Treatment of **2** with methyllithium in ether at 0 "C gave the tertiary carbinol 10, which when exposed to BF_3 .

OEk/AcOH/CH2Cl2 at **-40** "C for **15** min, was cleanly converted into the allylsilane **11.** In this particular case there was no scrambling of stereochemistry, presumably because the tertiary carbenium ion **12** has nothing **to** gain in stabilization by entering into cyclopropane migration in the way that **3** does.4

The allylsilane **4,** on treatment with diphenylseleninic anhydride8 in dichloromethane at **20** "C containing a catalytic amount of BF_3 . OEt₂, gave the α -acetoxyalcohol **14 (3:2** &/trans), via a **[2.3]** sigmatropic rearrangement of the intermediate **13.**

To demonstrate that the cyclopropylcarbinyl system is necessary to ring expansion and the $-SiMe₃$ group cannot direct this alone, we treated the ketone **2** with tri-

iodide **15** was the only product formed.1° Its structure was demonstrated by removal **of** the iodine atom with tri-nbutyltin hydride to give **16. An** authentic sample of **16** was prepared from cyclohexenone and the cuprate

 $(Me_3SiCH_2)_2CuLi^{11}$ Similarly the ketone 2 gave the adducts **15a** and **15b,** respectively, on treatment with HBr and HC1.

The ring expansion-functionalization sequences (e.g., $3 \rightarrow 9$), where no stereochemistry evolves, provide a new method of converting cyclohexenone into γ -acetoxycycloheptenone. We anticipate that the conversion of the tertiary carbinol **10,** with control of stereochemistry into **11,** will have synthetic promise in the construction of seven-membered rings with substitutents in fixed relative stereochemistry.

Acknowledgment. The National Science Foundation and National Institute of Health are gratefully thanked for their support of this work.

Registry No. *exo-2,* **69152-98-3;** *endo-2,* **69177-43-1; 3isomer 1, 80540-14-3; 3 isomer 2,80540-15-4; 4 isomer 1,80540-16-5; 4isomer 2, 80540-17-6; 5, 826-13-1; 6, 80540-18-7; 7, 1124-23-8; 8 isomer 1, 80540-19-8; 8 isomer 2,80540-20-1; 9,74982-28-8; 10,80540-21-2; 11, 80540-22-3; cis-l4,80540-23-4; trans-l4,80540-24-5; 15,80540-25-6 15a, 80540-26-7; 15b, 80540-27-8; 16, 77644-39-4.**

Preparation of

(~6-Toiuene)bis(trichlorosilyi)nickei(I I) **by Oxidative Addition of Silicon-Silicon and Silicon-Hydrogen Bonds to Nickel Atoms and Bis(1,5-cyclooctadlene)nickel(0). Extreme Lability** of the π -Toluene Ligand^{1a}

Thomas J. Groshens and Kenneth J. Kiabunde'

Department of Chemistry, Kansas State Universiw Manhattan, Kansas 66506

Received October 19, 198 1

Summary: A new π -arene complex, $(\eta^6$ -toluene)Ni \langle SiCl₃)₂ **(l),** was prepared by three methods: the reaction of (1) Ni vapor + Cl₃SiSiCl₃ + toluene, (2) Ni vapor + HSiCl₃ + toluene, and (3) $Ni(COD)_{2}$ + HSiCl₃ + toluene. Complex 1 possesses a very labile π -toluene ligand which can be exchanged with C_6D_6 at room temperature.

For several years we have been investigating the syntheses and chemistry of π -arene complexes of Co(II) and $Ni(II).$ ^{1b,2}

$$
M + C_6F_5Br + \text{arene} \longrightarrow \bigodot M \diagdown C_6F_5 + MBr_2
$$

These complexes are rare and Ligand for two reasons: (1) they are unique structures³ and, until now, only stable

⁽⁸⁾ Barton, D. H. R.; Ley, S. **V.; Magnus, P.; Rosenfeld, M. N.** *J. Chem.* **SOC.,** *Perkin Tram. 1* **1977,567.**

⁽⁹⁾ Olah, G. A.; Narang, S. **C.; Gupta, B. G. B.; Malhotra, R.** *Synthesis,* **1979, 61.**

⁽¹⁰⁾ Miller, R. D.; McKean, D. R. *Tetrahedron Lett.* **1979, 2305.**

⁽¹¹⁾ Lappert, M. F.; Pearce, R. J. *J. Chem.* **SOC.,** *Chem. Commun.* **1973,24. Casey, C. P.; Jones, C. R.; Tukada, H.** *J. Org. Chem.* **1981,46, 2089 and references therein.**

⁽¹²⁾ The exo/endo terminology refers to the configuration of the trimethylsilyl group with respect to the larger ring. The cis/trans terminology refers to the configuration of **the hydroxyl group with respect to the cyclopropane ring.**

⁽¹⁾ (a) This research was supported by the National Science Foundation. (b) Anderson, B. B.; Behrens, C. L.; Radonovich, L. J.; **Klabunde,**

K. J. *J. Am. Chem.* **SOC. 1976.98.5390. (2) Gastinger, R. G.; Anderson,'B. B.; Klabunde, K. J.** *J. Am. Chem.* **SOC. 1980.** *102.* **4969.**

⁽³⁾ **Structural studies have shown that these are** η^6 **complexes: Radonovich, L. J.; Klabunde, K. J.; Behrens, C. B.; McCollor, D. p.; Anderson, B. B.** *Inorg. Chem.* **1980,** *19,* **1221.**

when C_6F_5 σ -bonding ligands were present, even though the π -arene could be varied at will, and (2) the π -arene lability is very high, probably higher than any other π arene complex

After considerable effort we have now found another a-bonding ligand, SiCl,, that **imparts** good thermal stability to the $(\pi$ -arene)NiX₂ system. The impetus for using SiCl₃ **as** a a-bonding ligand comes from the interesting work of Pomeroy and co-workers in $(\pi$ -arene)Ru chemistry,⁵ Lappert and co-workers on the reactivity of metal atoms and silanes, 6 and Uhlig and co-workers on the studies of Ni complexes with anionic ligands.⁷ Of course, the method of introduction of the SiCl_3 groups into a Ni system was the most critical problem, and we report herein the first examples of oxidative addition of Si-H and Si-Si bonds to Ni atoms.⁸ We also report that $bis(1,5-cyclo$ octadiene)nickel(0), $[Ni(COD)_2]$,⁹ can be used for the preparation of π -arene complexes containing SiCl₃ ligands.

Codeposition of the vapors of Ni, toluene, and HSiC1, at -196 °C, followed by slow warming to room temperature, led to the production of H_2 and $(\pi$ -toluene)Ni(SiCl₃)₂ (1). In the absence of toluene **as** a stabilizing ligand (Ni vapor $+$ HSiCl₃) hydrogen was produced but no stable complex was isolable. Preparation of a Ni atom-toluene matrix (toluene-solvated Ni atoms) followed by HSiCl_3 addition did not lead to 1, which suggests that Ni atoms first attack at -196° C, followed by slow warming to room temperature led to the production of H_2 and $(\pi$ -toluene)Ni(SiCl₃)₂ (1
In the absence of toluene as a stabilizing ligand (Ni vapor + HSiCl₃) hydrogen was produced bu

the Si-H bond. Stabilization of the initially formed Si-Ni-H species by toluene seems likely, and upon warming and meltdown, two such molecules could combine (or another $HSiCl₃$ molecule could react) to release $H₂$ and form the product.

A more direct route to **1** is by oxidative addition of $Cl₃Si-SiCl₃$ to Ni atoms in the presence of toluene. This reaction is more efficient and even small amounts of $Cl₃Si-SiCl₃$ are utilized well.

A third method to obtain 1 can be used, not employing Ni vapor, but $Ni(COD)_2$ instead. The success of this method is dependent on at least one COD ligand being converted to reduced and/or silylated derivatives. (About **50%** of the COD is converted to cyclooctene during the reaction.) Furthermore, addition of COD to 1 causes the displacement of toluene, showing that 1 cannot exist in the presence of an excess of COD. Lastly, $Ni(COD)_{2} + Cl_{3}$ -

Synth. **1979,19, 59.**

Si-SiCl, does not yield 1. Therefore, by ensuring that COD will be simultaneously destroyed during the reaction by adding adequate amounts of HSiCl₃, we can obtain convenient yields of 1 from $Ni(COD)_2$.

The ¹H NMR spectrum of 1 has absorptions at δ 2.7 (s, $CH₃$) and 6.7 (m, aromatic H), indicating a substantial upfield shift for the aromatic protons and a slight downfield shift for the $CH₃$ group. The toluene ligand is highly labile: addition of C_6D_6 to the NMR sample caused the immediate release of toluene (as detected by NMR). In addition, pure (n^6 -benzene)Ni(SiCl₃)₂ was synthesized by exhaustive arene displacement exchange.

Further studies of the exchange process, arene displacement reactions, and catalysis studies of 1 will be reported later.

Procedure. I. Nickel vapor (0.532 g, 9.06 mmol) was cocondensed with a mixture of 10 mL of $Cl₃Si-SiCl₃$ in 10 mL of toluene at -196 °C over a 1-h period.⁹ The resulting dark red-brown matrix turned black with some gold areas on warming. The excess ligand was recovered by trapto-trap distillation in vacuo. The residue was flushed with nitrogen and washed three times with 10-mL portions of toluene, and the washings were filtered under nitrogen through a medium porosity glass frit. The dark red filtrate was reduced to 5 mL in vacuo and 20 mL of purified, deoxygenated pentane was added to precipitate a yelloworange powder (1). The solid was washed three times with 3.5-mL portions of pentane and dried under vacuum (17% yield based on Ni vaporized), mp 140 "C; the solubility of 1 is high in toluene and CH_2Cl_2 but low in CCl_4 and pentane; it has long term stability in the solid or dissolved state (slight decomposition of the solid in a 4-week period while under nitrogen at room temperature) and is moderately air sensitive. NMR (CCl₄): δ 2.70 (CH₃, s), 6.70 (C₆H₅, m).

Anal. Calcd for $(C_7H_8Cl_6NiSi_2)$: C, 20.03; H, 1.92; Cl, 50.68; Si, 13.38. Found: C, 20.14; H, 2.03; C1, 50.25; Si, 12.90.

II. Addition of a solution of 15 mL of $HSiCl₃$ in 20 mL of purified, deoxygenated toluene at -95 "C to a solution of 1 g of $Ni(COD)_2$ (3.6 mmol) in 80 mL of toluene at -95 "C under nitrogen resulted in no color change. The mixture was allowed to warm slowly, and at about -65 "C it started to turn red-brown. At -45 °C it was red-black. The mixture was filtered under nitrogen at room temperature, the filtrate was concentrated under vacuum, and pentane was added **as** in procedure I. The yield of pure 1 was 0.84 g (55% based on $Ni(COD)_2$).¹¹

Registry No. 1, 80410-01-1; Ni(COD)₂, 1295-35-8; Cl₃SiSiCl₃, 13465-77-5; HSiC13, 10025-78-2; Ni, 7440-02-0.

(11) We thank Dr. Thomas Murdock for a pure sample of Ni(COD)*

Reactivity of Bridged Dlnuclear Transition-Metal Complexes of the Type $Me₂Si[C₅H₄Fe(CO)(L)I]₂, L =$ **PPh, and P(OPh),. Synthesis and Characterization of the Mixed Iodo-Alkyl Complex** M e₂SI $[C_5H_4Fe(CO)(PPh_3)(\eta^1-butyl)]-[C_5H_4Fe(CO) (PPh_3)$ ^{I]}

Gregory 0. Nelson' and Michael E. Wright

Department of Chemistry, University of Arizona Tucson, Arizona 8572 1

Received October 27, 198 1

Summary: Dinuclear diiron transition-metal complexes of the type $Me₂Si[C₅H₄Fe(CO)(L)I]₂$, L = Ph₃P and (PhO)₃P, have been synthesized and characterized. Alkylation of

⁽⁴⁾ For a review of π -arene complexes of the group 8 metals see: Gaatinger, R. G.; Klabunde, K. J. Transition Met. *Chem. (Weinheim, Ger.)* **1979,** *4,* **1.**

⁽⁵⁾ Pomeroy, R. K.; Harrison, D. J. *J.* Chem. *Soc., Chem. Commun.* **1980, 661.**

⁽⁶⁾ Cornish, A. J.; Lappert, M. F.; Macquitty, J. J.; Maskell, R. K. *J. Organomet. Chem.* **1979,177, 153.**

⁽⁷⁾ *Uhlig,* V. **E.;** Hipler, B.; Muer, P. *2. Anorg. Allg. Chem.* **1978,442, 11.** (8) See: Klabunde, K. J. "Chemistry of Free Atoms and Particles";

Academic Press: New York, **1980,** p 86 for a discussion of oxidative

addition of group 8 metal atoms.

(9) Jolly, P. W.; Wilke, G. "The Organic Chemistry of Nickel"; Academic Press: New York, 1974; Vol. 1, p 257.

(10) Klabunde, K. J.; Timms, P. L.; Skell, P. S.; Ittel, S. D. Inorg.