$$Ph_{2}C == CH_{2} + HCo(CO)_{4} \xrightarrow[k_{-1}]{k_{-1}} Ph_{2}\dot{C}CH_{3}\dot{C}o(CO)_{4} \xrightarrow{k_{2}} \dot{C}o(CO)_{4} + Ph_{2}\dot{C}CH_{3} \xrightarrow{HCo(CO)_{4}} Ph_{2}CHCH_{3} + \dot{C}o(CO)_{2}\dot{C}o(CO)_{4} \xrightarrow{fast} Co_{2}(CO)_{8}$$

It has been reported that when Ph₂CHBr is reacted with Co₂(CO)₈ in THF, Ph₂CHCHPh₂ is formed in good yield.⁴ The THF disproportionates Co₂(CO)₈ to provide [Co(C- O_{4} , and this anion reacts with the bromide to give Ph₂CH as an intermediate which couples to the observed dimer. When we repeated this experiment in the presence of $HCo(CO)_4$, Ph_2CH_2 was obtained in 95% yield. Apparently the radical intermediate abstracts hydrogen from $HCo(CO)_4$ faster than it dimerizes. Ph_2CHBr in THF reacts with $HCo(CO)_4$ in the absence of added $Co_2(CO)_8$ to give Ph_2CH_2 , but the reaction is probably initiated by $[Co(CO)_4]^-$ available either from the strongly acidic⁵ $HCo(CO)_4$ or from the disproportionation of $Co_2(CO)_8$ generated from the decomposition of $HCo(CO)_4$ in THF.⁶

The hydrogenation of α -methylstyrene with HMn(CO)₅, after which Scheme I is modeled, has also been reported to show a CIDNP effect.⁷ The reported second-order rate law, inverse isotope effect, and deuterium exchange between reactants and products for $HMn(CO)_5$ reactions with α -methylstyrene are also characteristic of our reactions with HCo(CO)₄,¹ suggesting similar mechanisms for hydrogenations with $HMn(CO)_5$ and $HCo(CO)_4$.

HCo(CO)₄ was prepared as previously described.^{1b} Ph₂C==CH₂ was purchased from the Aldrich Chemical Co. CIDNP effects were observed on a Varian T 60-MHz ¹H NMR spectrophotometer.

CIDNP Effect with 1,1-Diphenylethylene. A $500-\mu$ L aliquot of freshly prepared 0.80 M (0.40 mmol) HCo(CO)₄ was injected into a NMR tube capped with a rubber septum and flushed well with CO. The NMR tube was then placed in a CO_2 /acetone bath at -78 °C. The tube was then removed from the bath, and 40 μ L (0.22 mmol) of 1,1-diphenylethylene was quickly injected into the HCo- $(CO)_4$ solution. The NMR tube was then shaken vigorously for 2 s, wiped clean, and immediately placed in the NMR cavity at 31 °C. The spectrum is quickly scanned in the methyl proton region in order to observe the transient emission spectrum. The elapsed time between the injection of the olefin and the beginning of the spectrum scan must be 15–25 s or only an absorption spectrum will be observed. The entire reaction is over in about 60 s.

Reaction of $HCo(CO)_4/Co(CO)_4^-$ with Bromodiphenylmethane. In a 200-ml round-bottom flask well flushed with CO was placed a 78-mL THF solution of 0.185 M (14.0 mmol) $HCo(CO)_4$. To the solution was added 2.4 g (4.9 mmol) of $Co_2(CO)_8$ followed by the addition of 1.2 g (4.9 mmol) of bromodiphenylmethane dissolved in 5 mL of THF. The solution was stirred for 12 h at room temperature. The solvent was then evaporated and the residue redissolved in 70 mL of CH_2Cl_2 . To this solution was then added dropwise 5 mL of ethylenediamine. The solution was then washed with H_2O , 2% aqueous HCl, and saturated aqueous NaCl before drying over CaCl₂ and filtering. Evaporation of the solvent gave a clear oil, 0.78 g (95% yield). Analysis by ¹H NMR showed it to be essentially

223

Figure 1. ¹H NMR spectra: (a) emission spectrum of Ph₂CHCH₃; (b) absorption spectrum of Ph_2CHCH_3 observed 20 s after a; (c) spectrum of Ph₂CHCH₃ with spinning side band of CH₂Cl₂.

pure diphenylmethane. ¹H NMR (CDCl₃): δ 7.1 (s, 10, phenyls), 3.9 (s, 2, methylene). When the above reaction was repeated in the absence of added $Co_2(CO)_8$, an 80% yield of Ph₂CH₂ was obtained; no coupled product could be detected (¹H NMR).

Registry No. HCo(CO), 16842-03-8; Co₂(CO), 10210-68-1; 1,1diphenylethylene, 530-48-3; bromodiphenylmethane, 776-74-9.

Intermetallic Chalcogenide Atom Transfer and the Synthesis of 1,4-[(CH₃C₅H₄)₂Ti]₂S₄

C. Mark Bolinger, John E. Hoots, and Thomas B. Rauchfuss*

School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801

Received September 1, 1981

Summary: $(C_5H_4R)_2TiE_5$ (R = H, CH₃; E = S, Se) efficiently transfer a dichalcogenide fragment to [Ir-(Ph2PCH2CH2PPh2)2]Cl affording Ir^{III}E2 complexes and in one case 1,4-[(C5H4CH3)2Ti]2S4. The unique Ti2S4 heterocycle can also be prepared via the PBu₃ desulfurization of (C₅H₄CH₃)₂TiS₅.

This report describes a new intermetallic atom transfer reaction¹ and the synthesis of a very unusual organotransition metal chalcogenide. The key reagents employed in this study are the dicyclopentadienyltitanium(IV) pentachalcogenides whose structures are composed of metallapentachalogenide rings.² The reactivity of these

⁽⁴⁾ D. Seyferth and M. D. Miller, J. Organomet. Chem., 38, 373 (1972). (5) T. E. Nalesnik and M. Orchin, J. Organomet. Chem., 212, C16 (1981)

<sup>(1981).
(6)</sup> M. V. McCabe, J. F. Terrapane, and M. Orchin, Ind. Eng. Chem.
Prod. Res. Dev., 14, 281 (1975).
(7) R. L. Sweany and J. Halpern, J. Am. Chem. Soc., 99, 8335 (1977).

⁽¹⁾ For other examples of intermetallic atom transfer reactions see: Templeton, J. L.; Ward, B. C.; Chen, G. J.-J.; McDonald, J. W.; Newton, W. E. Inorg. Chem. 1981, 20, 1248–1253. Reynolds, J. G.; Holm, R. H. Inorg. Chem. 1981, 20, 1873–1878.
 (2) Epstein, E. F.; Bernal, I. J. Organomet. Chem. 1971, 26, 229–245.
 Muller, K. G.; Petersen, J. L.; Dahl, L. F. Ibid. 1976, 111, 91–112.

compounds has been found to contrast sharply with that of the cyclo-octachalcogenides.³

Equimolar quantities of 1a or 1b and [Ir(dppe)₂]Cl (dppe = 1,2-bis(diphenylphosphino)ethane) $3,^4$ were found to react efficiently in dichloromethane solution (25 °C, 4 h). After solvent evaporation, washing with THF, and recrystallization of the residue from CH₂Cl₂-Et₂O, a 60% yield of orange, crystalline $[Ir(dppe)_2S_2]Cl^5$ was realized. The identity of this product was confirmed by detailed comparison of its 360-MHz ¹H NMR spectrum with that of the same compound prepared from 3 and $c-S_8$.⁶ The efficient synthesis of [Ir(dppe)₂Se₂]Cl by an analogous procedure from 2a and 2b is particularly notable since the published procedure⁵ using c-Se₈ proceeds very sluggishly (eq 1). This result illustrates the utility of pentaselenides

2a and **2b** as conveniently reactive and soluble (8.3×10^{-3}) and 1.0×10^{-2} M, respectively, in CH₂Cl₂ at 23 °C⁷) sources of elemental selenium. In contrast, c-Se₈ is practically insoluble in useful organic solvents ($<2.5 \times 10^{-5}$ M in CH_2Cl_2 at 23 °C⁷) wherein it reverts to the refractory, polymeric gray allotrope.

Chromatographic workup (CH₂Cl₂ elution on Merck PF 254 silica gel) of the products of the iridium desulfurization of 1b afforded (MeCp)₄Ti₂S₄, 4b ($R_f = 0.25$), a new compound isolated in 22% yield as red crystals from CH₂Cl₂-hexanes.⁸ A symmetric structure with two S-S bonds was indicated for 4b on the basis of its cleavage reaction with dimethyl acetylenedicarboxylate (eq 2). The

$$(MeCp)_{4}Ti_{2}S_{4} + 2ZC \equiv CZ \xrightarrow{40 \text{ °C, } 12 \text{ h}}_{CH_{2}Ci_{2}} 2(MeCp)_{2}Ti_{S} \xrightarrow{Z} (64\%) (2)$$

$$Z = CO.CH.$$

new dithiolene complex was purified by chromatography on Sephadex LH-20 (CH_2Cl_2 eluent) and can also be prepared directly from 1b.³ ¹H NMR spectroscopy indicates that 4b, like its pentasulfido precursor, contains nonequivalent MeCp ligands (Figure 1). This observation is consistent with 4b existing in a stereochemically rigid chair form.^{2,9,10} Attempts to characterize the ring inversion

is in preparation.
(4) Vaska, L.; Catone, D. L. J. Am. Chem. Soc. 1966, 88, 5324-5325.
(5) Ginsberg, A. P.; Lindsell, W. E. J. Chem. Soc. D 1971, 232-233.
Bonds, W. D., Jr.; Ibers, J. A. J. Am. Chem. Soc. 1972, 94, 3413-3419.
(6) Ginsberg, A. P.; Lindsell, W. E. Inorg. Chem. 1973, 12, 1983-1985.
(7) The solubilities were determined by UV-VIS spectrophotometry.
(8) Anal. Calcd for C₁₂H₁₄S₂Ti: C, 53.33; H, 5.22; Ti, 17.72. Found:
C, 53.51; H, 5.22; Ti, 17.57. ¹H NMR (CDCl₃, 360 MH2): & 6.54 (4 H, m, C₅H₄), 6.33 (4 H, m, C₅H₄), 6.07 (4 H, m, C₅H₄), 5.98 (4 H, m, C₅H₄), cf.44 (6 H, s, CH₃). Field desorption mass spectrum: m/e
541 (M⁺). IR (mineral oil mull): 1035, 939, 896, 870, 818, 422, 390 cm⁻¹. 541 (M⁺). IR (mineral oil mull): 1035, 939, 896, 870, 818, 422, 390 cm⁻¹ The corresponding products derived from 1a, 2a, and 2b were insufficiently soluble to be purified. (9) Köpf, H.; Block, B.; Schmidt, M. Chem. Ber. 1968, 101, 272-276.

Figure 1. 360-MHz ¹H NMR spectrum of $1,4-[(MeCp)_2Ti]_2S_4$ and its proposed structure.

by variable-temperature ¹H NMR spectroscopy were unsuccessful due to the thermal instability of this new compound. Compound 4b is a unique example of a complex containing a cyclic M₂S₄ core and as such represents a new valence isomer of this topical chemical entity.^{11,12}

The formation of **4b** via the iridium abstraction of an S_2 unit from 1b would be expected to proceed via the intermediacy of (MeCp)₂TiS₃ which could couple to form the known dimer, 1,5-[(MeCp)₂Ti]₂S₆.¹³ Curiously, we find that this cyclic hexasulfide is not readily desulfurized by 3. Furthermore, 1,5-[(MeCp)₂Ti]₂S₆ was never detected in any reactions of 1b with 3b. However, we have found that the cyclic pentasulfide 1b could be desulfurized to the cyclic tetrasulfide 4b by using tri-n-butylphosphine. This discovery has led to an inexpensive, one-pot synthesis of 4b. Treatment of 1b with 3 equiv of $P(n-Bu)_3$ in refluxing CH₂Cl₂ for 15 min, followed by concentration and cooling to -20 °C, afforded pure 4b as red needles in 28% yield (eq 3).

$$2(\text{MeCp})_{2}\text{TiS}_{5} + 6\text{PBu}_{3} \rightarrow 1.4 \cdot [(\text{MeCp})_{2}\text{Ti}]_{2}\text{S}_{4} + 6\text{SPBu}_{3} (3)$$

An additional facet of the chemistry of 4b is that it is formally, although not preparatively, the oxidized dimer of the dithiol, $(MeCp)_2Ti(SH)_2^{14}$ (eq 4). This interconversion represents a theme of continuing interest to us and others.¹⁶

⁽³⁾ A paper describing the detailed mechanistic and structural study of the reaction of the acetylenes with these titanium pentachalcogenides is in preparation.

⁽¹⁰⁾ For a discussion of the conformational analysis of organic polysulfides, see: Allinger, N. L.; Hickey, M. J.; Kao, J. J. Am. Chem. Soc. 1976, 89, 2741-2745.

⁽¹¹⁾ For a synopsis of transition metal-S₂ complexes, see: Müller, A.; Jaegermann, W. Inorg. Chem. 1979, 18, 2631–2633.

⁽¹²⁾ Recent examples of metal complexes containing the M₂S₄ core:
DuBois, D. L.; Miller, W. K.; Rakowski DuBois, M. J. Am. Chem. Soc.
1981, 103, 3429–3436. Clegg, W.; Christov, G.; Garner, C. D.; Sheldrick, G. M. Inorg. Chem. 1981, 20, 1562–1566. Müller, A.; Krickemeyer, E.; G. M. Inorg. Chem. 1981, 20, 1502-1506. Muller, A.; Krickemeyer, E.;
 Reinsch, U. Z. Anorg. Allg. Chem. 1980, 470, 35-38. Chanaud, H.; Ducourant, A. M.; Giannotti, C. J. Organomet. Chem. 1980, 190, 201-216.
 Kubas, G.; Vergamini, P. J. Inorg. Chem. 1981, 20, 2667-2676.
 (13) Bolinger, C. M.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc.

^{1981, 103, 5620-5621}

⁽¹⁴⁾ This compound, prepared by using the method of McCall and Shaver¹⁵ for the C_5H_5 derivative, is considerably easier to isolate in crystalline form. Anal. Calcd for $C_{12}H_{16}S_2Ti$: C, 52.93; H, 5.92; Ti, 17.58. Found: C, 52.85; H, 5.81; Ti, 17.51. ¹H NMR (CDCl₃, 90 mHz): δ (4 H, m, C_5H_4), 5.95 (4 H, m, C_5H_4), 3.09 (2 H, s, SH), 2.35 (6 H, s, CH₃). IR (mineral oil mull): 3079, 2562, 2545, 1083, 942, 921, 842, 815 cm⁻¹. (15) MaColl M. Shenza A. Contrarent (Sherra 1966) 0.077 (15) McCall, J. M.; Shaver, A. J. Organomet. Chem. 1980, 193, C37-C39

⁽¹⁶⁾ For recent discussions of metallothiol-metallodisulfide interconversions see: Seyferth, D.; Henderson, R. S. J. Organomet. Chem. 1981, 204, 333-343. Küllmer, V.; Röttinger, E.; Vahrenkamp, H. J. Chem. Soc., Chem. Commun. 1977, 782-783. Ramsani, T.; Taylor, R. S.; Sykes, A. G. Ibid. 1976. 383-384.

Acknowledgment. This research was supported by the National Science Foundation and the Research Corp. Field desorption mass spectrometry facilities are supported by the National Cancer Institute. High-field NMR facilities were provided by the National Science Foundation (NSF Grant CHE 79-16100).

Registry No. 1a, 12300-91-3; 1b, 78614-86-5; 2a, 12307-22-1; 2b, 78614-88-7; 3, 15390-38-2; 4b, 79816-62-9; [Ir(dppe)₂S₂]Cl, 40603-50-7; [Ir(dppe)₂Se₂]Cl, 40603-51-8; (MeCp)₂Ti(SH)₂, 79816-63-0; P(n-Bu)₃, 998-40-3.

Racemization of Chiral Tetrahedral Organotransition-Metal Clusters: A Novel Fluxional Process

Gérard Jaouen, * 11 Angela Marinetti, 1 Jean-Yves Salllard,[‡] Brian G. Sayer,[§] and Michael J. McGlinchey*§

Ecole Nationale Supérieure de Chimie 75231 Paris Cedex 05. France Laboratoires de Chimie du Solide et Inorganique Moléculaire, LA 254 et de Chimie des Organométalliques, ERA 477 Université de Rennes I 35042 Rennes Cedex, France Department of Chemistry. McMaster University Hamilton, Ontario, Canada L8S 4M1

Received October 27, 1981

Summary: The intrinsically chiral tetrahedral organotransition-metal clusters PhC=CCO₂CHMe₂[(C₅H₅)Ni-M], where M is $Co(CO)_3$ (1), $(C_5H_5)Mo(CO)_2$ (2), or Mn(C- O_{4} (3), have been prepared. The low symmetry of these molecules allows the detection and analysis of a new fluxional process, viz., the formal rotation of the M-M and C-C bond vectors. Using high-field NMR spectroscopy, ΔG^{\dagger} for **2** is 20.5 ± 0.5 kcal/mol. The fluxionality and high reactivity of these molecules toward addition of an Fe(CO)₃ molety are rationalized in terms of Wade's rules for electron-deficient clusters.

While many of the recent advances in cluster chemistry¹ have focussed on larger and larger molecular assemblies, the oldest and most widely investigated systems² still pose fascinating challenges not only of synthesis but also of bonding and molecular dynamics. Thus, to rationalize the high reactivity of the acetylene clusters A such as μ -(η^2 - $R_2C_2)Co_2(CO)_6$, it was suggested more than a decade ago³ that they might be in equilibrium with the isomeric 1,2dimetallacyclobutenes B (Scheme I). Although some

extremely interesting observations have been reported,⁴ there has been, to our knowledge, no unequivocal demonstration of a process corresponding formally to relative rotation of the C--C and M-M bond vectors in a tetrahedral cluster. Furthermore, calculations suggest that, for such an interconversion process to occur, a relatively high barrier must be surmounted.⁵ We now report the construction of molecules possessing appropriate functionalities to allow us to probe the viability of such a process.

We have found that the reaction of $Co_2(CO)_8$, $(C_5H_5)_2Ni$ and an alkyne yields (inter alia) molecules of the type $(C_5H_5)NiCo(CO)_3(RC=CR).^6$ Similarly, the new mixed dimetallic series $(C_5H_5)NiM_0(CO)_2(C_5H_5)(RC \equiv CR)$ is readily accessible by treatment of an alkyne with $(C_5H_5)_2Ni$ and $(C_5H_5)_2Mo_2(CO)_6$.^{8,9} When the precursor acetylene bears two different substituents, these molecules are chiral and the incorporation of an isopropyl moiety, as in $(C_5H_5)NiCo(CO)_3(PhC = C - CO_2CHMe_2)$ (1) and (C_5H_5) -

 $NiMo(CO)_2(C_5H_5)(PhC = C - CO_2CHMe_2)$ (2) provides diastereotopic methyl groups with which to monitor the rate of racemization of the complex and thus unmask the hitherto hidden process. In the absence of exchange the isopropyl methyls exhibit a pair of doublets which only

(5) Calculations on $Cp_2Ni_2(C_2H_2)$ yield a barrier of 20.7 kcal/mol; Hoffmann, R.; Hoffman, D., personal communication. (6) $Co_2(CO)_8$ (1 g, 2.9 mmol), $(C_5H_5)_2Ni$ (1 g, 5.3 mmol), and $C_6H_5C_2CO_2CHMe_2$ (1 g, 5.3 mmol) were heated at 100 °C in heptane under \tilde{N}_2 for 6 h and gave rise to the heterobimetallic acetylene complex 1 [25% yield; oil, m/z 453.9756, calcd m/z 453.9761, ¹H NMR (80 MHz) 1 Lev 70 yieu; ou, m/z 40.5/00, caica m/z 405.9/61; 'H NMR (80 MHz) δ 7.66, 7.35 (m, C₆H₅), 5.31 (s, C₅H₆), 1.29 (d, CH₃, J = 6.6 Hz) in CD₂Cl₂ at 22 °C; δ (in C₆D₆ at 22 °C) 1.13 (d, CH₃, J = 6.4 Hz); IR (neat liquid) v_{C0} 2055 (s), 2000 (vs), 1700 (s) cm⁻¹] as the main product together with (inter alia) Ni₂Cp₂(CO)₂, Co₂(CO)₆(PhC₂CO₂-*i*-Pr), Ni₂Cp₂(PhC₂CO₂-*i*-Pr), and Co₂(CO)₄(PhC₂CO₂-*i*-Pr)₃. These products were easily separated by TLC on silica gel using petroleum ether/ether (9:1). An alternative but lease direct mode of access to the mixed bimetallic complete (1) less direct mode of access to the mixed bimetallic complex (μ -C₆H₅C₂C₆H₅)((CO)₃Co-Ni(η ⁵-C₆H₅)) has recently appeared involving the reaction of $(C_5H_5)_2Ni_2(PhC_2Ph)$ with $Co_2(CO)_8$ (24% yield). The X-ray structural determination shows the acetylene bonded perpendicularly to the metal-metal bond.³

(7) Freeland, B. H.; Hux, J. E.; Payne, N. C.; Tyers, K. G. Inorg. Chem. 1980, 19, 693-696.

1980, *19*, 693–696. (8) (C₅H₅)₂Ni (1 g, 5.3 mmol), (C₅H₅)₂Mo₂(CO)₆ (1.3 g, 2.7 mmol), and PhC₂CO₂*i*-Pr (1 mL, 5.3 mmol) were heated at 105 °C in 35 mL toluene for 7 h under N₂. TLC as before afforded 1.19 g (40%) of 2 as a red-brown crystalline solid: mp 90–91 °C; m/z 529.9922, calcd 529.992 54; IR (heptane) ν_{CO} 2030 (w), 1978 (sh), 1968 (vs), 1930 (s), 1902 (m), 1857 (s), 1682 (m) cm⁻¹; ¹H NMR (CDCl₃ at 30 °C at 80 MHz) δ 7.54, 7.25 (m, Ph), 5.24 (s, Cp), 5.14 (s, Cp), 1.35 (d, CH₃, J = 6.4 Hz); (in C₆D₆ at 30 °C) 1.22, 1.17 (dd, CH₃, J = 6.1 Hz)] together with Ni₂Cp₂(CO)₂, Ni₂Cp₂-(PhC₂CO₂*i*-Pr), and unreacted Mo₂Cn₂(CO)₆. Similarly, other hetero-(PhC₂CO₂-*i*-Pr), and unreacted Mo₂Cp₂(CO)₈. Similarly, other hetero-bimetallic species are accessible (e.g., $(\mu$ -PhC₂CO₂-*i*-Pr)[(CO)₄MnNi-(η^5 -C₅H₈) (3), mp 128 °C, was obtained from Mn₂(CO)₁₀ and Cp₂Ni in 40% yield).

(9) The 1857-cm⁻¹ band in 2 suggests the presence of a semibridging carbonyl as in $[CpMo(CO)_2]_2C_2R_2$: Bailey, W. I.; Chisholm, M. H.; Cotton, F. A.; Rankel, L. A. J. Am. Chem. Soc. 1978, 100, 5764.

[†]Ecole Nationale Supérieure de Chimie.

[‡]Université de Rennes I.

¹McMaster University.

For a recent review, see: "Transition Metal Clusters"; Johnson, B.
 F. G., Ed.; Wiley-Interscience: New York, 1980.
 (2) See, for example: Pino, P.; Braca, G. In "Organic Syntheses via

Metal Carbonyls"; Wender, I., Pino, P., Eds.; Wiley-Interscience: New York, 1977; Vol. 2, p 419.
 (3) Iwashita, Y.; Tamura, F.; Wakmatsu, H. Bull. Chem. Soc. Jpn.

^{1970, 43, 1520-1523.}

^{(4) (}a) Dickson, R. S.; Pain, G. N. J. Chem. Soc., Chem. Commun. 1979, 277-278. (b) Boag, N. M.; Green, M.; Stone, F. G. A. Ibid. 1980, 1281-1282.