

 $Rh(A)-C(11)-Rh(B)$  $C(11)$ -Rh $(A)$ -C $(12)$  $Rh(A)-Rh(B)-Rh(C)$ 84.0 (8) 78.8 (7) 60.0 **(4)** 

X-ray Crystal Structure Determination. Crystal data:  $C_{32}H_{47}Rh_3$ ;  $M = 740.44$ , rhombohedral,  $a = 11.918$  (7) Å,  $\alpha = 101.91$  $(4)$ <sup>o</sup>,  $U = 1586$  Å<sup>3</sup>,  $Z = 2$ ,  $D_{\text{caled}} = 1.55$  g cm<sup>-3</sup>,  $F(000) = 748$ , space group  $R_3$  ( $C_{3i}^2$ , No. 148) (from systematic absences); Mo K $\alpha$  radiation (graphite monochromator),  $\lambda = 0.71069 \text{ Å}, \mu(\text{Mo K}\alpha) =$  $15.36$  cm<sup>-1</sup>.

The overall geometry of the molecule is shown in Figure 1; atomic coordinates are in Table I and distance and angle values in Table 11.

**Acknowledgment.** We thank the S.E.R.C. and the Spanish Ministry of Education for support, the University of Sheffield for the award of a Junior Research Fellowship (P.M.B.) and Dr. W. Schäfer (Chemische Werke Hüls) and the Ethyl Corp. for gifts of chemicals.

83377-35-9;  $Al<sub>2</sub>Me<sub>6</sub>$ , 15632-54-9. **Registry No. 2b, 80446-42-0; 4, 83350-11-2;**  $(C_5Me_5Rh)_{2}Cl_4$ **,** 

Supplementary Material Available: Tables of isotropic and anisotropic thermal parameters, hydrogen atom coordinates, 'and structure factors( 39 pages). Ordering information is given on any current masthead page.

# **A Heterobinuclear Bridglng Methylene Complex: Structures at -110 "C of Two Crystal Forms of (p-Methylene) (p-carbonyl)** [ **(cyclopentadienylcarbonyliron) tetra**carbonylmanganese],  $(\mu$ -CH<sub>2</sub>)( $\mu$ -CO)[Cp(CO)FeMn(CO)<sub>4</sub>]<sup>†</sup>

Steven **M.** Gadol' and Raymond **E.** Davis\*

*Department of Chemistry, The Universlw of Texas at Austin, Austin, Texas 78712* 

*Received August 16, 1982* 

The novel heterobinuclear bridging methylene complex  $(\mu$ -CH<sub>2</sub>)( $\mu$ -CO) [Cp(CO)FeMn(CO)<sub>4</sub>] (1) crystallizes in two forms: form A (from pentane), monoclinic,  $P2_1/m$  (No. 11),  $a = 8.282$  (1) Å,  $b = 10.002$  (2) Å,  $c = 8.504$  (1) Å,  $\beta = 115.70^{\circ}$  at  $-110^{\circ}$ C,  $Z = 2$ ; form B (from thermal gradient vacuum sublimation), monocli Cc (No. 9),  $a = 15.402$  (2)  $\AA$ ,  $b = 6.1731$  (7)  $\AA$ ,  $c = 14.104$  (2)  $\AA$ ,  $\beta = 107.36^{\circ}$  at  $-110^{\circ}$ C,  $Z = 4$ . Single-crystal diffraction data (–110 °C) were used to determine and refine (by full-matrix least-squares methods) the crystal structures of both forms: form A,  $R_1 = 0.036$ ,  $R_2 = 0.037$  for 1251 reflections with  $I/\sigma_I > 2.0$ ; form B,  $R_1 = 0.038$ ,  $R_2 = 0.041$  for 1774 reflections with  $I/\sigma_I > 2.0$ . Both forms contain disordered molecules with each bridging site occupied (exactly in form A and nearly in form B) by half of  $\mu$ -CH<sub>2</sub> and half of *p*-CO. Principal structural features of the molecule are (1) an unusually short  $\text{Fe}-\text{C}(\mu)$  bond (average 1.921 **A),** (2) the shortest Fe-Mn bond (average 2.615 **A)** yet seen in an organometallic complex, (3) an unusually long Mn-C( $\mu$ ) bond (average 2.087 Å), (4) an unsymmetrical bridge with Fe-X uncharacteristically shorter than Mn-X, and (5) Mn-CO(terminal) bond lengths which are significantly shorter when trans to  $\mu$ -CH<sub>2</sub>/CO than when trans to CO(terminal). These structural features are related to the strong  $\pi$ -acceptor nature of  $\mu$ -CH<sub>2</sub> and  $\mu$ -CO and to the presence on Fe and absence on Mn of the electron-releasing Cp group.

### **Introduction**

Compounds containing unsubstituted  $(CH<sub>2</sub>)$  or substituted (CHR, CR<sub>2</sub>, or CRR<sup>'</sup>) methylene groups spanning two bonded transition-metal atoms have been the subject of many studies, involving synthesis, reactivity, spectroscopy, and theory, complemented by structural studies of a wide variety of these complexes.2 Many of the bridging methylene complexes which have been structurally characterized have been substituted with either heteroatoms

or aromatic rings (analogous to the mononuclear Fischer carbene complexes); several structures have been deter-

**0276-7333/82/2301-1607\$01.25/0** *0* 1982 American Chemical Society

<sup>&#</sup>x27;Dedicated to the memory of Rolly Pettit-mentor, colleague, friend.

*<sup>(1)</sup>* Robert A. Welch Foundation Undergraduate Scholar, **1979-1981. (2)** Some reviews and leading references: (a) Herrmann, W. A. "The Methylene Bridge", to appear in 'Advances in Organometallic Chemistry". (b) Šchrock, R. R. *Acc. Chem. Res.* 1979, *12*, 98–104. (c)<br>Calderon, N.; Orstead, E. A.; Judy, W. A. *Angew. Chem., Int. Ed. Engl.*<br>1976, *15*, 401–409. (d) Hursthouse, M. B.; Jones, R. A.; Malik, K. M. A.; Wilkinson, G. J. J. *Am. Chem. SOC.* **1979,101,4128-4139.** (e) Creswick, M.; Bernal, I.; Reiter, B.; Herrmann, W. A. Inorg. Chem. **1982, 21,**  645–652. (f) Kao, S. C.; Lu, P. P. Y.; Pettit, R. Organometallics 1982, 1, 911–918. (g) Sumner, C. E., Jr.; Collier, J. A.; Pettit, R. *Ibid.* 1982, 1, 1350–1360. (h) Kao, S. C.; Thiel, C. H.; Pettit, R. *Organometallics*,



**<sup>a</sup>**Unit cell parameters for form A were obtained by least-squares refinement of the setting angles of **44** reflections with  $22.0 < 20 < 26.5$ °. For form B, 44 reflections with  $24.2 < 20 < 26.9$ ° were used. with a graphite monochromator and a Syntex LT-1 inert-gas (N<sub>2</sub>) low-temperature delivery system. Data reduction was carried out **as** described in: Riley, P. E.; Davis, R. E. *Acta Cryotallogr., Sect. B* **1976,** B32, **381.** Crystal and instrument stability were monitored by remeasurement of four check reflections after every **96** reflections. These data were analyzed **as** detailed in: Henslee, W. H.; Davis, R. E. *Acta Crystallogr., Sect. B* **1975,** *B31,* **1511.**  Crystal faces had been noticeably rounded as the cold crystallization solution warmed, so faces could not be unambiguously indexed.  $\,$  d Relevant<br>expressions are as follows, where in this footnote  $F_{\rm o}$  and  $F_{\rm c}$  represent, respectively expressions are as follows, where in this footnote  $F_o$  and  $F_c$  represent, respectively, the observed and calculated structure<br>factor amplitudes: function minimized was  $\sum w (F_o - F_c)^2$ , where  $w = (\sigma_F)^{-2}$ ;  $R_1 = \sum \text{abs}(F_o - F_c$ Syntex **P2,** autodiffractometer  $F_c$ <sup>2</sup>/ $\Sigma F_o$ <sup>2</sup>]<sup>1/2</sup>.

mined for  $\mu$ -CH<sub>2</sub> complexes with Os<sub>2</sub>, Ru<sub>2</sub>, Rh<sub>2</sub>, and Mn<sub>2</sub> metal centers. Only a few structures have been studied, however, which include methylene-like fragments bridging two different transition-metal atoms;<sup>4-8</sup> these have all involved at least one second- **or** third-row transition metal, and in each, the methylene bridge is substituted with aromatic and/or heteroatom groups. We report here the structure of  $(\mu$ -CH<sub>2</sub> $)(\mu$ -CO $)[(\text{Cp})(\text{CO})\text{Fe}-\text{Mn}(\text{CO})_4)]$  (1).

*G.* **A.; Woodward, P. A.** *J. Chem. SOC., Dalton Trans.* **1981, 743-750. (5) Kreissl, F. R.; Friedrich, P.; Lindner, T. L.; Huttner,** *G. Angew.* 

*Chem. SOC., Dalton Trans.* **1980, 1593-1600.** 

This is, to our knowledge, the first structural account of a  $\mu$ -CH<sub>2</sub> heterobinuclear complex; it also represents the first reported structural study of any  $\mu$ -methylene complex, substituted or not, involving two different first-row transition metals. **A** preliminary account of the preparation, structure, and reactivity of this compound has been submitted.<sup>9</sup>

## **Experimental Section**

Single crystals of **1** obtained by Dr. C. Thiel by very **slow**  evaporation of a pentane solution at **-20** *"C* were of adequate internal quality for X-ray studies, in spite of their poor external appearance. Attempts to produce better formed crystals by vacuum thermal gradient sublimation (0.050 torr, 55 °C to room temperature) gave crystals of excellent morphology, which, however, proved to be a second crystal form. The pentane form (space group  $P2_1/m$ ) is herein referred to as form A, while the form produced by sublimation (space group *Cc)* is referred to **as** 

<sup>(3)</sup> Another rare example of a heterobinuclear  $\mu$ -methylene complex, ( $\mu$ -CH<sub>2</sub>)Cp(CO)CoRh(CO)Cp, has been reported, though apparently not studied by X-ray methods: Theopold, K. H.; Bergman, R. B. *J. Am.* 

*Chem.* **SOC. 1981,103, 2489-2491. (4) Howard,** J. **A. K.; Mead, K. A.; Moa, J. R.; Navarro, R.; Stone, F.** 

Chem., Int. Ed. Engl. 1977, 16, 314.<br>
(6) Howard, J. A. K.; Jeffery, J. C.; Laguna, M.; Navarro, R.; Stone,<br>
F. G. A. J. Chem. Soc., Dalton Trans. 1981, 751–762.<br>
(7) Jeffery, J. C.; Noore, I.; Razay, H.; Stone, F. G. A. J

**<sup>(9)</sup> Thiel, C. H.; Pettit, R.; Davis, R. E.** *Angew. Chem.,* **submitted for publication.** 



Figure 1. Stereoscopic view of the  $(\mu$ -CH<sub>2</sub>)( $\mu$ -CO)[Cp(CO)FeMn(CO)<sub>4</sub>] molecule (1) in form A, illustrating the atom numbering scheme. The unlabeled H atom on C1 is H1A. On the disordered bridges, the atoms which are mirror related to 01, HlA, and H1B are omitted for clarity. Non-hydrogen atoms are shown as ellipsoids of 30% probability and hydrogen atoms as spheres of radius 0.1 **A.** 



**Figure 2.** Stereoscopic view of the  $(\mu$ -CH<sub>2</sub>) $(\mu$ -CO)[Cp(CO)FeMn(CO)<sub>4</sub>] molecule (1) in form B, illustrating the atom numbering scheme. The unlabeled H atom on C1 is H1A. On the disordered bridges, the atoms 01, H2A, and H2B are omitted for clarity. Non-hydrogen atoms are shown as ellipsoids of 30% probability and hydrogen atoms as spheres of radius 0.1 **A.** 

form B. X-ray experimental procedures were the same for crystals of these two forms.

**A** single crystal was mounted and transferred to a Syntex P21 autodiffractometer, where it was maintained in a cold  $(-110 °C)$ stream of dry nitrogen for the duration of the diffraction experiments. Preliminary diffraction studies revealed, in each case, diffraction symmetry and systematic absences prohibiting unequivocal space group assignment solely on these bases (vide infra). A summary of the pertinent crystal data and details of the X-ray diffraction data collection and processing is presented in Table I. Preliminary processing of the diffraction data was accomplished as described in detail previously,<sup>10,11</sup> including corrections for absorption based on measured crystal shape.

Each structure was solved by the heavy-atom method, using metal atom positions determined from a sharpened Patterson map. **Because** heavy-atom identity could not be ascertained at this early stage, each was included in the heavy-atom map calculation with the Fe scattering curve, and these atoms were identified following subsequent maps from consideration of their bonding environment. In the case of form A, since any reasonable estimate of *bulk* density indicated the presence of no more than two molecules per unit cell, the space group was initially assumed to be the more common  $P2_1$  (No. 4). Early maps, however, revealed that the molecule **was** oriented in such a way **as** to be situated on the mirror plane (position e) of space group  $P2<sub>1</sub>/m$  (No. 11), with the mirror plane passing through the two heavy atoms, the Fe carbonyl group, two Mn carbonyl groups, and one Cp carbon. After a difference density map computed in  $P2<sub>1</sub>$  omitting the oxygen of the bridging

carbonyl group revealed density consistent with one-half oxygen in these positions, the space group was taken to be  $P2_1/m$ . The subsequent successful refinement with this assumption is taken as confirmation of this choice of space group.

The expected presence of only four molecules per unit cell in Form B led to the initial assumption of one independent molecule per asymmetric unit in  $Cc$  (No. 9). The alternative space group consistent with the diffraction pattern,  $C2/c$  (No. 15), would have required only half of a molecule **per** asymmetric unit. Since either of its sites of twofold symmetry (inversion center or twofold rotation axis) would have involved disorder of one or more carbonyl groups with the sterically quite different Cp ring, this was thought to be a very unlikely possibility. The near identity (at this early resolution) of the y coordinates of the two heavy atoms led to a quite cluttered heavy-atom map, though, so that several cycles of carefully interpreted electron and difference density maps were required to locate all non-hydrogen atoms in **Cc.** Again, the molecule is disordered, with the two bridging ligands interchanged in (approximately) half of the locations, though in this crystal form the disorder is not across a crystallographic symmetry element but rather within a molecule in a general position.

Both structures were refined by full-matrix least-squares methods, using the program SHEW. For form A, **all** non-hydrogen atoms were refined anisotropically, and all H atoms were refined isotropically, with fixed  $U = 0.025$  Å. In the refinement of form B, considerable variation appeared in the geometry of the Cp ring, so this ring was constrained to a regular pentagon with  $C-C =$ 1.42 Å, with  $\text{Cp H}$  atom *U* values fixed at 0.05 Å; the  $\text{CH}_2$  hydrogens (half-weight) did not behave well, so they were allowed to ride on the bridging C atoms with  $U = 0.025$  Å. Additional details of the two refinements appear in Table I.

Tables **II** and **III** present final atomic coordinates (with esd's) and values of  $U$  or  $U_{eq}$ . Listings of thermal parameters and of observed and calculated structure **factor** amplitudes for both crystal structures are available.12

### **Discussion**

The crystal structures of both forms consist of discrete molecules with no unusual intermolecular contacts. Figures 1 **and 2** present stereoscopic views of single molecules

**<sup>(10)</sup> Riley, P. E.; Davis, R. E.** *Acta Crystallogr., Sect. B* **1976,** *B32,*  **381-386.** 

**<sup>(11)</sup> Principal computer programs: least-squares lattice parameters,**  LSLAT **by K. N. Trueblood; absorption correction, SYABS, a local version of ORABS by W. R. Busing and H. A.** Levy **as modified by J. M. Williams;**  full-matrix least squares and Fourier calculations, SHELX-76 by G. M. Sheldrick; least-squares planes, LSMP by M. E. Pippy; thermal ellipsoid **Sheldrick; least-squares planes, LSMP by M. E. Pippy; thermal ellipsoid plota, ORTEP-II by C. K. Johnson. Various data processing programs of local origin, including the following: statistical analysis of check reflections, SYSTD by T.-H. Hseu; data reduction,** INCON **by R. E. Davis; preparation of computer-typed tables of atomic parameters, bond lengths, bond angles and torsion angles for publication, FWER by S. B. Laraon; and** bond angles and torsion angles for publication, **FUER by S. B. Larson**; and a listing of structure factor amplitudes, **FTABLE** by R. E. Davis. Neutral **atom scattering factors used are from Table 2.2B, and anomalous dis-persion corrections from Table 2.3.1: 'International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV.** 

**<sup>(12)</sup> Additional tables are available as supplementary material.** 





<sup>a</sup> See Figure 1 for identity of the atoms. Numbers in parentheses are estimated standard deviations in the units of the<br>least significant digits for the corresponding parameter. <sup>b</sup> For anisotropic atoms, the U value is  $(1/3)\Sigma_i\Sigma_jU_{ij}a_i*a_j*a_j+A_{ij}$ , where  $A_{ij}$  is the dot product of the *i*th and *j*th direct space unit cell vectors.





**See Figure 1 for identity of the atoms. Numbers in parentheses are estimated standard deviations in the units of the**  least significant digits for the corresponding parameter. <sup>b</sup> For anisotropic atoms, the *U* value is  $U_{eq}$ , calculated as  $U_{eq}$  =  $(1/3)\sum_{i}\sum_{j}U_{ij}a_{i} * a_{j} * A_{ij}$ , where  $A_{ij}$  is the dot product of the *i*th and *j*th direct space unit cell vectors.

**in the crystal forms and indicate the atom numbering schemes used in this paper. Bond lengths and angles appear in Tables IV and V.I2** 

**Ignoring the Fe-Mn bond, the coordination around Mn is octahedral, with two terminal** *CO* **ligands in the equa**torial plane along with  $\mu$ -CH<sub>2</sub> and  $\mu$ -CO, and two terminal **CO ligands axial. At the iron end of the molecule, again** 

**discounting the metal-metal interaction, the coordination may be described as roughly tetrahedral, with Cp, terminal**  CO,  $\mu$ -CH<sub>2</sub>, and  $\mu$ -CO in the four sites. The central **four-atom group is folded about the Fe-Mn line (12.3' in form A and 14.8O in form B, average 13.6') in such a way as to relieve the nonbonded interactions between CO**  groups on the two metals. Thus, the distances  $C5 \cdots C3 =$ 

**Table IV. Bond Lengths (A) and Angles (Deg) in Form A"** 





<sup>a</sup> See Figure 1 for identity of the atoms. Atoms iden**tified** by the notation  $*1$  have been transformed by the operation  $(x, 0.5 - y, z)$ . Numbers in parentheses are **estimated standard deviations in the units of the least significant digits for the corresponding parameter. CPM designates the centroid of the five Cp carbons.** 

3.010 (7) *8,* in form **A** and C54!7 = 3.028 **(7) A** in form B put these groups at the outer limit of the collision diameter range of 2.75-3.00 **A said** to be appropriate **for** the van der **Waals'** interactions between carbonyls in binuclear complexes.<sup>13</sup> The shortest nonbonded contacts between



" **See Figure 1 for identity of the atoms. Numbers in parentheses are estimated standard deviations in the units of the least significant digits for the corresponding parameter. CPM designates the centroid of the five Cp carbons.** 

carbonyl on Mn and Cp carbon on Fe are comfortable- $C2 \cdot C8 = 3.206$  (7) Å in form A and  $C6 \cdot C12 = 3.117$  (8) **8,** in form B.

**<sup>(13)</sup> Kamrass, B. S.; Lohr, L. L. cited in ref 14.** 

**<sup>(14)</sup> Triplett, K.;** Curtis, **M. D.** *J. Am. Chem. SOC.* **1975,97,5747-5751.** 

Both crystal forms contain disordered molecules of 1; as described above, this disorder has the effect that each bridging position is occupied (exactly in form A and nearly in form B) on average by half of  $\mu$ -CH<sub>2</sub> and half of  $\mu$ -CO. Such disorder in  $(\mu$ -CH<sub>2</sub>)( $\mu$ -CO) complexes seems to be a common occurrence (e.g.,  $(\mu\text{-CH}_2)(\mu\text{-CO})_2\text{Fe}_2(\text{CO})_6^{15}$  and  $(\mu$ -CH<sub>2</sub>)( $\mu$ -CO)Os<sub>2</sub>(CO)<sub>10</sub><sup>16</sup>), though not an invariable one (e.g.,  $(\mu$ -CO)( $\mu$ -CH<sub>2</sub>)( $\dot{Me}_2$ Cp)<sub>2</sub>Co<sub>2</sub><sup>17</sup> and ( $\mu$ -CO)( $\mu$ -CH<sub>2</sub>)- $\text{Cp}_2\text{Fe}_2(\text{CO})_2^{18}$ . The only significant difference observed in the molecular structures in the two forms is a small rotation of the Cp ring in form B away from the symmetric conformation seen in form **A.** Of course, the disorder present in both forms, while permitting resolution only of the  $\mu$ -carbonyl O atoms and the  $\mu$ -methylene H atoms, implies lack of strict coincidence of the other atoms **as** well. Thus, the "thermal parameters" which are considerably higher for both crystal forms in, e.g., the carbonyl group and the Cp ring on Fe and the "axial" carbonyls on Mn, than would be expected at **-110** 'C, surely represent the effects of this disorder. Nevertheless, the principal metrical details of this novel complex are sufficiently well determined to merit report and some comment. In particular, the thermal ellipsoids of the bridging carbon atoms **(Cl** in form A and C1 and **C2** in form B) are among the smallest and mast symmetrical in the structures, suggesting that, in fact, these two bridging groups do display, in this complex, very similar bond lengths and bridging angles. It is to be hoped that subsequent structural studies of well-ordered heterobinuclear  $\mu$ -CH<sub>2</sub> complexes will further clarify such details.

The composite of bond lengths in the central four-atom fragment is quite consistent with generalizations which have been discussed both on experimental grounds by Herrmann et al.<sup>2a,e,19</sup> and on theoretical grounds by Hoffmann et al.<sup>20</sup> The principal conclusions of those discussions which apply here are  $(1)$  that  $\mu$ -CH<sub>2</sub> is a quite good  $\pi$  acceptor, comparable to  $\mu$ -CO, (2) that bridging by stronger  $\pi$  acceptors such as CH<sub>2</sub> or CO serves to enhance the bonding in the bridge region, and **(3)** that the presence of a Cp ring in place of terminal CO ligands strengthens the bridge bonding, making the metal atom a better donor. The Fe-C( $\mu$ ) bond in 1 is very short (1.927 (3) Å in form A and **1.919** (5) and **1.916** (5) **A** in form B, average **1.921**  Å) compared to 2.015 (1) Å in  $(\mu$ -CH<sub>2</sub>)( $\mu$ -CO)<sub>2</sub>Fe<sub>2</sub>(CO)<sub>6</sub>,<sup>15</sup> which does not contain Cp (but in which the bridge position is disorderd  $(\mu$ -CH<sub>2</sub>)<sub>1</sub>: $(\mu$ -CO)<sub>2</sub>) and to 1.987 (1) Å in ( $\mu$ -CHMe)( $\mu$ -CO)[CpFe(CO)]<sub>2</sub><sup>15,21</sup> and 1.952 Å (average of four) in  $(\mu$ -CO) $(\mu$ -CHCO<sub>2</sub>-t-Bu)[CpFe(CO)]<sub>2</sub>,<sup>22</sup> both of which contain Cp rings on Fe. By contrast the Mn-C( $\mu$ ) bond in 1 is longer **(2.087 (3) A** in form A and **2.085** (5) and **2.134** (5) **8,** in form B, average **2.102 A)** than the reported value of 2.014 Å (av) in  $(\mu$ -CH<sub>2</sub>)[(MeCp)Mn(CO)]<sub>2</sub>;<sup>2e</sup> it compares favorably with the average  $Mn-CO(\mu)$  distance

of **2.095 A** in the asymmetric **(2.037, 2.154 A)** bridge in  $(\mu$ -CO)( $\mu$ -GeMe<sub>2</sub>) [Mn(CO)<sub>4</sub>]<sub>2</sub>,<sup>14</sup> which is apparently the only structurally characterized  $(\mu$ -CO)-Mn<sub>2</sub> compound. **This** is, of course, consistent with the decreased availability of back-bonding electron density at metals on which the other ligands include only CO and not Cp.

A further indication of the strengthened bonding in the bridging region is the remarkably short Fe-Mn distance **(2.618 (1) A** in form A and **2.613 (1) A** in form B, **2.615-A**  average). This may be compared, among organometallics, to 2.84 Å in the nonbridged  $\text{Cp(CO)}_2\text{FeMn(CO)}_5$ ,<sup>23</sup> 2.848  $(4)$  Å in  $(\mu$ -AsMe<sub>2</sub> $)(CO)$ <sub>4</sub>FeMn $(CO)$ <sub>4</sub><sup>2</sup> $\frac{24}{3}$  2.825 (5) Å in  $(\mu$ - $PPh_2(CO)_4FeMn(CO)_4,^{25}$  2.760 (4) Å in ( $\mu$ -C=CHPh)-(C0)3FeMnCp(C0)2,26 and **2.742 (4)** and **2.752 (4) A** in the cluster compound  $PhP[(CO)_6Fe_2MnCp(\mu-CO)_2].^{27}$  The Fe-Mn bond observed in this work is, however, not **as** short as has been reported for certain alloys, cf. **2.559 A** in  $Fe<sub>3</sub>Mn<sub>4</sub>Ge<sub>6</sub><sup>28</sup>$  and 2.324 in  $Fe<sub>4</sub>Mn<sub>77</sub>Si<sub>19</sub><sup>29</sup>$  As has been carefully discussed by Bernal and Herrmann et al.,<sup>2e</sup> observed Mn-Mn lengths (and, by implication, perhaps Mn bond lengths to other transition metals ?) are exceptionally sensitive to many features of their bonding environment. including the number and nature of bridging ligands. The present compound seems to be the only structurally studied bis bridged Fe-Mn compound, and both these bridges are quite good  $\pi$  acceptors.

An additional feature of the bridging in this structure which requires comment is ita unsymmetrical nature. All previous  $(\mu-X)$ Fe-Mn structures have exhibited either Fe-X > Mn-X (viz., **2.33 (2)** vs. **1.76 (2) A** and **2.44 (2)** vs. **1.76 (2) A** (semibridging carbonyls ?) in the cluster compound  $PhP[(CO)_6Fe_2MnCp(\mu-CO)_2]^{27}$  or  $FeX \approx Mn-X$ (viz., 2.239 (6) vs. 2.257 (6) Å in  $(\mu$ -PPh<sub>2</sub>)(CO)<sub>4</sub>FeMn- $(CO)_4$ ;<sup>25</sup> 2.356 (3) vs. 2.350 (3) Å in  $(\mu$ -AsMe<sub>2</sub>)- $(CO)_4$ FeMn $(CO)_4^{24}$ ). In 1, the pattern is reversed, with Fe-C vs. Mn-C lengths of **1.927 (3)** vs. **2.087 (3) A** in form **A** and **1.919** (5) and **1.916** (5) vs. **2.085** (5) and **2.134** (5) **A** in form B (average Fe-C = **1.921 (4)** vs. Mn-C = **2.102 (4) A or** Fe-C < Mn-C by **0.181 A).** The origin of this variation may again be the electron-releasing effect of the Cp ring, since in the unsymmetrically bridged compounds, the shorter bond is to the metal atom carrying the Cp ring, while the  $\mu$ -P<sup>25</sup> and  $\mu$ -As<sup>24</sup> ligands symmetrically bridge two different  $M(CO)<sub>4</sub>$  groups. This is substantiated by the pattern of bond lengths in the heterobinuclear complexes  $(\mu$ -C(OMe)(C<sub>6</sub>H<sub>4</sub>-Me-4))Pt(PMe<sub>3</sub>)<sub>2</sub>W(CO)<sub>4</sub>)(PMe<sub>3</sub>),<sup>4</sup> ( $\mu$ -C- $(OMe)(Ph))Pt(PMe<sub>3</sub>)<sub>2</sub>W(CO)<sub>5</sub>,<sup>8</sup> and ( $\mu$ -C(CO<sub>2</sub>Me)(Ph)).$  $Pt(PMe<sub>3</sub>)<sub>2</sub>Cr(CO)<sub>4</sub>(PMe<sub>3</sub>)<sup>6</sup>$  in which the shortest M-C( $\mu$ ) invariably involves the metal with the largest number of highly electron-releasing  $PR<sub>3</sub>$  groups, their effect apparently overriding the covalent radii of the metal atoms.

The Fe–C( $\mu$ )–Mn angle in 1 averages 80.9 (2)<sup>°</sup> (81.3 (1)<sup>°</sup> in form A and **80.1 (2)** and **81.4 (2)'** in form B), centered in the extreme range of  $81 \pm 7^{\circ}$  cited in Herrmann's review2" and within the **76-81'** range he describes **as** typical. Further, it coincides with the average value (80.9°) in Table VII of ref 2e for seven  $Fe_2, Co_2$ , and  $Rh_2$  structures. The

**<sup>(15)</sup> Meyer, B. B.; Riley, P. E.; Davis, R. E.** *Inorg. Chem.* **1981,** *20,*  **3024-3029.** 

**<sup>(16)</sup> Churchill, M. R.; Wasserman, H. J.** *Inorg. Chem.* **1982, 21, 825-827.** 

**<sup>(17)</sup> Halbert, R. T.; Leonowicz, M. E.; Maydonovitch, D.** J. **J.** *Am. Chem. SOC.* **1980,102, 5101-5102.** 

**<sup>(18)</sup> Korswagen, R.; Ah, R.; Speth, D.; Ziegler, M. L.** *Angew. Chem., Int. Ed. Engl.* **1981,20,1049-1051. This structure report offers, however, only a thermal ellipsoid plot, and no quantitative data from which any detailed structural features may be inferred.** 

**<sup>(19)</sup> Clemente, D. A.; Rees, B.; Bandolo, G.; Biaggini, M. C.; Reiter,**  B.; Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1981, 20, 887-888.<br>(20) Shaik, S.; Hoffmann, R.; Fisel, C. R.; Summerville, R. H. J. Am.

*Chem. SOC.* **1980,102,4555-4572. (21) Dyke, A. F.; Knox,** S. **A. R.; Naish, P.** J.; **Orpen, A. G.** *J. Chem.* 

*SOC., Chem. Commun.* **1980, 441-442. (22) Herrmann, W. A.; Plank, J.; Bernal, I.; Creswick, M.** *2. Natur-*

*forsch. B: Anorg. Chem., Org. Chem.* **1980, 358, 68C-688.** 

**<sup>(23)</sup> Hansen, P. J.; Jacobson, R. A. J.** *Organomet. Chem.* **1966, 6, 389-398.** 

**<sup>(24)</sup> Vahrenkamp, H.** *Chem. Ber.* **1973,106, 2570-2579.** 

**<sup>(25)</sup> Vahrenkamp, H.** *2. Naturforsch. B: Anorg. Chem. Org. Chem.*  **1976,30B, 814-815.** 

**<sup>(26)</sup> Andrianov, V.** *G.;* **Struchkov, Yu. T.; Kolobova, N. E.; Antonova, A. B.; Obezyuk, N.** S. **J.** *Organomet. Chem.* **1976,122, C33-C36.** 

**<sup>(27)</sup> Huttner, G.; Frank, A.; Mohr, G.** *2. Naturforsch. B: Anorg. Chem. Org. Chem.* **1976,31B, 1161-1165.** 

**<sup>(28)</sup> Shoemaker, C. B.; Shoemaker, D. P.** *Acta Crystallogr., Sect.* **B 1977, B33, 743-754.** 

**<sup>(29)</sup> Malaman, B.; Roques, B.; Cortois, A.; Protas,** J. *Acta Crystallogr., Sect. B* **1976, B32, 1352-1355.** 

H-C-H angle in form B was constrained in the refinement to be 109.5<sup>o</sup>, while its calculated value after the refinement of form A was 98 (9)°. However, these hydrogen positions are quite poorly determined, since they were refined as half-weight hydrogen atoms in the proximity (approximately 0.8 **A)** of the disordered carbonyl oxygen, so no conclusions regarding H-C-H **or** M-C-H angles should be drawn from the results reported here.

In the few structures in which metal geometry is such that one terminal CO group is clearly trans to  $\mu$ -CR<sub>2</sub> (where R can be H), patterns of M-C bond lengths seem to be emerging which suggest that  $\mu$ -CR<sub>2</sub> may be, in fact, a slightly poorer  $\pi$  acceptor than  $\mu$ -CO. For example, in three heteronuclear  $\mu$ -carbene complexes reported by Stone and co-workers, the following M-CO(termina1) bond lengths are seen: in  $(\mu$ -C(OMe) $(\overline{C_6}H_4$ -Me-4))Pt(PMe<sub>3</sub>)<sub>2</sub>W- $(CO)<sub>4</sub>(PMe<sub>3</sub>)<sup>4</sup>$  – W–CO trans to  $\mu$ -CR<sub>2</sub> = 1.96 (2) Å, trans to  $\text{PMe}_3 = 1.95$  (1), and trans to  $\text{CO} = 2.02$  (2) and 2.03 (2) Å; in (μ-C(OMe)(Ph))Pt(PMe<sub>3</sub>)<sub>2</sub>W(CO)<sub>5</sub><sup>8</sup>--W-CO trans to  $CR_2 = 1.99$  (1) Å and trans to  $CO = 2.03$  (1), 2.04 (1), **2.06** (1), and **2.07** (2) **A**; in  $(\mu$ -C(CO<sub>2</sub>Me)(Ph))Pt- $(PMe_3)_2$ Cr(CO)<sub>4</sub>(PMe<sub>3</sub>)<sup>6</sup>—Cr-CO trans to  $\mu$ -CR<sub>2</sub> = 1.85 (4)  $\AA$ , trans to  $\text{PMe}_3 = 1.75$  (5)  $\AA$  (semibridging), and trans to CO = **1.86 (5)** and **1.93 (5) A.** Thus, in these complexes,  $M$ -CO trans to  $\mu$ -CR<sub>2</sub> tends to be shorter than  $M$ -CO trans to other carbonyls. Two features which complicate the extrapolation to comparison of  $\mu$ -CR<sub>2</sub> and  $\mu$ -CO are that (1) these complexes do not contain  $\mu$ -CO for direct comparison and  $(2)$  these  $\mu$ -CR<sub>2</sub> bridges all carry aromatic or 0-containing substituents and may thus not be strictly comparable to  $\mu$ -CH<sub>2</sub> or  $\mu$ -CR<sub>2</sub> where R = alkyl.

Further, though still not definitive, structural indications along these lines are seen in 1 and in  $(\mu$ -CH<sub>2</sub>)( $\mu$ - $\rm{CO}_2Fe_2(CO)_6$ .<sup>15</sup> In the latter structure, the small but perhaps marginally significant decrease in the Fe-CO- (terminal) bond lengths compared to those in  $Fe(CO)_9^{30}$ 

**(30)** Cotton, **F. A.;** Troup, **J.** M. *J. Chem. Soc., Dalton Tram.* **1974,** 

was viewed **as** a consequence of strengthening the Fe-CO- (terminal) bonding due to the substitution of the slightly poorer  $\pi$ -acceptor  $\mu$ -CH<sub>2</sub> for  $\mu$ -CO.<sup>15</sup> In similar fashion in 1, the Mn-CO bonds trans to  $\mu$ -CH<sub>2</sub>/CO are distinctly shorter **(1.823 (3) A** in form **A** and **1.809 (5)** and **1.812 (6) A** in form B, average **1.815 A)** than those trans to terminal CO **(1.852 (6)** and **1.864 A** in form **A** and **1.839 (6)** and **1.872 (5) A** in form B, average **1.857 A).** These latter values may be compared with, e.g., the values for the seven Mn-CO lengths not trans to Mn-Mn in the nonbridged  $Mn<sub>2</sub>$ - $(CO)_{9}(\text{CPh}(\text{OMe}))^{31}$  -average = 1.847 Å and range = **1.832-1.856** A-in which the Mn-CO length trans to the (terminal) carbene is **1.979 (5) A.** Unfortunately, due to the disorder present in both 1 and in  $(\mu$ -CH<sub>2</sub>)( $\mu$ -CO)Fe<sub>2</sub>- $(CO)_{6}$ <sup>15</sup> the terminal CO positions obtained by refinement are the weighted averages of those actually trans to  $\mu$ -CH<sub>2</sub> and those trans to  $\mu$ -CO, weighted as 1:1 in 1 and as 1:2 in the Fez structure. **A** careful determination of an ordered structure (preferably not involving Cp **or** phosphines-vide supra) in which one terminal CO is clearly trans to  $\mu$ -CH<sub>2</sub> and one is clearly trans to  $\mu$ -CO should help to clarify this point.

**Acknowledgment.** We are indebted to the Robert **A.**  Welch Foundation for support of this work through Grant No. **F-233. Dr.** C. Thiel kindly supplied samples for study. Especially, R.E.D. acknowledges with deepest gratitude the suggestion by the late Professor R. Pettit of this structural study-the last of our many collaborative structural undertakings.

**Registry No. 1, 83350-15-6.** 

**Supplementary Material Available:** Tables of observed and calculated structure factor amplitudes, anisotropic thermal parameters, and bond lengths and angles involving hydrogens **(21**  pages). Ordering information is given on any current masthead page.

**800-802. (31)** Huttner, G.; Regler, D. *Chem. Ber.* **1972,105, 123C-1244.** 

# **Preparation and Properties of Some Carbonyl-Bridged Dinuclear**  Copper Complexes<sup>†</sup>

**G. Doyle," K. A. Eriksen, M. Modrick, and G. Ansell** 

*Corporate Research, Exxon Research and Engineering Company, Linden, New Jersey 07036* 

*Received July 27, 1982* 

Several complexes of the type  $(diamine)_{2}Cu_{2}(CO)(O_{2}CR)^{+}X^{-}$ , which contain both a carbonyl and a carboxylate group bridging two coppers, have been prepared. The preferred method of synthesis involves the reaction of  $\text{Ti}(\text{O}_2\text{CR})$  and (diamine)CuI under a CO atmosphere. All the complexes are characterized by a CO absorption in the infrared at approximately **1900-1950** cm-'. **A** related compound,  $(\text{tmed})_2\text{Cu}_2(\text{CO})\text{C}_4\text{O}_4$ , which contains a bridging squarate group, was also prepared and the structure of its CH2C12 solvate characterized by single-crystal X-ray diffraction. The geometry of the squarate complex is quite similar to that of the benzoate derivative in spite of the charge difference and the much larger "bite" of the squarate ligand compared to the benzoate group.

In a recent publication by Floriani's group in Pisa<sup>1</sup> a In a recent particular by Freman suppose the result of the complex with terminal CO groups are<br>the conpact of proplement in which binuclear copper complexes with terminal CO groups are<br>the conpact of the conpact of what the copper atoms are bridged by a single CO molecule as

**Introduction** well as by a benzoate ion. This represents the only known<br>
omplex of copper with a bridging CO although a few other

 $\dagger$ Dedicated to the memory of Rowland G. Pettit.

**<sup>(1)</sup> Pasqdi,** M.; Floriani, C.; Gaetani-Manfredotti, A.; Guastini, C. J.