and set 

(10) 
LM(0,X)- 

= (W mX 
n (0 Lm (,) 

I=nl 
en 

l+ 
a E (en + en+1) Sn(X)) 

n=n1 n=1 

where a = n/f2, en 
= e-2 

2 and Sn(X) is defined in (5). Then, 
3 M 3 

IL(O, x)- LM(0, X)I < e-M + . 
' 

2; 
- 2f~ 

Remark 5. 
1. Of particular importance is the case where X is the primitive quadratic odd 

Dirichlet character of conductor f = Idkl associated with an imaginary qua- 
dratic field k of discriminant dk < -4 and class number hk. Then, - 

= X, 
W(X) = +1, hk = L(0, X) and Theorem 4 provides us with a much more 
satisfactory result than [Loul, Theorem 1]. 

2. In practice, we do not compute all the en 
= exp(-wn2/f)'s for 1 < n < m 

by using the exponential function. It is more efficient to compute the en's 
inductively by setting fn = exp(-r(2n+l)/f), by computing fo = exp(-ir/f) 
and h = exp(-2rr/f) and by using the induction formulae fn+l = hfn and 

en+1 = enfn. In this process, at each step n, instead of performing the 

computation of exp(-rrn2/f) we only perform two multiplications. 
3. We explained in [Lou3] how to compute relative class numbers of imaginary 

abelian number fields of a given degree by computing numerical approxima- 
tions to linear combinations with bounded coefficients of values at s = 0 of 
L-functions associated with odd primitive Dirichlet characters. Therefore, 
combining Theorem 4 and the method developed in [Lou3], we end up with 
an efficient method for computing relative class numbers of imaginary abelian 
number fields of a given degree. This method does not require us to compute 
approximations to transcendental integral functions. 

4. We also explained in [Lou5] how to compute relative class numbers of CM- 
fields by computing numerical approximations to linear combinations with 
bounded coefficients of values at s = 0 of Heckes's L-functions associated 
with characters on strict ray class groups. 

Therefore, in order to extend our present method further, we would like 
to find a method (generalizing Proposition 2 and Proposition 3) which would 
enable us to dispense with the computation of numerical approximations to 
the complicated integral transcendental functions involved when computing 
numerical approximations to values at s = 0 of such Hecke's L-functions (see 
[Lou2] and [Lou4]). 

3. REAL QUADRATIC NUMBER FIELDS 

Let X be a primitive even Dirichlet character modulo f > 3. Set W(X) = 

7(X)/Vf, which has absolute value equal to one. Then L(0, X) = 0 and we can 
express the derivative L'(0, X) as the limit of rapidly absolutely convergent series 
(use [Dav]): 

(11) L'(0, X) 
= 

x(n)j e 
+ ) dx 

n>l na n>1 7 a 
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and 

(12) 
(n+))a 2 W(x) , 

(n+1)a 2 

L'(0, X) = Sn(X) e x2d 
Tn() ex2dx. 

n>l na n>l na 

Lemma 6. For n > 1, set 

en en+l n+1 1 1 
(13) u2 =- 2 log( )- n n+l n n n+l 
For any m > 1 we have 

(n+d)a x - I+ 
(14) Snn(x) 

X 
ee 

2 
- 

UnSn(X) + 4 
n>l n n>l 

for some 0 satisfying 10l < 1, and 

(15) 
1 
(E+T)c-) 

(n+l)a 
2 1 ge/a 

Tn(2) e dx= E(en+en+l)Tn(+) 
? G 

n>1 n n>1 

for some 0 satisfying 101 < 1. 

Proof. Set g(x) = (e-2 - 1)/x. Then xg"(x) - (4x2 + 2)e-2 + 2(e2 
and according to Lemma 1 we obtain 

m 
(n+l)a e 2 d 

n=1 nX 
m (n+l) mn1 

- Sn(x) g(x)dx + 
nS 

(x) log( n 
n=l na n=l 1 

m 
g((n + 1)a) + g(na) 

m 
n + 1 Oan 1 2n G8 

na L S7(x) +?Sn(x)log( n 8R" 
n=1 n=1 

S 
unSn(x) +~ R" 

n=l 

where, as in the proof of Proposition 2, we have 

R" a n Ig < 
0 

xIg(x) Idx Reven =- 2(Pg'(3) - g(1)) 
n= na 0 

where 
- 

= 1.792641 ... is the only positive real zero of g". Hence, R" < Reven ,,,, 
4(1 - (1 +/2)e-2)/3 = 1.853264 .- < 2. 

Applying Lemma 1 to g(x) = e-x2, we obtain 

(16) Tn () e- 2 E(en+ )Tn() n>l na n>l 
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with 101 < 1 and 

n>. 1 (n+l)a R'l" = ( ) | I 
n>l k=l no 

n>l 1~ 

< 
0 

j g"(x)ldx +1' I'g"(x)ldx 
du 

u ?u 

-- 
j g"(x)|dx + j 

g"(x)l log(x/a)dx 

K Ig"(x) log(ex/ca)dx 

4 log(e/a/2)- 2/ e-2dx + 200 e-x2dx 
- Jo f/v2 

1 7 
S- - - log a < 2 log(e/a), 2 4 

and using (16), we obtain the desired result. E 

According to (12) and to Lemma 6 (where we take the limit as m goes to infinity 
in (14)), we obtain 

Proposition 7 (Compare with Proposition 2). Let X be a primitive even Dirichlet 
character of conductor f > 1. For some 0 satisfying 01 < 1, it holds that 

L'(O, x) = 2 uSn() + W( 
(en + en+l)Tn() + log(e2/). 

n>l n>l 

Proposition 8. Assume f > 3, t > 0 and M > 1. For any positive rational integer 
m > B(t, M, f) it holds that 

(n+)a dx -M 
(17) Sn(x) e -2 < 

en < c2t-1 -M 
n>m na n>m 

and 

(18) 
(en 

+ 
en+)Tn( 

2t-le-M log(e/a). 
n>m 

Proof. We have 

S(n+l)a 2dX 2 -E 
(n+1)a dz 

n>m ) e - < n i e - 
n>m J n>m x 

2 100 x22 e 
2 
a2 a2t-le-M 

< e-n < 
-- xe- 

dx 
-= <. - - m 2mt2 - 

2v2M 
- 2tloga 

n>m 

In the same way, we have 

def 1 <1 2 2 
Rm = 

2 1 (en + en+l)T,() ( )e, ( 
log(en)e-n2 

a 

n>m n>m k=l n>m 
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Since M > 1 and t > 0 imply m 2 B(t, M, f) 2 1/a and since x H log(ex)e-a2X2 
decreases in the range x > l/a, we obtain 

f? 
log(ex) _2X2 log(em)e-m22 2t-1 -Mlog(eu/a) Rm xe dx< 2 2ma - le 

imJ x 2ma 
- 

2 u 

where u = VM - 2t log a > 1. Since u - 
log(eu/Q) decreases in the range u > a 

and since we have u > 1 > a, we obtain the desired result. D 

According to (12), (14), (15), (17) and (18), we obtain 

Theorem 9 (Compare with Theorem 4). Let M > 1 be given, let X be the primi- 
tive even Dirichlet character of conductor f > 1, let m be the least rational integer 
geater than or equal to B(1, M, f) = O(fO.5+6) and set 

1 m 1 m 

(19) L/(0, X)=? unSn(X) + - (en + en+I)Tn(x), 
n=1 rn=1 

where a 
_n2a2 

where a /f, en 
= e-" 2, Sn(X) and Tn(X) are defined in (5) and Un is 

defined in (13). Then, 

a + 2e-M JL'(0, X) - L•'(0, X)I 
a 
log(e2/a)a - /4 

Remark 10. 
1. Of particular importance is the case where X is the primitive quadratic even 

Dirichlet character of conductor f = dk associated with a real quadratic field 
k of discriminant dk, fundamental unit Ek > 1, and class number hk. Then, 
X = X, W(X) = +1, hk = L'(0, x)/ log k and Theorem 9 yields 

5 5-M 
Ihk - L'(O, X)/log ek 

<-• +k 
e 

(for Ek > 
(vd 

k-4 + )Vd)/2 yields log(e2/a) ? 5logek). We refer the 
reader to [WiBr, Section 2] for the evaluation of the regulator log ek of a real 
quadratic field k by using an elementary algorithm of complexity 

O(d?'5+E) based on the use of continued fractional expansions. 
2. Here again, the second point of Remark 5 applies. 
3. In contrast with Theorem 4 (see Point 2 of Remark 5), Theorem 9 cannot be 

used to compute class numbers of nonquadratic real abelian numbers fields 
of a given degree (for it is not known how to reduce their computation to 
the computation of numerical approximations to linear combinations with 
bounded coefficients of values at s = 0 of derivatives of L-functions associated 
with even characters (compare with [Lou3])). 

4. NUMERICAL EXAMPLES 

To assess the efficiency of the present technique for computing class numbers hk 
of quadratic number fields k of large discriminants dk, we programmed our formulas 
(10) and (19) with M = 3 in Kida's language UBASIC, which allows fast arbitrary 
precision calculation on PC's (the precision of real numbers in significant digits we 
used was equal to 28). Let us detail how much our method improves upon the 
previous ones based on the use of (6) and Point 1 of Remark 5 for dk < 0, and of 
(11) and Point 1 of Remark 10 for dk > 0 (see [Coh] and [WiBr]). We give all the 
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TABLE 1. The imaginary quadratic case 

dk < 0 T1 T2 T3 T4 hk 
5 - 1010 4 10 31 24 38 272 
5 - 1011 12 34 100 78 95 840 
5 - 1012 41 112 323 251 506 880 
5- 1013 138 376 1 053 812 1 051 452 
5 - 1014 460 1224 3391 2619 3 312 448 

details only in the case that k is imaginary. Set ak = 
V/Tr/IdkI, en = exp(-n2ak), 

mk = B(,1 M, Idk ) 
=- 

/dkj(log(Idk|/7r) + 2M)/27r, 

MkMk 
(20) hk(M) (• Xk(n)e+ LkE(en + en+1)Sn(Xk) 

(20) akk-n=1 nn=l 
(see Theorem 4 and Point 1 of Remark 5) for which 

3 3 
(21) Rk(M) := (hk - hk(M)l < 3 -M + 

and 

1 

2mkk•• 
X2 (22) h'k(M)=> en + 2lk() mk e-d 

n-1 n'l k n=l n=lfnaku 

(see (6) and Point 1 of Remark 5) for which 

(23) Rk(M) := Ihk- hk(-M)l k k 
?/7r 

(notice that 2 f e-x2dx 2xe-2 dx = e-X2/X and use Proposition 3 with 
t = 0.5). Notice that the number of terms in the truncated sums (20) and (22) 
are equal, and that the error terms Rk and R, are of the same quality. Now, the 
previously known rigorous method for computing hk consists in using (22) and the 
power series expansion (1) for small values of z and continued fraction expansion (2) 
for large values of z to compute approximations to h'k. The main drawbacks of this 
method are (i) that we must carefully explain how many terms we have to consider 
in (1) and (2) to end up with good enough approximations to each erfc(nak), (ii) 
that computing erfc(nak) is slower than computing en - exp(-n2ak) and (iii) 
that we cannot take advantage of the second point of our Remark 5 while dealing 
with the indices for which we use (1) for computing approximations to erfc(nak). 
Instead, by using (20) and Point 2 of Remark 5 we do not meet with any of these 
drawbacks and end up with a faster and easier to implement method for computing 
hk. 

We present in Tables 1 and 2 the results of applying these methods to compute 
class numbers of five imaginary quadratic fields with various size discriminants 
and of five real quadratic fields with various size discriminants and regulators. 
The computations were all carried out on a PC microcomputer with Pentium III, 
333Mhz. Here, T1 is the time required to compute hk when using (20) and the 
second point of Remark 5, T2 is the time required to compute hk when using (20) but 
when disregarding the second point of Remark 5, T3 is the time required to compute 
hk when using (22), (1) for nakk = Z < 1.8 and (2) for nak = z 2 1.8 and, finally, T4 
is the time required to compute hk when using (22), (1) for nak = z < 1.8 and (2) 
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TABLE 2. The real quadratic case 

dk> 0 To T1 T2 T3 T4 hk 
1010 + 5 0 8 15 51 41 1 134 

1011 + 21 4 27 49 167 132 2 
1012 + 1 0 90 161 545 427 50 280 
1013 + 1 48 297 532 1763 1374 2 
1014 + 5 0 959 1729 5706 4417 107 920 

for nak = z > 1.8 and the second point of Remark 5 to compute the exp(-(nak)2)'s 
in (2) for the n's for which nak = z 

_> 
1.8 All these Ti are expressed in seconds. 

Here, To denotes the time required to compute log Ck by using continued fractions 
(see [WiBr]), and T1, T2, T3 and T4 are as in Table 1. 

These Tables 1 and 2 clearly show that our method is significantly faster in 
practice than existing rigorous methods. 
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