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BOUNDS FOR THE SMALLEST NORM IN AN IDEAL CLASS 

ANA-CECILIA DE LA MAZA 

ABSTRACT. We develop a method for obtaining upper bounds for the smallest 
norm among all norms of integral ideals in an ideal class. Applying this to 
number fields of small degree, we are able to substantially improve on the best 

previously known bounds. 

1. INTRODUCTION 

Let K be a number field with [K : Q] = rl + 2r2, where K has rl real embed- 

dings and 2r2 complex embeddings. Minkowski proved that there exists a constant 

C(rl, r2), which depends only on rl and r2, such that for any ideal class C of K, 
there exists an integral ideal ac E C satisfying N(ac) < (C(rl, r2))-1 .vdK . Here 
N denotes the absolute norm and dK is the discriminant of the field K. 

By results of C. A. Rogers [R] and H. P. Mulholland [M], one has that for [K: Q] 
large 

N(ac) < 
((32.5)71(15.7)r2)1 VdK. 

The best bound so far for the constant C(rl, r2) was given by Zimmert [Zi] in 1981, 
who found that 

N(ac) < ((50.7)i (19.9)r2)-1 VIdK 

(for [K : Q] large). He also obtained the best known bounds when the degree of K 
is small. 

Before Zimmert, the bound was always obtained using methods from the geom- 
etry of numbers [N, p. 129]. The paper [Zi] in contrast introduces a new analytic 
method for deriving the bound. We will modify this method to obtain, for fields 
of small degree, a bound which improves on Zimmert's. In Table 1 at the end of 
the introduction we give both Zimmert's bound and the new bound found for each 
case. 

The main technique for obtaining the new bounds is contained in Theorem 1 
and its corollary below. To formulate the result, we need some definitions. 
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For parameters rl, r2 and y > 0, let the functions P(s) and T(s) be defined as 
follows: 

(1) P(s) Frlr2 (s) 
Fr1, 2(s + 27 + 1)' 

Frr:(1 - s) 
(2) T(s) = 

r2(s+2y+1) Frr,T2(s +2Y +1)' 

where Frl,r2 is given by 

(s )r+Tr2 ( s+ 1)2 (3) F ( 
),r2 s) 

- F 
- 

r 
2 

2 2 

(and F(.) denotes the gamma function). For given values rl, r2, and parameter 
7 (> 0), a rational function R,(s) is called an admissible rational function if it can 
be written as 

( 1 +1 2 7-"-2 
( 7)-2 

'Hi (4) 
R, 1(s) = 

1 + -y1 + 2e (s 
+ 

a )-, 

- 1 

i=0 j=0 
where 1 > 0 and all ei > 0, aij > 0 and ni > 0. To an admissible rational function 

R, we associate a weight function F~(y) : IR -- R, via the contour integral 

(5) F (y) = (ey) 1-T(s)R,(s)ds, 
27ri 

_> i.o 

where T(s) is as in (2) (with the same 7) and 61 > 0 such that R,(s) has no pole 
in the strip -61 < Re s < 0. 

The partial zeta function of an ideal class C is defined as 

(c(s) = Z(N(a))-s, 
aEC 

where the sum runs over all the integral ideals in C. It can be alternatively written 
as 

00 

(6) (c(s)- E am m-' 
m=N(ac) 

where ac is an integral ideal in C with minimal norm and am denotes the number 
of integral ideals in C with norm equal to m. 

Theorem 1. Let C be an ideal class for a field K, where K has rl real embeddings 
and 2r2 complex embeddings. Then for any parameter 7 and any weight function 
F,, we have that 

m=N"ac) ( N(ac) )) N(ac) B amF y-log > toe" for yE R, 

m=N(ac) 

where am is as in (6), and B, to are positive numbers given by 

B = and to = 
R?(0)T(0)V7• - 

Ry(l)P(1)N(ac) R (1)P(1) 
with n = [K : Q]. 

The next result is an immediate consequence. 
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TABLE 1 

n ri r2 Zo(rl, r2) Z(r1,r2) minimal value for 

/Id 
known 

2 2 0 1.760 2.137 2.236 
2 0 1 1.400 1.651 1.732 
3 3 0 4.636 6.235 7.0 
3 1 1 3.355 4.340 4.795 
4 4 0 14.45 21.21 26.92 
4 2 1 9.749 13.76 16.58 
4 0 2 6.792 9.250 10.81 
5 5 0 50.21 79.19 121.0 
5 3 1 32.12 49.57 67.16 
5 1 2 21.11 31.02 40.11 
6 6 0 188.1 315.0 547.8 
6 0 3 46.74 70.98 98.72 
8 8 0 3088 5644 16801 
8 0 4 385.5 635.5 1121 

10 10 0 58540 121120 716099 
10 0 5 3560 6443 14464 

Corollary. Suppose that for a given weight function Fy there exists a yl E IR such 
that 

(7) F,(y) ?0 for - oc < y < yi. 
Then 

N(ac) < (toeYl)-l 
./d!dK . 

Thus to obtain a bound for the smallest norm of an ideal using the above corol- 
lary, we need to find a suitable Yl. Unfortunately, very little is known in general 
about a weight function F, as in Theorem 1. Analyzing Zimmert's technique, we 
are able to show that indeed yl exists. However, to obtain new bounds we need a 
far larger value of yl than the one given by Zimmert's proof. To do this we must 
numerically calculate F,(y) (see Theorem 2 below) and also develop an algorithm 
to ensure that for all y < yl we have F,(y) < 0. 

In Table 1, we give Zimmert's lower bound V•dKI/N(ac) > Zo(rl, r2) and our 
new lower bound Z(rl, r2). In the last column we give the smallest l/jdKI known 
for K with the given signature (r1, r2) [O, p. 133]. Taking C to be the trivial class, 
for which N(ac) = 1, we see that no general lower bound for dKKI/N(ac) could 
exceed the last column. 

The numerical approximation of F,(y) is based on the following theorem. 

Theorem 2. The function F,(y) admits an expansion of the form 
m 

F,(y) = 
Z(e)Pjj(y) 

+e(m,y) (m 1). 
j= 1 
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Here the error term is given by 

1 
•m++icoo e(m, y) -=1 (eY)1-S R,(s)T(s)ds, 27ri Jm+--ioo 

which tends to zero as m -+ oc and Pj (y) is a polynomial in y of degree at most 
rl + r2. 

In fact, the above result allows us to quickly calculate F,(y) numerically for 
any given y, since Ie(m, y)| can be bounded explicitly (see Proposition 3) and the 

polynomials Pj can be determined recursively. Specifically, if Pj (y) = E 0=o ak,jyk 
then the coefficients of Pj+I(y) can be found by a recursion of the form ak,j+l = 
f(ao,j, ... ,at,j). The exact form of the function f is obtained with the help of a 
formula analogous to the gamma function formula xF(x) = F(x + 1) (see Section 
3). 

It seems to be difficult to prove that a given point yl satisfies the condition (7), 
i.e., F,(y) < 0 for all -oo < y < yi. We need to work carefully with numerical 
estimates. We used PARI [C] to calculate F,(y) numerically and then to obtain 
a bound yl. To assure their reliability, we have done an independent check of 
the numerical computation of the function F.(s) based on a numerical integration 
through Simpson's rule with a variable cut off. Both numerical methods coincided 
in at least twice as many digits as those displayed in Table 2 (i.e., they coincided 
at least in 10 significant digits.) 

The paper is organized as follows. In Section 2 we present the basic idea of 
Zimmert's method, the proof of Theorem 1 and we obtain a point yo that satisfies 
the inequalities of the corollary. In Section 3 we give the proof of Theorem 2 and 
different expressions for T(s) that permit computing the polynomials Pj. Finally, 
in Section 4 we give an algorithm to find a largest possible point yl satisfying the 
inequalities of the corollary. 

2. ZIMMERT'S METHOD 

Zimmert's method uses the functional equation of the zeta function of an ideal 
class. We present his method, slightly reformulated. 

Lemma 1 (Zimmert). Let R, be an admissible rational function as in (4). Let 
f(s) be a Dirichlet series with nonnegative coefficients, convergent in the half-plane 
Re(s) > 1. Then for any x > O and 7 > 1, 

1f(8) 

7+i-) 

(8) 2> ]- xR, (s)P(s)f(s)ds > 0, 
27ri f7r-i0 

where P(s) is as in (1) (with the same parameter y). 

Proof. Zimmert [Zi, p. 369] proved this for a certain R,(s), but his proof is actually 
valid for all admissible rational functions, as was pointed out by E. Friedman [F1, 
p. 618]. O 

Given an ideal class C of K, denote by C' = 0KC-1 the conjugate class of C, 
where aK is the ideal class of the different of K. We can write the functional 
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equation of (c (s) as A(s, C') = A(1 - s, C), where 

A(s, C) = ( jd K 
Frir2(S) ), 

with n = [K : Q] and Fr ,r2 (s) as in (3). 

Theorem 1. Let C be an ideal class for a field K, where K has rl real embeddings 
and 2r2 complex embeddings. Then for any parameter -y and any weight function 
F,, we have that 

B E amF. y - logN )) >toe" - for yR, 
m=N(ac)N(c) 

where am is as in (6), and B, to are positive numbers given by 

B/rn and to 
R,(0)T(0) B = 

ac) 
d R()Pto() t R (1)P(1)N(ac) R (1)P(1) 

' 

with n = [K : Q], P, T, and R. are as in (1), (2) and (4) . 

Proof. In Lemma 1 take f(s) = (c'(s), any x > 0 and 7 > 1. By the functional 
equation, a convexity theorem [L, p. 266] and the asymptotic formula IF(a + it) I 

e-I'tl]t|A- (uniformly for real a in an interval and real t with it| > 0 [G-R, p. 
945]), we can shift the line of integration in (8), from Re s = 7 to Re s = -61. 
Thus we pick up the residue at s = 0 and s = 1 corresponding to the (simple) poles 
of A(s, C). By using the functional equation for the gamma function we get: 

0 < R,(1)P(1) - AR,(O)T(O) 

-(9) 
A -+iJ A2 1-s )+1 

2 

R (s)T(s)(c(1 - s)ds, 

AK27r-i---61-i (x) 

where n = 2r 
Kr2 

RK , A =dK RK is the regulator of K, and wK is the 
number of roots of unity in K. Hence 

AR,(O)T(O) -1< 
xRy (1)P(1) 

1 1 
f-_5+ioo 

A2 1-s 
(10)am R(s)T(s)ds 

(10) AR(1)P(1) 2i 
-T-i 

xm 
m=N(ac) 

Let 

R(0O)T(O) Rn R(0) (F(1+)rl' (1 \+r2 

(11) t (1)P(1) - R2(1) F(~ 

-J 

2 
?' 

and choose x so that y = log( x ). We can rewrite (10) as 

toeY 
V 

K Id < _ 

/-_amF 
y - log 

N(ac) - r R (1)P(1)N(ac) =Nac)N(ac) m= N(ac) 

We note that hypothesis (4) on R~(s) implies that R,~(t) > 0 for t > 0. Hence, to 
as in (11) is positive and letting B = 

R \,(1))N(ac) 
> 

O, 
we are done. O 
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Zimmert used the admissible rational function R,(s) = (s+a) (s+O) (s+2y-3) (s+2y-'a) 
with 0 ? a <3 < 7. By estimating the integral in (9) and taking the limit 3 -+ 

/, he obtained the bound 

Zo(rl, r2) N<- where 
Zo(rl, 

r2) = 
toeY(ri,r2,-) N(ac) 

r' 1+ ) 2r (1 o( 
2 

Y(rl, r2, -) = -ri-22 (1 + log(2)I 
r (2 ( r- a 

and to as in (11). For each signature (r1, r2), Zimmert chose appropiate y and a 
in order to obtain his bound [Zi, p. 368]. By modifiyng the admisible rational 
function R, (s), we will now improve the bound of Zimmert. 

Proposition 1. For all s E C with Re s > --y and Re s / 1, 2, 3, - , the function 
T(s) introduced in (2) satisfies the inequality 

(12) IT(s) 1 5 IT(Re s)l. 
Proof. Setting 

F(s) 
(13) G(s, ) = 

T(1 + y - s)' 
we can write T(s) in the following way: 

(14) T(s) = G 
s, 

~ G + 1 , 1+ r2 
2 2 2 

We claim now: 

(*) For all y > 0 ands EC with Res < 
2 and Res = 0,-1,-2..-, we -2 

have JG(s, )1 IG(Res,-y)l. 
For s = a + it, with a and t real, and a $ 0, -1, -2, . , we have [G-R, 8.326] 

F(a + it) 
2 00 /1 

1+(a+ n=-o 

Hence 

G(a + it, y) 2 

0n•0 1 l+0 
+ 

t+n 
< for 

G(a, 7) o0 o 1 + 
•n=O t( r 

This proves the claim. Using the claim (*) and (14) we obtain the proposition. O 

Using an analogous method to Zimmert's, we obtain in the next lemma a point 
Yo = Yo (62) satisfying (7). This value of yo is in general a bad bound for the minimal 
norm of ideals, but we use it as a starting point in the algorithm to obtain better 
bounds (cf. Section 4). 
Lemma 2. Let R, (s) be an admissible rational function and let 62 be such that 62 ? 

-y and the function Ry(s) has the unique simple pole -0 in the strip -62 < Re s < 0. 
Suppose furthermore that the residue p = Res,=_p(R,(s)T(s)) is negative. Let 
Yo = Yo (62) be defined by 

(15) Yo 

1 
log( - 

p 
) - log |T(-62) 2-62+i 

)I dS 
2- 0 (27r 1 

-,62 - i 0 
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Then the weight function Fy (y) specified by R,(s) satisfies Fy (y) < 0 for all y in 
the interval -oo < y < yo. 

Proof. We shift the line of integration in (5) (the integral that defines F,(y)) from 
Re s = -61 to Re s = -62. Then 

1 - 2+iOO F(y) - (ey) P + 
2 (e")-s R,(s)T(s)ds. 

2 - _52 -iOo 

Using 62 < 7 in Proposition 1, we have F,(y) < 0 if y < yo. O 

The following proposition provides an explicit admissible rational function sat- 
isfying the conditions of Lemma 2 together with a bound for yo (15). 

Proposition 2. The rational function R_ (s) given by 

)- (s + a) 
(s + 0)( + ,1)(s + a2)' 

with 

(16) O a</• < Y < Ol < Oa2, 
is an admissible rational function. Furthermore, let 62 be such that 7 > 62 > 3. 
The point yo(62) given in Lemma 2 satisfies 

1__ 
_____(_ _( (62 - a) T(-)62) (17) y 1 log ( - )T(-) log 2(2- )(aI 

-62)) 2 2 
•---3 (1 - )(e - 0) 2(62 - ) 2 

1• • 
- 6-2) 

Proof. First, note that 

(s + a) I( 1+27-y a) 1+27-/3 _ 1 
S+ ( + a 1+ 1+- 1+ 

(s +?)(s + a1) s ,Ik sI\ s+s + 
1 

Hence by (16), Ru(s) is of the form (4), i.e., R,(s) is an admissible rational function; 
furthermore, by this inequalities we obtain that Ress=_p(R,(s)T(s)) is negative. 
By the condition on 62, R,(s) has a unique pole -0 in the strip -62 < Re s < 0; 
furthermore we see that I | in s = -62 + it has a maximum at t = 0. 

Hence, one has 

f-62+iC 003 
(d-<62 

- < (2 - ( 
a)- S-62-iO -J- oO 

(62 -3)((a - 62)2 t) dt (2 - 
/)(a1 - 62) 

(using also the condition 62 < a1 < 
a2)-. l 

3. AN APPROXIMATION OF F, 

We will now give an approximation of the weight function F, (y > 0), which is 
given by 

F,(y) = 1 

-+o 
(eY)1"R,,(s)T(s)ds, 27ri --61-ioo 

where 

( 
I 1-2s rl +r2 2(2-S) 

1' 

sT + r + I +-" T(s)2 
2-T1 T 

+ +,) r(4+l+,) 
and R, is an admissible rational function without poles in the strip -61 < Re s < 0. 
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Theorem 2. The function Fy(y) admits an expansion of the form 
m 

(18) F,(y) =Z(eY)iPj (y) +e(m, y) (m > 1). 
j=-1 

Here the error term is given by 

1 f(m++ioo 
(19) e(m, y) = 

- (ey)- Rr(s)T(s)ds, 27ril mn+ -ioo 

which tends to zero as m -0 oc, and 

ti -1 t d)-1 

(20) Pj(y) = ci,j d-(i+k+l),j 
k 

k=0 i=0 

with tj = rl + r2 for j odd and tj = r2 for j even, and with ck,j and dk,j given by 
the Laurent expansions of RT(s) and T(s) near s = j: 

Ry(s) = ck,j (S - )k and T(s) = 
- 

dk,j (s - j)k. 
k=O k=-tj 

Proof. The function (eY)1- R,(s) is analytic in the half-plane Res > -61 and 

T(s) has poles of order rl + r2 at s = 1, 3, 5,... and of order r2 at s = 2, 4, 6, .. 
Hence, if we shift the line of integration in (5) (the integral that defines Fy(y)) 
from Re(s) = -61 to Re(s) = m + 1, we pick up the residues at these poles. 
Given a pole at s = j of order tj, we have (eY)1-s Ry(s) = (e)1-j+(j-s) R(s) = 

(eY)1i-j E'=0 ek,j(y)(s - j)k with ek,j(y) = 
• 

(-1)ck-i, yi. Hence 

-ti--I 

Ress,= ((eY)-s R,(s)T(s)) (eY)J ek,(y) d-k-1,j 

k=O 

Inserting the explicit expressions of the ek,j in this equalities and collecting powers 
of y, we are led to the polynomials Pj (y). 

The fact that the error term Ie(m, y)I tends to 0 as m --+ oc is an immediate 
consequence of Proposition 3 below. O 

Proposition 3. a) For m E N and y E IR, we have 

|T(m + I)| m+!+ioo 

Ie(m,y)l < (e)-m 2 
T(m 

~ 
J+io (s)ds. 

-2 m+?4-i02 

b) If we take R(s) = 
(s+2) with O < a < p < y < a, < a2, we have( 

)(S+Cl)(S+a2) have 

IT(m + )j1 
Ie(m, y)l (e)2 -m 2((m + )m 

2(al 
+ m + )1 

c) For each m E N, we have 

T m+ 

()F(-))a+b 
2 

3 
m 3 \Pf m 3 ma m + 1 

)+ )(m+ 1 b' 

where a = rl + r2 and b = r2. 
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Proof. a) Follows from inequality for T(s) in (12) and the expression for e(m, y) 
in (19). 

b) When 

(s + a) 
R)((s) = 

(s +f )(s + a)(s + a ) 
we construct the bound 

Im++ioo•R,?(s)lds 
m+ -ioo 

just as in the proof of Proposition 2, upon bounding 
is+•• 

at s = (m + 1) + it 
by 1. Hence, one has 

iM•+ +ioc 
Ry (s) ds < ?. m+1 -ioo a, + m + 

c) Using the definition of T(s) and the reflection-relation F(1 - z)r(z) = 
s to rewrite the numerators, we see that 

m+- F((+)) 
a F(1 - ( + )) 

b 

2= F (++) F (1??+? + m 2 4 2 

r( m + 1)rfm + + ) (r(m + I rfm + 1" 2 
4+3 

2 
43- 

2 
43" 2- + ( + 

Notice that it is immediate from the proposition that IT(m + -) , and hence the 
error term e(m, y) tends to zero rapidly as m - o00. 

Let us now demonstrate that the coefficients ck,j and dk,j appearing in the 
polynomial Pj (see (20)) can be found recursively (in the variable j). The proof 
uses several steps and culminates in a method for computing Pj given at the end 
of this section. 

The following proposition lies at the basis of the recursive computation of the 
coefficients ck,j. 

Proposition 4. Let R,(s) be an admissible rational function with -al, . , -ar 

and 
-bl,' 

, -bt the zeros and poles (i.e., Ru(s) a= a 
(s+n• 

..(s+) 

a) Then we have that 

a 

_ 

t 0 

kk 

R.. (S). 

(s + a,) 
... 

(s + 
a,)]k R(S) -- 

bl.bt 

1 

i=1 
(k=O 

z 

b) If Rt (s) 
= 

Ek,= ck,ji(al,' a,, bl, - 
,bt)(s-j)k for s neari (j 0, 1,2---), 

then the expansion coefficients ck,j satisfy the recurrence relation 

ck,j+1l(al, , b, ,bt) = ck(alal + 1, ... , + 1, bl + 1, ... , bt + 1). 

Proof. We get the expansion formula of part a) upon expanding the factors of 

the denominator by means of the geometric series 1 
-- 

1 0 (-)k (s)k. The 
recurrence relation for the coefficients ck,j of part b) is then obtained by writing 
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s+a as a+j+(s-j) in the numerator and s+b as b+j+(s-j) in the denominator 
and invoking of the geometric series. O 

Let us recall that (cf. eqs. (13), (14)) 

(1 -- s r, 

T(s)= G 1 - s 
1- s 

1+9 

s ( 2 '(2 + -2- 
with 

r(s) G(s, 7) -= .(s) 
IF(1 + 7 

- s)* 

To find the recurrence relations for the expansion coefficients dk,j of the Laurent 
series of T(s) around s = j, we will employ functional equations for G(s, 9y) 

anal- 
ogous to the difference equation sF(s) = F(s + 1) and duplication formula for the 
gamma function. 

Lemma 3. a) G(s + 1, -y) = 
(9 

- s)sG(s, -y). 

b) G(s, 
q) 

G ( + s, ,) 
= 21+2?-4sG(2s, 2y) = 

G21(2 (2+-4) , 2) . 

Proof. These formulas readily follow from the difference equation F(s + 1) = sf(s) 
and the duplication formula 22s-lF(s)F( + s) = v/-F(2s) [G-R, p. 946]. O 

The next lemma (together with Proposition 5 below) is a key step for obtaining 
the recurrence for dk,j in terms of dk,j-2. 
Lemma 4. We have that 

(21) T(s) = 22(1+y-2w)b G(w, 

/)a-b 

G(2w, 2-)b 1 -S 
(1 + 2y - 2w)b 2 

and 

2(1+2y-4w)a G(w, y)b-aG(2w, 2-y)a s 
(22) T(s) = 

w=1_--b' 
- 

(( _ 
w)(w ))a(1 + 

_ 
- w)b 

2' 
2 2 JC -2j\ 

where a = rl + r2 and b = r2. 

Proof. By (14) and using F(1 + x) = xr(x) in (13) (with s = 4 + y - w), we have 

G(w, )a G(I+ w, )b 
T(s) = 2b)b (1 + 2y - 2w)b 

Using b) above, we have the lemma. O 

The following proposition encodes a recurrence for the coefficients of the Laurent 
series of G(s, -y) (and G(2s, 2-y)) near near s = -j - 1 in terms of the coefficients 
near s = -j. 

Proposition 5. a) If y > 0 and G(s, 
/) 

= Ek=_lak(s + j)k for s near -j 
(j = 0, 1, 2 ... ), then near s = -(j + 1) 

000( a ) os+j+ k 00 ( s+j+l )" k cc 

G(s, ) Ek=0 j+l 
Ek--0 

y+j+l Eak(1+ 
(j + 1)(Y +j 

+ 1) 
ak=s-l 

=-1I 
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b) If y> 0 and G(2s,2-y) = EZ• _bk(s + j)k nears- = -j, then near 
s = -(j + 1) 

0 00C 2(s+j+1) k +j+ 
G(2k=0 j +1 

k=0 
2j+1 Ek=0 +j-+1 

2(j + 1)(2j + 1)2( + j + 1) 

oc (2(s+j+1) k= 

(2-y+2j+1) k=E bk(s ?j+l)k. (2- + j +1)k=-I 

Proof. a) For each j > 0, we only need to rewrite a) in Lemma 3 as 

G(s, y) = -G(s + 1, y) 
(Y +j+ 1 - (s +j + 1))(1 +j - (s + j + 1)) 

We note that when s is near -(j + 1), then s + 1 is near -j. Hence we obtain a) 
by using the geometric series. 

To prove b), we write part b) of Lemma 3 as 

G(2(s + 1), 2-y) 

(2G) - 2s) 2s (2y - (2s + 1)) (2s - 1)' 

replace -2s by 2(j + 1) - 2(s + j + 1), and proceed as in the proof of a). O 

The explicit form of the recurrence relations for the coefficients dk,j is rather 
complicated and will be omitted here (as we do not need it). For our purposes it 
suffices to combine the above results into an effective method for computing the 
coefficients of the polynomials Pj quickly by means of a computer. We will now 
describe this method. 

Method for computing the polynomials Pj. We compute the polynomials 
P (y) 

•t-1 
ak yk recursively. Let us recall that 

PJ (Y) = 
_=0a=O 1 -1 

ak,J = ci,jd-(i+k+l),j, 
i=0 

where ck,j and dk,j are the coefficients of the Laurent expansions of R~,(s) and T(s) 
around s =j: 

R,(S)- 
ckj ((S 

-jk=)k 
T(s) - dkj(Sj )k. 

k=O k--tj 

The coefficients Ck,j are determined from Proposition 4. First part a) of the 
proposition is used to compute ck,O, and next one uses the recursion of part b) to 
obtain Ck,j for j > 0. 

The coefficients dk,j are determined from Lemma 4 and Proposition 5. For j 
odd we use formula (21) for T(s) and for j even we use formula (22). Expanding 
G(w,y) and G(2w,27') (with w = (1 - s)/2 and w = 1 - s/2 respectively) by 
means of Proposition 5 yields a recurrence relation for dk,j in terms of dk,j-2. TO 
start the recursion we must compute dk,j for j = 1 and j = 0. To this end we 
expand formula (21) around s = 1 and formula (22) around s = 0, respectively. 
This involves the expansion of exponential factors and geometric series, and the 
expansion of the gamma factors G(w, -y) and G(2w, 2-y) (with w = (1 - s)/2 and 



1756 ANA-CECILIA DE LA MAZA 

w = 1 - s/2, respectively). The latter expansions depends on the standard Laurent 
series [G-R, p. 944] (for Iwl < 1) 

00 

(23) F(w) = 1F(w + 1) = 
cnwn-1 w 

n=-0 

with c,+l = (n + 1)-1 Ek=o(_l)k+lsk+lCn-k, CO = 1, and 
00 

(24) 1 w dnwn+ F(w) F(w + 1) 
n=O 

with dn+1 = (n + 1)-1 Ek=0(-1)kSk+ldn-k, do = 1, where sl = C = 0, 577215... 
denotes Euler's constant and sn = ((n) for n > 1. (Here ((.) refers to the Riemann 
zeta function.) Indeed, the gamma factors of the numerator and denominator are 
expanded by means of (23) and (24), respectively, after translating the arguments 
of the gamma functions to a neighborhood of the origin by means of the functional 
equation F(w + 1) = wF(w). 

4. THE ALGORITHM 

In this section, we will describe the algorithm to approximate (from below) the 
largest point y* satisfying property (7): 

F,(y) ?0 for -co<y< y*. 

We implemented this algorithm using PARI [C]. From (the lower estimate of) 
y* we then get a bound on the Minkowski constant via the corollary of Theorem 1 
stated in the introduction. 

The following proposition describes a procedure to augment lower estimates of 
y* (thus improving the bound). 

Proposition 6. Let e(m, y) be given by (19) and let e > 0. Suppose that Ie(m, y)I < 
e for all y in an interval [xl, X2]. Furthermore, let 

al 
E [Xl, 2] be such that there 

exists a 6 = 6(al) > 0 satisfying [al, al +-6] [l, X2] and 

(25) 6cM + 1gjy(ai + 6) + gj(ai) < -e. 
jEA jEBUC 

Here gj(y) := eY(1-J)Pj(y) for 1 < j < m with Pj given by (20), 

A = {1 
_ 

j < m| gj is increasing on 
[X1,X2]}, 

B = {1 ? j < mi gj is decreasing on 
[zl,x2 C = {1 < j < mI gj is not monotone on 

[X1,X21}, 
c = card(C), and for each j E C we have that |gj(y)f < M for xzl y < x2. 

Then all y E [al, al + 6] satisfy property (7), provided al satisfies property (7). 

Proof. Note that by (18), we have that F,(y) = jmL gj(y) + e(m, y). Moreover, 
if y E [al, al + 6], we have by the mean value theorem and the definition of A, B 
and C and (25) that 

F,(y) < gj(al+) + gj(al)+ gj(y) +e (m, y) 
jEA jEB jEC 

< gj(ai+6) +E gj(a) + ScM+ e(m,y) < 0. 
jEA jEBUC 
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TABLE 2 

n rl r2 Y o = t0oeY upper bound m new bound 
for Fy(yo) Z(ri, r2) 

2 2 0 2.48 0.2036 -5.9027. 10-7 30 2.1379 
2 0 1 3.09 0.1500 -4.7945 - 10-9 40 1.6518 
3 3 0 1.63 0.6069 -7.0926 10-5 12 6.2350 
3 1 1 1.92 0.4199 -4.327 .10-6 16 4.3407 
4 4 0 1.25 2.0029 -1.781 - 10-3 8 21.219 
4 2 1 1.41 1.3195 -1.651 -10-4 9 13.768 
4 0 2 1.61 0.8911 -1.146 .10-5 11 9.2504 
5 5 0 1.04 7.1184 -2.062 10-2 6 79.190 
5 3 1 1.15 4.5012 -2.821 10-3 7 49.572 
5 1 2 1.27 2.9145 -3.284 10-4 8 31.025 
6 6 0 0.91 26.716 -1.543. 10-1 5 315.00 
6 0 3 1.16 6.5421 -6.095 10-4 7 70.987 
8 8 0 0.74 424.17 -6.005 4 5644.0 
8 0 4 0.94 54.767 -1.032. 10-2 5 635.5 
10 10 0 0.47 7452.2 -182.064 4 112120 
10 0 5 0.82 98.560 -6.604 10-3 5 6443.8 

To obtain the numerical bounds on the Minkowski constants we work with the 
admissible rational function 

(s + a) 
(s + 3)(s + 2(2- - 3))(s + 2(2y - a))' 

where a =-y - (+1) as in [Zi, p. 373], and 3 is near to y such that 0 < a < 

/ < y. Notice that R,(s) is of the form given in Proposition 2 with a1 = 2(2y - 3) 
and a2 = 2(2y - a). (In particular, the parameters of R,(s) satisfy the constraints 
in (16).) As a starting value for the lower estimate of y* we take the lower bound 
for Yo (15) given by (17). We pick 0 < E < - 

o) and use Proposition 3 to select 
an m such that I (m, y) < E for each y > yo. Then, by means of Proposition 
6, we move from (the lower estimate of) yo to a larger value yl such that F,(y) 
remains negative on the interval [yo, yl]. By iterating this process one constructs a 
sequence {yl}, l = 0,1, 2,..., converging from below to y*. In principle the value 

Z*(r, r2) := toeY* (with to from (11)) now provides a new lower bound such that 

V/dK]/N(a) > Z*(r1, r2) (cf. the corollary of Theorem 1 in the introduction). 
In practice, however, the iteration ends after a finite (but large) number of steps 
producing a value Y very close but smaller than y*. This leads to a numerical 
approximation (from below) Z(rl, r2) = toe' of the bound Z*(rl, r2). In Table 
2, we give the parameter y, the starting bound z0o := t0oeo, an upper bound for 

F,(yo), m (the number of polynomials Pj used in the computation), and the new 
numerical bound Z(rl, r2) produced by the algorithm. 

It is illuminating to illustrate the state of affairs by means of a plot of the 
function F-(.). In Figure 1 we have plotted F,(log(: -)) as a function of z for the 
case rl = 1, r2 = 2 (corresponding to the 10th line of Table 2). It is an empirical 
observation that for the other cases the graph of F,(log( f)) is qualitatively of the 
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FIGURE 1. Graph of 
F,(log(o)) 

for ri = 1, r2 = 2 and y = 1.27 

same shape. Notice that in the case under consideration we have at the starting 
point yo that z0o = 2.9145 (see Table 2). This point is close to the zero on the left. 
For the numerical approximation (from below) Y of y* we have on the other hand 
that z = 31.025, which is much bigger and close to the point where the function 
changes sign. 
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