H₂C=CC(H₃)₂
$$
\frac{CCl_3Br}{AIBN, 60 °C}
$$

\nCl₃CCH₂C(CH₃)₂Br $\frac{KO-t-Bu}{THF, -40 °C}$
\nCl₃CCH=CC(H₃)₂ $\frac{Co_2(CO)_8}{THF, 35 °C}$ $Co_3(CO)_9CCH=C(CH_3)_2$

When **4** is dissolved in fluorosulfonic acid, it undergoes protonation and forms $Co_3(CO)_9$ CCHCHM e_2^{+10} As the temperature is lowered, the isopropyl methyl ¹³C resonance, a single peak at **6 24.2** at room temperature, broadens; at **-65** "C two peaks **of** equal intensity are observed at **25.8** and **22.1** ppm. The barrier to site exchange of the methyl groups *can* be estimated from the coalescence temperature $(-52 \pm 2 \text{ °C})$ as $\Delta G^* = 10.5 \pm 0.1$ kcal mol⁻¹.

These results are consistent with **2** as the most stable structure, but not with 1 or 3.¹¹ The observed coalescence corresponds to a process of enantiomerization for which two diastereomeric transition states, 3b and 3'b, need be considered. The observed barrier corresponds to the one lower in energy; this is presumably 3b since in 3'b a bulky *i*-Pr group is compressed against the $Co(CO)_{3}$ groups. By the same token, the magnitude of the barrier in 3b should be similar to that in 3a, since the bulky i-Pr group is now out of the range of repulsive nonbonded interactions. The rough agreement between the barriers calculated for 3a **(16** kcal mol-' as an upper limit4) and found for 3b is in accord with this supposition.

It is appropriate to view $Co_3(CO)_9CCH_2^+$ as an electronically driven bevel gear system in which gearing occurs by disrotatory correlated rotation about the two axes, via $3a$ (Figure 1).¹² We particularly note the stereochemical correspondence of this system to 9-benzyltriptycene, 13 in which a twofold rotor (benzyl) and a threefold rotor (triptycene) undergo an analogous internal rotation. The major difference between the two systems lies in the coupling mechanism, since the forces governing the internal motions in 9-benzyltriptycene are nonbonded interactions.

The transition-metal-stabilized cations $Co_3(CO)_9CCHR^+$ are thus not true three-coordinate carbenium ions but are stabilized by direct interaction between the cationic carbon and the metal framework. **A** similar conclusion, suggested by similar use of isopropyl diastereotopism as a chirality probe, has already been reached for the other principal class of transition-metal-stabilized carbocations, the ferrocenyl derivatives FcCHR+,14 and has been confirmed by X -ray structure determinations.¹⁵

Acknowledgment. We thank the National Science Foundation (Grant CHE **79-20373** to J.R.N. at Colorado State and Grant CHE 80-09670 to K.M. at Princeton) for support of this work and Professor **A.** I. Meyers for valuable advice on the dehydrobromination of **6.**

Registry No. 4, 80662-57-3; 5, 80658-25-9; 6, 23153-21-1; Cog- (CO)₉CCHCHMe₂⁺, 80662-56-2; Co₂(CO)₈, 10210-68-1.

Silicon in Synthesls. Ring Expansion and 1,4 Dlfunctionallzatlon Using Sllylcyclopropanes

Philip Magnus," Frank Cooke, and Tarun Sarkar

Ohio State University Columbus, Ohio 432 10

Received October 22, 1981

Summary: Treatment of 7-trimethylsilyl-substituted bicyclo^[4.1.0] carbinols with electrophiles leads to ring expansion into an cycloheptenylallylsilane, which can undergo further transformations into substituted cycloheptene derivatives.

The general formulation shown depicts a complicated overall transformation involving one carbon ring expansion of a cyclic enone, combined with the introduction of an electrophile and nucleophile in a **1,4** relationship to one another.

Here we describe a short and flexible way of carrying out this transformation for the cyclohexenone to cycloheptene system, that utilizes the combined chemistry of silylcyclopropanes,¹ cyclopropylcarbinyl rearrangements,² and allylsilane electrophilic substitution. 3 It was envisioned that a **(silylcyclopropyl)carbinol,** 1, would readily rearrange under electrophilic conditions via la to give lb, where the carbenium ion is now situated β to the tri-

⁽⁹⁾ Kharasch, M. S.; Reinmuth, *0.;* Urry, W. H. *J. Am. Chem. SOC.* (10) lH NMR (FS03H): **6 1.54** (d, J ⁼**6** Hz, **6** H), **2.18** (m, 1 H), **6.58 1947, 69, 1105.** 'H NMR of **6** (CCld): **6 2.08** (8, **6** H), **3.56** *(8,* **2** H). (d, $J = 9$ Hz, 1 H), referenced to CH₂Cl₂ (δ 5.32) as internal standard.
¹³C^{{1}H} NMR (FSO₃H): δ 24.2 (*Me₂CHCH*), 42.0 (Me₂CHCH), 131.6
(Me₂CHCH), 193 (CO), referenced to CH₂Cl₂ (δ 53.8) as in At **-36** "C another resonance can be seen at *8* **272.0** (apical C). Assignments were confirmed by off-resonance decoupling.

⁽¹¹⁾ There are other possibilities which cannot be ruled out on the basis of the NMR evidence alone (for example, a structure in which the CH₂ group in $Co_3(CO)_9CCH_2^+$ bends toward the center of a Co-Co bond and the σ plane bisects the H-C-H angle), though they are unlikely on theore

⁽¹²⁾ The NMR data do not rule out uncorrelated rotation (Le., rotation of the CHCHMe₂ fragment without concomitant rotation of the $Co_3(CO)_9$ moiety), though once again¹¹ this is unlikely on theoretical grounds.⁴ (13) Yamamoto, G.; Oki, M. Chem. Lett. 1979, 1251, 1255; Bull. Chem.

Soc. Jpn. 1981, 54, 473, 481.
 (14) Sokolov, V. I.: Petrovskii, P. V.; Reutov, O. A. *J. Organomet.* **Chem. 1973,** 59, C27.

^{1978,} *100,* **5554.** Behrens, **U.** *J. Organomet. Chem.* **1979, 182, 89. (15)** Cais, M.; Dani, S.; Herbstein, F. H.; Kapon, M. *J. Am. Chem. SOC.*

^{*}To whom correspondence should be addressed at the Department of Chemistry, Indiana University, Bloomington, Indiana **47405.**

⁽¹⁾ For the synthesis of silylcyclopropyl ketones using the ylide Me3SiCHSMez and references **to** silylcyclopropanes see: Cooke, F.; Magnus, P.; Bundy, G. L. *J. Chem.* Soc., *Chem. Commun.* **1978, 714.**

⁽²⁾ Cyclopropylcarbinyl-cyclopropylcarbinyl cation rearrangements Olah, G. A,; Liang, G. *J. Am. Chem. SOC.* **1976,98,7026.** Friedrich, **E.** C.; Jassawalla, J. D. C. *J. Org. Chem.* **1979,44,4224.** For a comprehensive review describing cyclopropane ring opening see: Sarel, S.; Yovell, J.; Sarel-Imber, M. *Angew. Chem., Int. Ed. Engl.* **1968,7,577.** Hanack, M.; Schneider, H.-J. *Ibid.* **1967,** 6, **666.** Solvolytic rearrangement route to ring-expanded steroids: Steinberg, N. G.; Rasmusson, G. H.; Reamer, R. A. *J.* Org. *Chem.* **1979,44,2294. Marshall,** J. A.; **Ellison,** R. H. *Ibid.* **1975, 40, 2070.** Hudrlik, P. F.; Rudnick, L. R.; Korzeniowski, S. H. *J. Am. Chem.* **SOC. 1973,95,6848.** Whalen, D. **L.;** Cooper, J. D. J. Org. *Chem.* **1978,43,432.** For a general review of cyclopropane chemistry see: Meijere, A.; *Angew. Chem., Int. Ed. Engl.* **1979,18,809.** Other examples of cyclopropanes in ring expansion reactions: Kohout, L.; Fajkos, J. *Collect. Czech. Chem. Commun.* **1974,39,1613.** Bellamy, A. J.; Whitham, G. H. *Tetrahedron* **1968,24, 247.** Caine, D.; Gupton, J. T. *J. Org. Chem.* **1974,** 39, 2654. Seebach, D.; Braun, M. Angew. Chem., Int. Ed. Engl. 1972, 11,
49. Reese, C. B.; Shaw, A. J. Am. Chem. Soc. 1970, 92, 2566. Parham,
W. E.; Schweizer, E. E. Org. React. 1963, 13, 55. Amice, P.; Blanco, L.; Conia, J. M. *Synthesis* **1976, 196.**

⁽³⁾ Pillot, J.-P.; Dunogue's, J.; Calas, R. *Tetrahedron Lett* **1976,1871.** Fleming, I.; Paterson, I. Synthesis 1979, 445. For a recent review see:
Chan, T. H.; Fleming, I. *Ibid*. 1979, 761.
(4) Friedrich, E. C.; Jassawalla, J. D. C. J. Org. Chem. 1979, 44, 4224.

Describe the cyclopropane walk process for a number of bicyclo[4.1.0] systems.

methylsilyl group. It should be noted that whether the trimethylsilyl group is exo or endo¹² the stereoelectronic requirements of the conversion of **la** into **lb** does *not* initially place the newly developing $sp²$ orbital in the same plane **as** the C-Si bond; and, therefore, the carbenium ion **lb** should not experience the same degree of stabilization **as** a colinear arrangement of the **sp2** orbital and the C-Si bond. If the β carbenium ion 1b had a colinear arrangement with the C-Si bond, it would be expected that the trimethylsilyl group would be lost to give a diene, **IC.** As we shall see, this is not the case, and **lb** is intercepted by nucleophiles to give **Id,** an allylsilane. Allylsilanes of the type **Id** can undergo electrophilic substitution with a concomitant double-bond shift to give **le.**

Reduction of **2** (ca. 9:l exo/endo)' with sodium boro-

hydride in methanol gave the alcohol **2a** as a mixture of cis and transisomers $(8:3)$; the cis-exo¹² epimer slowly crystallized from this mixture, mp $42-44$ °C.⁶ Treatment of pure 3, or the cis/trans-exo/endo mixture with acetic acid containing perchloric acid (ca. 5%) at 20 "C for 1 h gave the allylsilane *4* **as** a mixture of epimers (32). Further exposure **(2** h) of **4** to the above reagents gave cycloheptenyl acetate **5** in good yield? It should be noted that the ratio of cis and trans epimers **4** does not vary with the composition of *3.* At first sight this seems to be a curious

result since it would appear to imply that the carbenium ion **lb** is trapped by the acetic acid in a totally nonstereoselective manner. Furthermore **lb,** if formed, can rapidly undergo conformational inversion to bring the β -carbenium ion into the same plane as the C-Si bond and eliminate "Me₃Si₊" to give 1c. No cyclohepta-1,3-diene was formed. This would indicate that *4* is formed by concerted attack of AcOH on *3,* which should give clean stereochemical results. In other words, *cis-exo-3* should yield *trans-4.* If 3 (exo/endo ratio of the Me₃Si group, 7:1) is exposed to $BF_3 OEt_2$ at 0 °C and the resulting product oxidized (PCC), *the ketone 2 is recouered (84%), but, as a mixture of exolendo-trimethylsilyl epimers in the ratio of l:l.* The formation of 4 as a 3:2 cis/trans mixture is a result of *epimerization at the trimethylsilyl group and not the acetoxy group.4*

When 3 was treated with acetic anhydride/acetic acid containing perchloric acid $(0 °C, 0.5 h)$, the initially formed allylsilane *4* was acetylated under these mild conditions to give 6 which readily eliminated acetic acid to give the **2 3 3 dienone 7** (λ (max) 288, ν (max) 1660, 1595 cm^{-l}). The

intermediate 6 is readily observable $(\nu$ (max) 1755 and 1735 cm-'). The structure of **7,** and of course, ultimately, the diagnostic proof of this ring expansion, was demonstrated by hydrogenation $(H_2/Pd/C)$ of 7 to give acetylcycloheptane. $^{\prime}$

Treatment of *3,* in acetic acid with peracetic acid (40%

v/v) at 20 "C for **7.5** h, gave a clean conversion into **8** $(\nu$ (max) 3400 and 1730 cm⁻¹) as a 3:2 mixture of epimers. Oxidation of **8** with pyridinium chlorochromate gave **y**acetoxycycloheptenone **9,** reinstating the carbonyl group in its original position.

⁽⁵⁾ Cope, A. C.; Lisa, T. A.; Wood, G. W. *J. Am. Chem.* **SOC. 1957,79, 6287.**

^{(6) 3:} *p*-nitrobenzoate, mp 122 °C. Anal. Calcd for C₁₇H₂₃O₄NSi: C,
61.23; H, 6.95; N, 4.20. Found: C, 61.43; H, 7.08; N, 4.44 (94% yield). **4 u(max) 1735, 1230, 1040,830 cm-'; NMR 6 5.6 (1 H, m), 5.0 (2 H, m), 1.97 and 1.91 (3 H, two singlets for epimers), 2.30-1.1 (7 H, m), 0.19 and 0.08 (9 H, two singlets) (74% yield).** *7* **v(max) 1660 cm-'; X(max) 288 nm; NMR 6 6.77 (1 H, d,** *J* = **8 Hz), 6.30-5.7 (2 H, m), 2.5 (4 H, m), 2.29** (3 H, s), 1.87 (2 H, m) (80% yield). 8: NMR δ 5.7 (2 H, m), 5.37 (1 H, m), 4.36 (1 H, m), 2.00 (3 H, s), 2.2-1.7 (6 H, b s), 6.9 (1 H, exchanged by D₂O) (60% yield). 9: ν (max) 1730, 1670 cm⁻¹; NMR δ 6.31 (1 H 169.29, 144.13, 131.45, 72.03, 42.90, 31.74, 21.0, 18.15 ppm (80% yield).
11: NMR & 5.21 (1 H, d, J = 4.5 Hz), 4.93 (1 H, m), 1.45–2.15 (7 H, m),
1.92 (3 H, s), 0.00 (9 H, s) (70% yield). 14: NMR ŏ 5.8–5.6 (2 H, m), 4.4
(1 NMR δ 3.28 ($J = 3.5$ Hz), 7a, 3.10 ($J = 3.5$ Hz). (90% yield). 16: NMR δ 1.2-2.7 (9 H, m), 0.67 (2 H, d, $J = 5$ Hz), 0.01 (9 H, s) (84% yield). All **new compounds gave satisfactory MS and/or microanalytical data.**

⁽⁷⁾ Comparison with an authentic sample of acetylcycloheptane, pre-pared from cycloheptanone and Me3SiCMeLiC1, followed by acid hydrolysis, confirmed its identity. Cooke, F.; Magnus, P.; J. Chem. Soc., *Chem. Commun.* **1977, 513.**

Treatment of **2** with methyllithium in ether at 0 "C gave the tertiary carbinol 10, which when exposed to BF_3 .

OEk/AcOH/CH2Cl2 at **-40** "C for **15** min, was cleanly converted into the allylsilane **11.** In this particular case there was no scrambling of stereochemistry, presumably because the tertiary carbenium ion **12** has nothing **to** gain in stabilization by entering into cyclopropane migration in the way that **3** does.4

The allylsilane **4,** on treatment with diphenylseleninic anhydride8 in dichloromethane at **20** "C containing a catalytic amount of BF_3 . OEt₂, gave the α -acetoxyalcohol **14 (3:2** &/trans), via a **[2.3]** sigmatropic rearrangement of the intermediate **13.**

To demonstrate that the cyclopropylcarbinyl system is necessary to ring expansion and the $-SiMe₃$ group cannot direct this alone, we treated the ketone **2** with tri-

iodide **15** was the only product formed.1° Its structure was demonstrated by removal **of** the iodine atom with tri-nbutyltin hydride to give **16. An** authentic sample of **16** was prepared from cyclohexenone and the cuprate

 $(Me_3SiCH_2)_2CuLi^{11}$ Similarly the ketone 2 gave the adducts **15a** and **15b,** respectively, on treatment with HBr and HC1.

The ring expansion-functionalization sequences (e.g., $3 \rightarrow 9$), where no stereochemistry evolves, provide a new method of converting cyclohexenone into γ -acetoxycycloheptenone. We anticipate that the conversion of the tertiary carbinol **10,** with control of stereochemistry into **11,** will have synthetic promise in the construction of seven-membered rings with substitutents in fixed relative stereochemistry.

Acknowledgment. The National Science Foundation and National Institute of Health are gratefully thanked for their support of this work.

Registry No. *exo-2,* **69152-98-3;** *endo-2,* **69177-43-1; 3 isomer 1, 80540-14-3; 3 isomer 2,80540-15-4; 4 isomer 1,80540-16-5; 4isomer 2, 80540-17-6; 5, 826-13-1; 6, 80540-18-7; 7, 1124-23-8; 8 isomer 1, 80540-19-8; 8 isomer 2,80540-20-1; 9,74982-28-8; 10,80540-21-2; 11, 80540-22-3; cis-l4,80540-23-4; trans-l4,80540-24-5; 15,80540-25-6 15a, 80540-26-7; 15b, 80540-27-8; 16, 77644-39-4.**

Preparation of

(~6-Toiuene)bis(trichlorosilyi)nickei(I I) **by Oxidative Addition of Silicon-Silicon and Silicon-Hydrogen Bonds to Nickel Atoms and Bis(1,5-cyclooctadlene)nickel(0). Extreme Lability** of the π -Toluene Ligand^{1a}

Thomas J. Groshens and Kenneth J. Kiabunde'

Department of Chemistry, Kansas State Universiw Manhattan, Kansas 66506

Received October 19, 198 1

Summary: A new π -arene complex, $(\eta^6$ -toluene)Ni \langle SiCl₃)₂ **(l),** was prepared by three methods: the reaction of (1) Ni vapor + Cl₃SiSiCl₃ + toluene, (2) Ni vapor + HSiCl₃ + toluene, and (3) $Ni(COD)_{2}$ + HSiCl₃ + toluene. Complex 1 possesses a very labile π -toluene ligand which can be exchanged with C_6D_6 at room temperature.

For several years we have been investigating the syntheses and chemistry of π -arene complexes of Co(II) and $Ni(II).$ ^{1b,2}

$$
M + C_6F_5Br + \text{arene} \longrightarrow \bigodot M \diagdown C_6F_5 + MBr_2
$$

These complexes are rare and Ligand for two reasons: (1) they are unique structures³ and, until now, only stable

⁽⁸⁾ Barton, D. H. R.; Ley, S. **V.; Magnus, P.; Rosenfeld, M. N.** *J. Chem.* **SOC.,** *Perkin Tram. 1* **1977,567.**

⁽⁹⁾ Olah, G. A.; Narang, S. **C.; Gupta, B. G. B.; Malhotra, R.** *Synthesis,* **1979, 61.**

⁽¹⁰⁾ Miller, R. D.; McKean, D. R. *Tetrahedron Lett.* **1979, 2305.**

⁽¹¹⁾ Lappert, M. F.; Pearce, R. J. *J. Chem.* **SOC.,** *Chem. Commun.* **1973,24. Casey, C. P.; Jones, C. R.; Tukada, H.** *J. Org. Chem.* **1981,46, 2089 and references therein.**

⁽¹²⁾ The exo/endo terminology refers to the configuration of the trimethylsilyl group with respect to the larger ring. The cis/trans terminology refers to the configuration of **the hydroxyl group with respect to the cyclopropane ring.**

⁽¹⁾ (a) This research was supported by the National Science Foundation. (b) Anderson, B. B.; Behrens, C. L.; Radonovich, L. J.; **Klabunde,**

K. J. *J. Am. Chem.* **SOC. 1976.98.5390. (2) Gastinger, R. G.; Anderson,'B. B.; Klabunde, K. J.** *J. Am. Chem.* **SOC. 1980.** *102.* **4969.**

⁽³⁾ **Structural studies have shown that these are** η^6 **complexes: Radonovich, L. J.; Klabunde, K. J.; Behrens, C. B.; McCollor, D. p.; Anderson, B. B.** *Inorg. Chem.* **1980,** *19,* **1221.**