Interaction of Methylmercury(I I) with N-Substituted Pyrazoles. a-Donor Ability of Pyridines, Imidazoles, and Pyrazoles

Allan J. Canty" and Christopher V. Lee

Department of Chemistty, University of Tasmania, Hobart, Tasmania 700 1 Australia

Received December 22, 198 1

N-Substituted pyrazoles (L) form complexes [MeHgL]NO₃ for which $^{2}J(^{1}H-^{199}Hg)$ decreases with increasing basicity of L in a very similar manner to that observed for closely related N-substituted imidazole complexes. The relationships differ from that for complexes of pyridines and suggest that for ligands of similar $\log K_{\rm H}$ (p $K_{\rm g}$ of LH⁺ in 50% dioxane-water) the N-substituted imidazoles and pyrazoles are better σ donors toward MeHg^{II} than pyridines. The complexes [MeHgL]NO₃ [L = N-(2-pyridyl)pyrazole and **bis(N-pyrazoly1)methanel** have the ligands chelated to MeHg" when in methanol.

Introduction

Table **1.** Analytical Data for the New Complexes

The coupling constant $^{2}J(^{1}H-^{199}Hg)$ for the methylmercury(II) group in complexes [MeHgL]NO₃ decreases with increasing basicity of pyridyl^{1,2} and N-substituted imidazolyl3 donor ligands L. Although the linear relationship between ²J(¹H-¹⁹⁹Hg) and log K_H (p K_a of LH⁺ in 50% dioxane-water) is not identical for those two types of donor ligand, the general trend has been useful for more complex systems, e.g., determination of the binding sites for interaction of MeHg^{II} with guanosine.⁴ To further explore this relationship, we have extended these studies to include N-substituted pyrazoles (NRPyz, abbreviations given in Experimental Section) which have lower basicities than both pyridines and N-substituted imidazoles **(NRIm);** these results have been briefly reported.⁵

X-ray diffraction studies reveal that both NpyPyz and Pyz_2CH_2 in [MeHgL]NO₃ are chelated to MeHg^{II},⁶ and these complexes have been included in this study to determine the coordination behavior of the ligands in solution.

Experimental Section

Reagents. For synthesis of ligands the reagents pyrazole, 3,5-dimethylpyrazole (Fluka), phenylhydrazine (BDH), and 3,4,5-trimethylpyrazole (Columbia) were used **as** received. The reagents acetylacetone (distilled), diethyl ether (washed with aqueous 10% NaHSO₃ and dried with CaCl₂ followed by passage through a column of 4A molecular sieves), dimethyl sulfate (over

 $NMePyz = N-methylpyrazole.$ ^b $Me₂NPhPyz = N$ **phenyl-3,5-dimethylpyrazole.** Other ligands similarly abbreviated,

 K_2CO_3 until neutral to Congo red paper, distilled from CaO), methanol (ref 7, p 268), ethanol (ref 7, p 269), and acetone (ref 7, p 275 (method a)) were purified as indicated in parentheses.

The ligands N-methylpyrazole⁸ (NMePyz, yield 23%, bp 127-134 "C (lk9 126-127 "C)), **1,3,5-trimethylpyrazole8** $(Me₂NMePyz, 22\%, bp 45–49 °C (5 mm) (lit.¹⁰ 170 °C (755 mm))),$ 1,3,4,5-tetramethylpyrazole⁸ (Me₃NMePyz, 22%, bp 72-73 °C (8) mm) (lit.¹¹ 190–193 °C)), *N*-phenyl-3,5-dimethylpyrazole¹² (Me₂NPhPyz, 80%, bp 114-118 °C (5 mm) (lit.¹² 144-148 °C (17) mm))), and N-benzylpyrazole¹³ (NBzlPyz, 52%, bp 128-131 °C (11 mm) (lit.13 134-136 "C (15 mm))) were prepared **as** reported. The ligands have satisfactory ¹H NMR spectra in CDCl₃ and $CD₃OD$, and their MeHg^{II} derivatives have satisfactory spectra in CD₃OD (Table II).
Complexes. Methylmercuric nitrate⁴ and [MeHgL]NO₃ (L

 $N-(2-pyridyl)pyrazole$ and $bis(N-pyrazolyl)methane)⁵ were$ prepared **as** described previously; the remaining complexes, except for that of N-benzylpyrazole, were obtained as crystals from acetone solutions of $M\n**effg**NO₃$ and ligand (yield 7-71%). The N-benzylpyrazole complex formed on evaporation of the solution to dryness and required recrystallization from ethanol (58%). Characterization data for new complexes are presented in Table **I.** Microanalyses were by the Australian Microanalytical Service, Melbourne.

Physical Measurements. 'H NMR spectra at 100 MHz were measured in a JEOL JNM-4H-100 spectrometer. Chemical **shifts** in CD₃OD were measured relative to 1,4-dioxane internal standard; shifts upfield of 1,4-dioxane are taken as negative (Table **11).**

Apparent protonation constants $\log K_H$ (p K_a of LH⁺ in 50%) dioxane-water) for **all** ligands were measured following the general procedure described earlier^{1,3} modified to account for the lower basicities of some of the ligands studied here. Thus, instead of

0276-7333/82/2301-1063\$01.25/0 *0* 1982 American Chemical Society

⁽¹⁾ Canty, A. J.; Marker, A. *Znorg. Chem.* **1976,15,425. (2)** Canty, A. J.; Barron, P.; Healy, P. C. J. *Organomet. Chem.* **1979, 179, 447.**

⁽³⁾ Canty, A. J.; Chaichit, N.; Gatehouse, B. M.; George, E. E.; Hay hurst, G. *Inorg. Chem.* **1981,20, 2414.**

⁽⁴⁾ Canty, A. J.; Tobias, R. S. *Znorg. Chem.* **1979, 18, 413.**

⁽⁵⁾ Canty, A. J.; Lee, C. V. *Inorg. Chim. Acta* **1981,54, L205. (6)** Canty, A. J.; Lee, C. V.; Chaichit, N.; Gatehouse, B. M. Acta

Crystallogr., Sect. B **1982,** *B38,* **743.**

⁽⁷⁾ "Vogel's Textbook of Practical Organic Chemistry", **4th** ed.; revised by Fumise, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G., Tatchell, A. R.; **1978.**

⁽⁸⁾ Grimmett, M. R.; Lim, K. H. R.; Weavers, R. T. *Aut.* J. *Chem.* **1979,32,2203.**

⁽⁹⁾ Finar, I. L.; Lord, G. H. *J. Chem. SOC.* **1967, 3314.**

⁽¹⁰⁾ Knorr, L. Justus Liebigs Ann. Chem. 1894, 279, 232.
(11) Knorr, L. Chem. Ber. 1895, 28, 714.
(12) Reid, W.; Muhle, G. Justus Liebigs Ann. Chem. 1962, 656, 119.

⁽¹³⁾ Jones, R. **G.** *J.* Am. *Chem. SOC.* **1949, 71, 3994.**

⁽¹⁴⁾ Anet, F. A. L.; Sudmeier, J. L. J. *Magn. Reson.* **1969, 124.** Henneike, H. F. *J. Am. Chem. SOC.* **1972,94, 5945.**

Table II. ¹H NMR Data for the Complexes^a

^a Solutions in CD₀OD. Atom numbering schemes are shown in the Introduction. ^b Chemical shift from internal 1.4dioxane; accuracy to ca. 0.005 ppm. negati~e.'~ Key: m, multiplet; d, doublet; b, broad. **e** First order analysis.' Differentiation between H, and H, not attempted $(J_{x,4}$ given in parentheses). Accuracy to ca. ± 0.5 Hz. The sign of the coupling constant is assumed to be

titration of 0.1 M HC1 with 0.01 M solutions of ligand with 1:l equivalence of HCl and ligand occurring for a **50-mL** solution of 50% dioxane in water,^{1,3} 1 M HCl was added to 0.1 M solutions of ligands using an autoburette with **1:l** equivalence occurring for a 10-mL solution. For ligands of high log *KH* both procedures give similar results, e.g., 2,2/-bipyridyl, 3.24 (with 1 M HCI) and (ref 1,3.18 with 0.1 M HCl). Measured pH values below 3.0 were corrected by using a plot of expected pH vs. measured pH for the average of three titrations in the absence of ligand.

Results

Formation of complex ions [MeHg]⁺ in methanol is **assumed** for unidentate pyridine, N-substituted imidazole, and N-substituted pyrazole ligands, **as** both pyridines and N-methylimidazole are known to form complexes with appreciable formation constants in water; e.g., complexes $[\text{MeHgL}]^+$ have log $K_{\text{MeHg}} = 4.8,^{15}$ 4.72¹⁶ (pyridine), 4.69 $(3\text{-methylpyridine}^{17}), 5.03$ $(4\text{-methylpyridine}^{17}),$ and 6.96 $(N$ -methylimidazole¹⁸). Polydentate ligands also form stable complex ions, e.g., 2,2'-bipyridyl (log $K_{\text{MeHg}} = 5.86^{19}$ 5.93¹⁶) and 2,2':6',2''-terpyridyl (log $K_{\text{M}eHg} = 6.35^{16}$).

For unidentate N-substituted pyrazoles the coupling constant $^{2}J(^{1}H-^{199}Hg)$, for complexes in methanol, varied with $\log K_H$ in a similar manner to complexes of pyridines and N-substituted imidazoles (Figure l), with the poorer correlation reflecting lower precision in determination of lower K_H values. The relationships for N-substituted pyrazoles (correlation coefficients in parentheses)

 $^{2}J(^{1}H-^{199}Hg) = -2.64 \log K_H + 235.9 \text{ Hz}$ (-0.93)

and N-substituted imidazoles³

 $^{2}J(^{1}H-^{199}Hg) = -2.50 \log K_{H} + 234.6 \text{ Hz}$ (-0.98)

are displaced from that for pyridines (altered from the previously quoted relationship^{2,3,5,20} to include the complex of py $CHPh_2^{20}$)

 $^{2}J(^{1}H-^{199}Hg) = 2.96 \log K_{H} + 241.6 \text{ Hz}$ (-0.99)

by approximately 5 Hz.

The Me₂NPhPyz chemical shift of the MeHg^{II} proton for complexes of Me2PhPyz and **NBzlPyz** occurs 0.25-0.37 ppm upfield from those for NMePyz, Me₂NMePyz, and Me3NMePyz, consistent with orientation of the rings re-

Figure 1. $|^{2}J(^{1}H-^{199}Hg)|$ for $[MeHgL]NO_{3}$ (in CD₃OD) vs. log K_H for the ligands (L). Log K_H values are those obtained for a 50% dioxane-water mixture as solvent: (+) L = pyridines; (\diamond) N-substituted imidazoles; (+) N-substituted pyrazoles. Values of $2J(H-199Hg)$ for N-substituted pyrazole complexes are given complexes are given elsewhere. $23,20$ N-substituted pyrazoles with log *KH* values in parentheses are (1) NMePyz (1.19), (2) Me₂NMePyz (2.90), (3) Me₃NMePyz (3.26), (4) Me₂NPhPyz (1.62),
(5) N-BzlPyz (0.42), and NpyPyz (0.78). of ²J('H⁻¹³⁹Hg) for N-substituted pyrazole complexes are given
in Table II, and values of ²J(¹H-¹⁹⁹Hg) and log *K*_H for the other

sulting in anisotropic shielding of the methyl group. This effect occurs for several complexes of pyridyl and N-substituted imidazolyl ligands, $^{\tilde{i}-3,20,21}$ and for the 2-benzylpyridine complex this orientation results from presence of a weak Hg \cdots interaction.²²

(21) Canty, A. J.; Hayhurst, *G.;* **Chaichit,** N.; **Gatehouse, B. M.** *J. Chem. Soc., Chem. Commun.* **1980, 316.**

⁽¹⁵⁾ Simpson, R. B. J. *Am. Chem. Soc.* 1**96**1, *83*, 4711.
(16) Geier, G.; Erni, I.; Steiner, R. *Helv. Chim. Acta* 1979, *60*, 9.
(17) Erni, I. W. Ph.D. Dissertation, E.T.H. Zurich, 1977.

⁽¹⁸⁾ Flabenstein, D. L. Acc. *Chem. Res.* **1978,11, 100. (19) Anderegg, G.** *Helu. Chim.* **Acta 1974,57, 1340.**

⁽²⁰⁾ Canty, A. J.; **Chaichit,** N.; **Gatehouse, B. M.; George, E. E.** *Inorg. Chem.* **1981,20,4293.**

Figure 2. Structures of $[MeHg(NpyPyz)]^+$ and $[MeHg/(PyzzCH₂)]^+$. The NpyPyz comples has $Hg\text{-}O$ distances of 2.97 **(3), 3.07 (3), and 3.14 (3) Å, and the Pyz_zCH₂ complex has Hg--O distances of 2.88 (2) and 2.90 (2) Å to form dimeric units** ${[\text{MeHgL}]\text{NO}_3]}_2$.⁶

Consistent with chelation by NpyPyz and $Pyz₂CH₂$ in methanol, as found in the solid state⁵ (Figure 2), their MeHg^{II} complexes have δ (MeHg) -2.51 and -2.50, respectively, similar to those observed for NMePyz, Me₂NMePyz, and Me₃NMePyz (-2.52-2.56 ppm) and well below values for complexes of ligands having an uncoordinated ring adjacent to mercury, -2.81 (Me₂NPhPyz) and -2.89 ppm (NBzlPyz). The NpyPyz complex has ^{2}J ¹H- 199 Hg) = 245.7 Hz, higher than expected for unidentate pyridine **or** N-substituted pyrazole complexes (Figure 1) and consistent with chelation; e.g., complexes of bidentate 2,2'-bipyridy^{11,23} and py₂CH₂^{3,21} have ²J(¹H⁻¹⁹⁹Hg) *ca.* 6 Hz higher than complexes of unidentate pyridines of similar log K_{H} . The Pyz₂CH₂ complex has a similar value for $^{2}J(^{1}H-^{199}Hg)$, 243.8 Hz, but has a log $K_{\rm H}$ value too low to measure with the procedure used.

Discussion

For complexes MeHgX and [MeHgL]+ the coupling constant $^{2}J(^{1}H-^{199}Hg)$ correlates with the p K_{a} of $HX^{18,24-29}$ **or** LH+,1-3 with each type of ligand giving a different relationship, but similar to those in Figure 1; e.g., for X^- = RO-

$$
^{2}J(^{1}H-^{199}Hg) = -5.72pK_{a} + 250.2
$$

and for X^- = RS^-

$$
^{2}J(^{1}H-^{199}Hg) = -3.81pK_a + 193.9 Hz^{28}
$$

(In these examples the pK_a values were estimated²⁸ by using the method of Barlin and Perrin.³⁰)

For a particular type of ligand higher basicity **or** pK,, reflecting donor ability toward the "hard acid" H⁺, also renders a ligand a better donor toward the "soft acid" $M \in Hg^{II}$, leading to a lower value for the coupling constant. These, and similar relationships, have been attributed to the effect of the major contribution of the Fermi contact interaction to the coupling constant.

For ligands of similar basicity but different donor atom the coupling constant is lower for complexes with higher

- (24) Scheffold, R. *Helv. Chim. Acta* 1969, 52, 56.
(25) Libich, S.; Rabenstein, D. L.; *Anal. Chem.* 1973, 45, 118.
(26) Beletskaya, I. P.; Fedin, E. I.; Fyodorov, L. A.; Kvasov, B. A.;
- **Reutov, 0. A.** *Zzu. Akad. Nauk SSSR, Ser. Khim.* **1967, 221.**
- (27) Evans, D. F.; Ridout, P. M.; Wharf, I. J. Chem. Soc. A 1968, 2127.
(28) Sytsma, L. F.; Kline, R. J. J. Organomet. Chem. 1973, 54, 15.
- **(29) Fedorov, L. A.; Fedin, E. I.; Kvasov, B. A.; Beletakaya,** I. P. **J. (30) Barlin, G. B.; Perrin, D. D. Q.** *Rev.,* **Chem.** *SOC.* **1966,** *20,* **75. Struct. Chem.** *(Engl. Transl.)* **1969,** *IO,* **231.**

formation constants; e.g., cysteine containing the soft RSgroup has $pK_a = 8.53^{31}$, similar to that of NH_3 (9.32), but = 174.0,³² and the NH₃ complex has log K_{MeHg} = 7.25, $^{2}J(^{1}H-^{199}Hg) = 214.1 \text{ Hz.}^{33}$ the cysteine complex has log $K_{\text{MeHg}} = 15.7,15 \frac{\text{m}}{\text{J}} (1 \text{H}^{-199} \text{Hg})$

Relative values of coupling constants thus give an estimate of the order of strength of binding of ligands to MeHg^{II}; e.g., formation constants for selenol complexes have not been reported, but since selenol complexes have $^{2}J(^{1}H-^{199}Hg)$ lower than analogous thiolates, 34,35 it has been concluded that RSe- binds more strongly than **RS-.34** Similarly, the N-methylimidazole complex with ${}^{2}J({}^{1}H ^{199}Hg$) = 219.5³ has formation constant log $K_{M\text{eHg}} = 6.96^{18}$ and $\log K_H = 6.25$,³ but the pyridine complex with higher $^{2}J(^{1}H-^{199}Hg)$, 229.6 Hz,¹ has both lower log $K_{\text{Mefig}},$ 4.8¹⁵ and 4.72^{16} and $\log K_H$, 4.09^{1} Consistent with these results polydentate ligands containing both imidazolyl and pyridyl rings bind more strongly via the imidazolyl ring; e.g., N-pyridylimidazole binds via the imidazolyl ring **only** and $py_2(NMelm)COH$ acts as a tridentate in the solid state (bidentate in methanol) with $Hg-N(NMeIm) = 2.13(1)$ \AA and Hg \cdots N(py) = 2.66 (1) and 2.77 (1) \AA ²⁰

An estimate of relative order of bond strengths from $^{2}J(^{2}H-^{199}Hg)$ is generally satisfactory provided that the $^{2}J(^{1}H-^{199}Hg)-pK_{a}$ correlations are well separated, so that ligands of one donor type will always form complexes having a lower coupling constant than the other type despite variations in pKa , e.g., MeHgOR and MeHgSR (see equations above and Figure 1 in ref 28). Care is required for ligands with similar $^{2}J(^{1}H-^{199}Hg)-pK_{a}$ relationships such as pyridines and N-substituted imidazoles and pyrazoles (Figure 1). Thus **1,3,4,5-tetramethylpyrazole** has $^{2}J(^{1}H-^{199}Hg)$ lower than that for pyridine but higher than that for $2,4,6$ -trimethylpyridine.

In addition, when comparing relationships for closely related ligands, it is essential that $log K_H (pK_a)$ values be obtained under identical conditions (50% dioxane-water for Figure 1), e.g., reported pK_q values for pyridine in water cover the wide range $5.15-5.52$,³⁶ but values for 10 pyridines in water, obtained by the same workers, 37 give a relationship $^{2}J(^{1}H-^{199}Hg) = -2.80pK_{a} + 244.3 Hz$ with an excellent correlation coefficient, -0.99 ,² and different from that obtained by using log *KH* values measured in 50% dioxane-water *(see* above). Similarly, different types of ligands may have log *KH* values altered in a different way on change of solvent conditions, and $^{2}J(^{1}H-^{199}Hg)$ should refer to measurements in the same solvent.

Thus, with Hg-L bonding in $[MeHgL]$ ⁺ (L = pyridines, N-substituted imidazoles, and pyrazoles) considered to be essentially σ bonding the relative values of coupling constants are expected to indicate the relative σ -bonding

- **167, 167.**
-
- (35) Arnold, A. P.; Canty, A. J. *Inorg. Chim. Acta* 1981, *55,* 171.
(36) Sillén, L. G. *Spec. Publ.—Chem. Soc.* 1971, *No. 25, S*uppl. 1.
(37) Clarke, K.; Rothwell, K. *J. Chem. Soc.* 1969, 1885.
-

⁽²²⁾ Canty, A. J.; Chaichit, N.; Gatehouse, B. M. *Acta Crystallogr.* **(23) Canty, A. J.; Gatehouse, B. M.** *J. Chem.* **SOC.,** *Dalton Trans.* **1976,** *Sect.* **B 1980, B36, 786.**

^{2018.}

⁽³¹⁾ Benesch, R. E.; Benesch, R. J. *Am. Chem.* **SOC. 1966, 77, 5877. (32) Rabenstein, D. L.; Fairhust, M. T.** *J.* **Am. Chem. SOC. 1976,97,**

^{2086.&}lt;br>(33) Rabenstein, D. L.; Ozubko, R.; Libich, S.; Evans, C. A.; Fairhust,
M. T.; Suvanprakorn, C. J. Coord. Chem. 1974, 3, 263.
(34) Sugiura, Y.; Hojo, Y.; Tamai, Y.; Tanaka, H. J. *Am*. Chem. Soc.
1976, 98, 2339. Sugi

abilities of the ligands toward the soft acid MeHg", with lower values of $2J(H^{-199}Hg)$ indicating greater σ ability; and thus, for ligands with similar log $\widetilde{K}_{\mathrm{H}}$ (as *measured*), the N-substituted imidazole and pyrazole ligands are better σ donors than pyridines.

Acknowledgment. We thank the University of Tasmania for a Special Research Project Grant, the Australian Research Grants Committee for financial support, and Mr. A. P. Arnold for assistance with measurement of $\log K_H$ values.

Registry No. [MeHg(NMePyz)]N03, 80834-23-7; [MeHg- (MezNMePyz)]N03, 80834-25-9; [MeHg(Me3NMePyz)]N03, 80834- 27-1; [MeHg(MezNPhPyz)]N03, 80834-29-3; [MeHg(NBzlF'yz)]N03, 80834-31-7; [MeHg(NpyPyz)]N03, 81420-87-3; [**MeHg(PyzzCHz)]- NO,, 81420-89-5; NMePyz, 930-36-9; Me,NMePyz, 1072-91-9; Me3NMePyz, 1073-20-7; Me2NPhPyz, 1131-16-4; NBziPyz, 10199- 67-4; MeHgNO,, 2374-27-8.**

Crystal Structure and Molecular Geometry of a Square-Pyramidal Platinum(I I) Complex, $\left[\frac{2}{6}-(\text{Me}_2\text{NCH}_2), C_6\text{H}_3\right]$ Pt $(\mu-\{(p-tol) \text{NC(H)}\text{N}(i-\text{Pr})\})$ HgBrCl], **Containing a Pt"-to-Hg" Donor Bond**

Antonius F. M. J. van der Ploeg, Gerard van Koten,^{*} and Kees Vrieze

Anorganisch Chemisch Laboratorium, J. H. van't Hoff Instituut, University of Amsterdam, 10 18 WV Amsterdam, The Netherlands

Anthony L. Spek and Albert J. M. Duisenberg

Department of Structural Chemistty, University of Utrecht, 3508 TB Utrecht, The Netherlands

Received April 5, 1982

The structure of $[(2,6-(Me_2NCH_2)_2C_6H_3]Pt(\mu-(p-tol)NC(H)N(i-Pr))HgBrCl]$ (p-tol = p-tolyl) was determined by X-ray methods and refined to $R = 0.058$, using diffractometer intensities of 5021 independent reflections. The crystals are monoclinic of space group $\tilde{P}2_1/c$ with $a = 9.192$ (5) Å, $b = 12.016$ (5) Å, $c = 26.895$ (4) Å, $\beta = 94.30$ (3)°, and Z = 4. The discrete heterodinuclear molecular units comprise a pseudo-square-pyramidally surrounded platinum center. The square plane contains the platinum coordinated terdentate monoanionic ligand $[2,6-(\text{Me}_2\text{NCH}_2)_2\text{C}_6\text{H}_3]$ ⁻ (Pt-N(3) = 2.097 (9) Å, Pt-N(4) = 2.080 (10) Å, and Pt-C(9) = 1.909 (11) Å), and the two cyclometalated rings show unique puckering geometry (mirror plane type). The fourth coordination site in the square plane is occupied by the donor nitrogen atom of \hat{a} (p-tol)N group (Pt-N(1) = 2.155 (9) Å of a nonsymmetrically substituted formamidino ligand. A HgBrCl unit resides at the apical position of the square pyramid (Pt-Hg = 2.8331 (7) **A),** and the formamidino ligand bridges to this mercury center to which it bonds with an $(i-Pr)N$ unit $(Hg-N(2) = 2.156 (11)$ Å). The five-membered heterometallic ring is nonplanar, and viewed along the Pt-Hg axis there is a small twist of the HgBrClN unit so that the M-N bonds are not eclipsed $(N(2)-Hg-Pt-N(1) = -16.5 (4)°)$. The title compound *can* be considered **as** the first example of a complex formed by coordination of the bidentate **[(2,6-(Me2NCHJ2C6H3)Pt(N(R)C(H)N(R'))]** ligand, in which the Pt center and the N(R') atom act as donor sites to a post-transition-metal salt (HgX_2) .

Introduction

Compounds with a bond between two dissimilar metal atoms have been an area of particular interest.¹ In our laboratory a large series of complexes have been synthesized involving $d^8 Rh^I$ (Ir^I) complexes and complexes of Cu^I, Ag^I, Hg^{II}, and Tl^{III} post transition metals having a d^{10} electronic configuration.²⁻⁴ The complexes can formally be divided **into those** with a covalent metal-metal bond (type I) and those with a metal-to-metal donor bond (type **II).676**

Recently, while extending this work to $d^8 Pt^{II}$ complexes, we observed that the geometry of the platinum complexes had a large influence on the products formed. For example, whereas the reaction of *trans-*[$(2-Me_2NCH_2C_6H_4)_2Pt$] with $Hg(O_2CR)_2$ resulted in elimination of metallic mercury and formation of $[(2\text{-Me}_2\text{NCH}_2\text{C}_6\text{H}_4)_2\text{Pt}^{\text{IV}}(\text{O}_2\text{CR})_2]$, reaction of the corresponding cis isomer with $Hg(O_2CR)_2$ afforded quantitatively the stable Pt-Hg bonded complexes $[(2-Me_2NCH_2C_6H_4)_2Pt(\mu-O_2CR)Hg(O_2CR)]$ $(R = Me, i\text{-}Pr)$: see Figure 1.⁷ An X-ray structure determination of this latter compound with $R = Me$ revealed the presence of a six-coordinate Pt center and a Pt-Hg bond (2.513 (1) **A)** bridged by a carboxylate group.'\$ Formation of this compound, which belongs to type I, was proposed to occur via an intermediate containing a Pt-to-Hg donor bond (type **II).'** A possible reason for the different reaction

⁽¹⁾ Cotton, F. A. *Chem. SOC. Reu.* **1975,4, 27. Thomas, T. W.; Un**derhill, A. E. Chem. Soc. Rev. 1972, 1, 99. Corbett, J. D. Prog. Inorg.
Chem. 1977, 21, 12. Humphries, A. P.; Kaesz, H. D. Ibid. 1979, 25, 145.

Hsieh, A. T. T. *Inorg. Chim. Acta* 1975, 14, 87.

(2) Kuyper, J.; Vrieze, K. J. *Organomet. Chem.* 1976, 107, 129. Kuyper, J.; van Vliet, P. I.; Vrieze, K. *Ibid.* 1976, 122, 99.

(3) van Vliet, P. I.; van Koten, G.; Vrie

^{1979,182, 105; 1980,188, 301.}

⁽⁴⁾ van Vliet, P. I.; Vrieze, K. J. Organomet. Chem. 1977, 139, 337.
(5) Nyholm, R. S.; Vrieze, K. J. Chem. Soc. 1965, 5337.
(6) Dawes, J. L.; Kermitt, R. D. W. J. Chem. Soc. A 1968, 1072.

⁽⁷⁾ van **der Ploeg, A. F.** M. J.; **van Koten,** *G.;* **Vrieze,** K.; **Spek, A. L.** *Inorg. Chem.* **1982,21, 2014.**

^{!8)} van **der Ploeg, A. F. M.** J.; van **Koten,** G.; **Vrieze, K.; Spek, A. L.; Duisenberg, A. J.** M. *J. Chem.* Soc., *Chem. Commun.* **1980,469.**