NMR spectroscopy), and much of the R_6Sn_2 finally surviving may arise from decomposition of R_3SnH . The formation of the minor products appears to require the formation of intermediates such as $R_2Sn-c-HxLi$ (which could lead to $R_2Sn\text{-}c\text{-}Hx_2$ and $R_4Sn_2\text{-}c\text{-}Hx_2$) and $R\text{-}c\text{-}$ Hx_2SnLi which could produce sym- R_2 -c- Hx_2Sn_2 and un $sym-R-c-Hx_2SnSnR_2-c-Hx$ etc. Reasonable routes to such species can be written. No tritins were detected in the ¹¹⁹Sn NMR spectrum, but there is mass spectral evidence for tri and higher order tin species.

The stereochemistry of the postulated cyclohexylation of (i-C3H7)5Sn2Li was examined. Reaction of either *cis*or **trans-4-methylcyclohexyl** bromide provided (4 methylcyclohexyl)pentaisopropylditin ⁽¹¹⁹Sn and ¹³C NMR spectroscopy) which was predominantly trans $(\sim 80\%)$, on the basis of comparison of the ¹¹⁹Sn and ¹³C NMR shifts with those of authentic samples obtained from the bromination/Li coupling procedures (outlined above) with authentic (cis- 4-methylcyclohexy1)- and (trans-4 **methylcyclohexy1)triisopropylstannanes.l2** Thus, apparently complete stereoequilibration accompanies this substitution. Furthermore, reaction with 6-bromo-1-heptene provided (cyclized) **((cis-2-methylcyclopenty1)methyl)-** and ((**trans-2-methylcyclopentyl)methyl)pentaisopropylditins** with a cis/trans ratio (ca. 2.7:l). These results are consistent with an electron transfer/free radical mechanism for substitution, **as has** been established for cyclohexylation of CH_3 ₃SnLi¹⁻⁴ and (*i*-C₃H₇)₃SnLi.¹⁷ Methylation (with CH₃I) provides (*i*-C₃H₇)₅Sn₂CH₃ (~1%) having ¹¹⁹Sn CH₃I) provides $(i-C_3H_7)_5Sn_2CH_3$ ($\sim 1\%$) having ¹¹⁹Sn NMR shifts (-29.0 and -49.3 ppm) and J_{119Sn} -117_{Sn} (1616 Hz; $J_{119Sn-119Sn}$ (AB pattern) = 1699 Hz) in agreement with those of an authentic sample obtained by coupling (Li in THF) of $(i\text{-}C_3H_7)_3\text{SnBr}$ and $(i\text{-}C_3H_7)_2\text{CH}_3\text{SnBr}.^{12}$ The major product of methylation is $(i-C_3H_7)_3SnCH_3$ (~83%).

The ¹¹⁹Sn spectrum of " $(i-C_3H_7)_3$ SnLi" (THF solvent) consists of signals at δ -13.0 (ca. 87% of total intensity) assigned to $(i\text{-}C_3H_7)_3\text{SnLi}$ and δ -42.7 assigned to $(i\text{-}$ $C_3H_7)$ ₄Sn (8%) and two equiintense signals at δ -48.2 and -39.3, with the latter being broader. We associate these signals with $(i-C_3H_7)_5Sn_2Li$ (5%).

Preparations of $(n-C_3H_7)_3$ SnLi (57.5%; δ 119_{Sn} -130) contain $(n-C_3H_7)_4\text{Sn}$ (22%; -18.0 ppm) as well as $(n C_3H_7$ ₅Sn₂Li (12.6%; δ _{119Sn} -123 and -194; on the basis of direct 119 Sn observations and derivatization to $(n C_3H_7$ ₅Sn₂CH₃ (~3%) and (n-C₃H₇)₅Sn₂C₆H₁₁ (~1.5%). (Pentamethy1ditin)lithium is a very minor component of ${\rm (CH_3)_3SnLi}$ ($\delta {\rm ns}_{\rm Sn}$ –179) shortly after ($\sim\!20$ min) preparation from $(CH_3)_3$ SnCl and excess lithium in THF, but characterization as $\text{CH}_3\text{Br}_2\text{C}_6\text{H}_{11}$ (0.7%; $\delta_{11\text{Br}}$ –95.7 and -107.9 ; comparison with authentic sample) was achieved.¹⁸ No evidence for the existence of $(C_6H_5)_5Sn_2Li$ in (triphenyltin)lithium $(\delta_{118}S_{n}-109)$ preparations has been obtained.

Steric congestion could be a factor in promoting dissociation of $(i-C_3H_7)_3\text{SnLi}$ and/or conferring stability on R₂Sn:. The known¹⁹ $[((CH_3)_3Si)_2CH]_2Sn:$ is analogous to the postulated $[(CH₃)₂CH]₂Sn$:. Our recent demonstration²⁰ of the presence of $(CH_3)_5Ge_2Li$ in preparations of $(CH₃)₃GeLi$ (in HMPA) is in line with the present findings. We are examining further aspects of sterically congested organotin alkalis and aspects of their substitution mechanisms etc.

Acknowledgment. This research was supported in part by the Australian Research Grants Committee to whom we are grateful. **A** very valuable exchange of information with Professor Sinpei Kozima (Kyoto University) is acknowledged.

Registry No. $(i-C_3H_7)_6\text{Sn}_2$, 17106-21-7; $(i-C_3H_7)_4\text{Sn}$, 2949-42-0; $(i-C_3H_7)_3$ Sn-c-Hx, 82544-60-3; $(i-C_3H_7)_5$ -c-HxSn₂, 82544-61-4; $(i-$ **C3H7),Sn2Li, 82544-66-9; (n-C3H7)&3nLi, 82544-67-0; (i-C3H7)3SnBr,** 19464-54-1; $(i-C_3H_7)_2$ -c-HxSnBr, 20128-73-8; unsym- $(i-C_3H_7)_4$ -c-Hx₂Sn₂, 82544-68-1; sym-(i-C₃H₇)₂-c-Hx₄Sn₂, 82544-69-2; (i-C₃H₇)₂c-Hx₂Sn, 5764-57-8; $(i-C_3H_7)_2$ -c-HxSn-Sn $(i-C_3H_7)$ -c-Hx₂, 82544-70-5; $sym-(i-C_3H_7)_{4}$ -c- Hx_2Sn_2 , 82544-71-6; $(CH_3)_3SnLi$, 17946-71-3; *(C-*H₃)₃SnCl, 1066-45-1; (CH₃)₅Sn₂C₆H₁₁, 3531-48-4; (cis-4-methylcyclo**hexyl)triisopropylstannane, 82544-62-5; (trans-4-methylcyclohexyl)triisopropylstannane, 82544-63-6; ((cis-2-methylcyclopenty1) methyl)pentaisopropylditin, 82544-64-7; ((trans-2-methylcyclopentyl)methyl)pentaisopropylditin, 82544-65-8; cyclohexyl bromide, 108-85-0; cis-4-methylcyclohexyl bromide, 28046-90-4; trans-4 methylcyclohexyl bromide, 28046-91-5; 6-bromo-l-heptene, 38334- 98-4;** (pentamethylditin)lithium, **82544-72-7.**

Stereospecific Formation of Five-Membered Metallacycles. Zlrconalndans from Thermally Generated

(**y2-Dehydrobenzene)dlcyclopentadlenylrlrconlum(I I**) **and** *cls-* **and trans-Stilbene**

Kurt Kropp and Gerhard Erker'

Abteilung fur Chemie der Ruhr-Universitat Bochum 04630 Bochum 1, Germany

Received April 28, 1982

Summary: cis - and *trans* **-2,3-diphenylzirconaindans** 7 and 8 are formed stereospecificly from thermally generated (η^2 -dehydrobenzene)dicyclopentadienylzirconium(II) and *cis-* and trans -stilbene, respectively. This supports a concerted pathway suuggested for the cyclization reaction of bis(olefin) transition-metal complexes to form five-membered metallacycles.

The relation between bis(olefin) transition-metal complexes 1 and five-membered metallacycles **2** is of great importance for design and development of catalytic transformations of unsaturated organic substrates. **A** concerted pathway is commonly assumed for this basic organometallic reaction type, although direct experimental evidence supporting this assumption is quite rate. $¹$ </sup>

Stereospecificity of product formation is one of several equally important criteria for concertedness² which usually can be verified easily by experiment. Surprisingly, such a simple stereochemical analysis is lacking for most organometallic systems of type $1 \rightleftarrows 2.3$ We have tested the stereochemical outcome of one example of this reaction type, the cyclization of **(aryne)(olefin)zirconocene** complexes which yields substituted 1-zircononaindans.

⁽¹⁷⁾ Olszowy, H. A., unpublished results.

(18) Reaction of $(CH_3)_3$ SnLi with c-HxBr provided c-HxSn(CH₃)₃ 1

(96%), c-Hx₂Sn(CH₃)₂ (~1%), (CH₃)₅-c-HxSn₂ (~1%), and (CH₃)₆Sn₂ 1

(~2%), on the basis of

h). (19) Cotton, J. D.; Davidson, P. J.; Lappert, M. F. *J. Chem.* Soc., **Dalton Trans. 1976, 2275.**

⁽²⁰⁾ Wickham, G.; Young, D.; Kitching, W. *J.* **Org.** *Chem.,* **accepted for publication.**

⁽¹⁾ McDermott, J. X.; Wilson, M. E.; Whitesides, G. M. J. Am. Chem.
Soc. 1976, 98, 6529. Grubbs, R. H.; Miyashita, A.; Liu, M.; Burk, P. Ibid.
1978, 100, 2418. Grubbs, R. H.; Miyashita, A. Ibid. 1978, 100, 1300.
McLain, S. **A.; Hoffman, R.** *Ibid.* **1980, 102, 2952 and references cited therein.**

⁽²⁾ Woodward, R. B.; Hoffmann, R. Angew. *Chem.* **1969,** *81,* **797.**

Huisgen, R. Acc. Chem. Res. 1977, 10, 117.
(3) (a) Erker, G.; Rosenfeldt, F. J. Organomet. Chem. 1982, 224, 29.
(b) Bond, A.; Lewis, B.; Green, M. J. Chem. Soc., Dalton Trans. 1975, **1109.**

Diphenylzirconocene **(3)** in benzene solution is a suitable starting material for the generation of the elusive $(n^2$ **dehydrobenzene)dicyclopentadienylzirconium(II) (4)** under sufficiently mild conditions.⁴ We have recently been able to show that a variety of olefins can compete successfully with the aromatic solvent **as** scavengers and can trap intermediate **4** from this thermal equilibrium to form metallaindans.6 Thermolysis of 1.8 g (4.8 mmol) of **3** in 20 mL of benzene for 18 h at 80 "C in the presence of a tenfold excess of cis-stilbene yielded a single organometallic product **(7)** which was isolated in 31% yield after recrystallization from n-hexane. In an argon atmosphere the orange-red crystalline material is stable to about 160 "C; above that temperature it rapidly decomposes before melting. The compound analyzes correctly for a 1:l adduct of **(q2-dehydrobenzene)dicyclopentadienylzirconium(II) (4)** with the added olefin [Calcd for $C_{30}H_{26}Zr$: C, 75.42; H, 5.49. Found: C, 75.33; H, 5.52. MS: m/e 476 (M⁺)⁶]. Treatment of a deep red benzene solution of **7** with HC1 resulted in an almost quantitative yield of zirconocene dichloride and 1,1,2-triphenylethane.

The ¹³C NMR spectrum (62.89 MHz, C_6D_6) of 7 shows carbon atoms of three chemically different aromatic frameworks⁷ in addition to two nonidentical n^5 -cyclopentadienylligands at δ_c 110.9 and 109.7. The presence of a metallacyclic σ structure becomes evident from resonances due to two benzylic carbons at δ_c 70.5 and 58.8 exhibiting coupling constants $^1J_{CH} = 126.9$ and 122.3 Hz, respectively, characteristic for a saturated alkyl moiety in a five-membered metallacycle? In the 'H NMR spectrum (250 MHz, C_6D_6) 7 displays two Cp resonances at δ 5.63 and *5.00.* Benzylic hydrogens appear **as** a well-separated AB system at δ 5.72 (ArCHPh) and 3.30 (ZrCHPh). An observed AB coupling constant ${}^{3}J_{HH}$ = 7.1 Hz does not by itself allow a clear distinction between a cis and trans arrangement of phenyl substituents at the five-membered ring system? Tentatively, we assign a cis structure **to** this zirconocene complex **7** obtained from the reaction of intermediate **4** with added scavenger cis-stilbene.

We could not detect any trace of **7** upon thermolysis of **3** under similar conditions using a fivefold excess of trans-stilbene. A different organometallic compound **8** was formed instead which appears to be the configurational isomer of **7.** This we deduce from the formation of the identical organic product, 1,1,2-triphenylethane, upon hydrolysis and a distinctly different although in general quite similar appearance of the H NMR spectrum, exhibiting features at δ 8.20-6.80 (m, 14 H, aromatic), 5.83 and 5.10 **(s,5** H each, Cp), *5.00* and 3.95 (AB system, 2 H, CHPh, ${}^{3}J_{\text{HH}}$ = 10.5 Hz). Independent crossover experiments revealed that the formation of about 1% of the cis isomer accompanying **trans-2,3-diphenyl-l-zirconaindan 8** would have been detected by the method of analysis applied (FT 'H NMR, 250 MHz). However, in a direct comparison of crude reaction mixtures obtained from thermolyses of **3** and the respective stilbene isomers in C_6D_6 solvent in sealed NMR tubes, we have not been able to observe any formation of the "wrong" isomer of the particular metallacyclic reaction product.

Our observation of a >99% selective, stereospecific formation of phenyl-substituted five-membered metallacycles **7** and **8** provides a strong indication for a concerted course of the ring closure reaction of intermediate bis- (o1efin)zirconocene complexes **5** and **6.** This example, therefore, contrasts favorably with the reaction of $(\eta^2$ benzophenon)zirconocene with dimethyl fumarate and maleate, the latter forming a five-membered metallacycle with loss of stereochemistry as expected for a stepwise reaction mechanism.³

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft for financial support.

Registry No. 3, 51177-89-0; 4, 71191-32-7; 7, 82555-26-8; 8, 82597-45-3; cis-stilbene, 645-49-8; trans-stilbene, 103-30-0.

Reactions of Coordlnated Molecules. 33. Conversion of a Metalla sp2-CH Analogue to a Metaila sp³-CH Analogue: A Comment about Structural and Electronic Formalism

Charles M. Lukehart" and K. Srlnlvasan

Department of Chemistry, Vanderbilt University Nashville, Tennessee 37235

Received May 18, 1982

Summary: The conversion of α -enolate anions of metalla- β -diketonate complexes to η^3 -allylic complexes is analyzed by using an isolobal approach. These reactions are described as the conversion of a metalla sp^2 -CH moiety into a metalla sp³-CH moiety.

We reported recently an intramolecular, interligand C-C bond formation reaction which occurred between adjacent acylic ligands, as shown in eq $1¹$ When the (ferra- β -di-

⁽⁴⁾ Erker, G. *J.* **Organomet.** *Chem.* **1977,134,189. See also: Shur, V. B.; Berkovich, E. G.; Vol'pin, M. E.; Lorenz, B. and Wahren,** M. *J. Or***ganomet.** *Chem.* **1982,228, C 36.**

⁽⁵⁾ Erker, G.; Kropp, K. *J. Am. Chem. SOC.* **1979,101, 3659. (6) A** *m/e* **value corresponding to naturally most abundant isotopes,**

i.e., ⁸⁰Zr (51.5%).
(7) NMR: δ179.3 (s), 164.3 (s), 146.8 (s), 141.5 (s), 140.9 (d), 132.8 (d),
131.1 (d), 127.0 (d), 126.4 (d), 124.7 (d), 124.0 (d), 119.2 (d), two additional

carbon resonances cannot be located accurately due to solvent signals.

(8) McLain, S. J.; Wood, C. D.; Schrock, R. R. J. Am. Chem. Soc. 1977,

99, 3519; 1979, 101, 4558.

(9) Bovey, F. A. "Nuclear Magnetic Resonance Spect **rukhin, B. D.; Shymrev, I. K. Org. Magn.** *Reson.* **1974, 6, 92.**