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triosmium carbonyl system.16 [TaCp’Cl2HI2 reduces 
acetonitrile especially easily simply because it also easily 
reduces carbon monoxide, a much more difficult feat. 
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Summary: The synthesis and variable-temperature NMR 
properties of Co,(CO),CCHCHMe,+ are described. At 
-65 OC the methyl groups are anisochronous, consistent 
with a tilted but not with an upright structure. Coales- 
cence of the methyl signals at higher temperatures re- 
flects enantiomerization of the cluster, presumably by 
disrotatory correlated rotation (gearing) about the Co3(C- 
O)g-C and C-CHCHMe, axes. The barrier (AG *) to site 
exchange is 10.5 f 0.1 kcal mol-’ at -52 OC. The 
present findings corroborate theoretical predictions by 
Schilling and Hoffmann. 

Among the many interesting properties of the Co3(C0),C 
cluster is ita ability to stabilize adjacent carbenium  ion^.^^^ 
Schilling and Hoffmann4 have proposed, on the basis of 
theoretical considerations, that stabilization occurs in 
Co3(CO),CCH2+ as a result of the formation of tilted 
structures 2a or 3a rather than the upright structure of 
type la originally assumed2p5 (Figure 1). We now report 
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Figure 1. Schematic representation of CoS(CO)&CXY+ con- 
formations. The  Co&20), triangle is capped by a C-CXY+ 
fragment in upright (1) or tilted (2, 3) positions. The  gearing 
motion in 2 - 3 - 2’ is shown by the curved arrows. 

NMR evidence for CO~(CO)~CHCHM~~+ which unam- 
biguously excludes the upright structure and which permits 
an analysis of the dynamic stereochemistry in this system. 

In la the C3 axis of Co3(CO)9 and the C2 axis of C-CH2+ 
are collinear, leading to a sixfold rotation barrier about the 
common axis. In the tilted structures, the two axes sub- 
tend an angle, and the extended Huckel calculations of 
Schilling and Hoffmann4 indicate two stationary pointa on 
the potential energy hypersurface. In one (2a, C,) the C+ 
bends toward a Co atom and the u plane bisecta the H- 
C-H angle, whereas in the other (3a, C,) the CH, group 
bends toward the Co-Co bond center and lies in the u 
plane. According to Schilling and Hoffmann: 2a is the 
ground state, and degenerate isomerization (topomeriza- 
tion) occurs by way of the saddle point 3a. When X # 
Y, 2 becomes chiral(2b), and the topomerization described 
above becomes an enantiomerization (2b F? 2’b) by way 
of achiral transition states 3b or 3’b. On the other hand, 
l b  is expected to be achiral (the approximately sixfold 
barrier ensures that any chiral conformation has a negli- 
gible lifetime on the NMR timescale). Under conditions 
of slow enantiomerization, a probe testing for chirality 
therefore allows a distinction between lb  and 2b. The 
isopropyl group in the derivative with X = H and Y = i-Pr 
is such a probe: in lb  and 3b (or 3’b), the methyls are 
enantiotopic on the NMR timescale and hence isochro- 
nous, whereas in 2b they are diastereotopic and therefore 
anisochronous (barring accidental isochrony). 

The unsaturated (alky1idyne)tricobalt complex 4,6 re- 
quired as a precursor to CO~(CO)~CCHCHM~~+,  was pre- 
pared in 14% yield (after extensive purification) by the 
treatment of l,l,l-trichloro-3-methyl-2-butene (5)’ with 
C O ~ ( C O ) ~  in the usual method for the preparation of 
Co3(CO),CR complexes.* The required trichloromethyl 
compound 5 was obtained by careful dehydrobromination 
of l , l ,  1- trichloro-3-bromo-3-methylbutane (6) ., 
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KO-t-Bu 
C13CCH2C(CH3)2Br THF, o ~ *  

6 

When 4 is dissolved in fluorosulfonic acid, it undergoes 
protonation and forms CO,(CO)&CHCHM~~+.'~ As the 
temperature is lowered, the isopropyl methyl I3C reso- 
nance, a single peak at  6 24.2 at  room temperature, 
broadens; a t  -65 "C two peaks of equal intensity are ob- 
served at 25.8 and 22.1 ppm. The barrier to site exchange 
of the methyl groups can be estimated from the coalescence 
temperature (-52 f 2 OC) as AG* = 10.5 f 0.1 kcal mol-'. 

These results are consistent with 2 as the most stable 
structure, but not with 1 or 3." The observed coalescence 
corresponds to a process of enantiomerization for which 
two diastereomeric transition states, 3b and 3'b, need be 
considered. The observed barrier corresponds to the one 
lower in energy; this is presumably 3b since in 3'b a bulky 
i-Pr group is compressed against the CO(CO)~ groups. By 
the same token, the magnitude of the barrier in 3b should 
be similar to that in 3a, since the bulky i-Pr group is now 
out of the range of repulsive nonbonded interactions. The 
rough agreement between the barriers calculated for 3a 
(16 kcal mol-' as an upper limit4) and found for 3b is in 
accord with this supposition. 

It is appropriate to view Co3(CO)&CH2+ as an elec- 
tronically driven bevel gear system in which gearing occurs 
by disrotatory correlated rotation about the two axes, via 
3a (Figure We particularly note the stereochemical 
correspondence of this system to 9-benzy1triptycene,l3 in 
which a twofold rotor (benzyl) and a threefold rotor 
(triptycene) undergo an analogous internal rotation. The 
major difference between the two systems lies in the cou- 
pling mechanism, since the forces governing the internal 
motions in 9-benzyltriptycene are nonbonded interactions. 

The transition-metal-stabilized cations CO~(CO)~CCHR+ 
are thus not true three-coordinate carbenium ions but are 
stabilized by direct interaction between the cationic carbon 
and the metal framework. A similar conclusion, suggested 
by similar use of isopropyl diastereotopism as a chirality 
probe, has already been reached for the other principal 
class of transition-metal-stabilized carbocations, the fer- 
rocenyl derivatives FcCHR+,14 and has been confirmed by 
X-ray structure  determination^.'^ 
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Summary: Treatment of 7-trimethylsilyl-substituted bicy- 
cloC4.1 .O] carbinols with electrophiles leads to ring ex- 
pansion into an cycloheptenylallylsilane, which can un- 
dergo further transformations into substituted cyclo- 
heptene derivatives. 

The general formulation shown depicts a complicated 
overall transformation involving one carbon ring expansion 
of a cyclic enone, combined with the introduction of an 
electrophile and nucleophile in a 1,4 relationship to one 
another. 

E 

N 

Here we describe a short and flexible way of carrying 
out this transformation for the cyclohexenone to cyclo- 
heptene system, that utilizes the combined chemistry of 
silylcyclopropanes,' cyclopropylcarbinyl rearrangements? 
and allylsilane electrophilic sub~ti tut ion.~ I t  was envi- 
sioned that a (silylcyclopropyl)carbinol, 1, would readily 
rearrange under electrophilic conditions via la to give lb, 
where the carbenium ion is now situated 0 to the tri- 
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ment of Chemistry, Indiana University, Bloomington, Indiana 
47405. 
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