Stereochemical Studies on Thermal and Photochemical Reactions of η^5 -C₅H₅W(CO)₃(phenethyl) Containing **Deuterium-Labeled Phenethyl Ligands**

Shiu-Chin H. Su and Andrew Wojcicki*

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210

Received April 28, 1983

Reaction of $erythro-C_6H_5CHDCHDOS(O)_2C_6H_4CH_3-p$ with $Na[\eta^5-C_5H_5W(CO)_3]$ proceeds with inversion of configuration at α -carbon to yield η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo in \geq 95% diastereometic purity. This product reacts with liquid SO₂ at room temperature to give η^5 -C₅H₅W(CO)₃S(O)₂CHDCHDC₆H₅-erythro and with 2 equiv of I₂ in CHCl₃ to afford threo-C₆H₅CHDCHDI and η^5 -C₅H₅W(CO)₂I₃. Iodine cleavage of η^5 -C₅H₅W(CO)₃CD₂CH₂C₆H₅ yields isomerically pure C₆H₅CH₂CD₂I. These cleavage results are rationalized by electrophilic addition of I⁺ to tungsten, reductive elimination of phenethyl iodide, and coordination of I^- , followed by oxidation of the resultant η^5 -C₅H₅ $W(CO)_3I$ to η^5 -C₅H₅ $W(CO)_2I_3$ with a second equivalent of I₂. Photolysis of η^5 -C₅H₅W(CO)₃CH₂CH₂C₆H₅ in cyclohexane under argon or CO with 350-nm lamps affords η^5 -C₅H₅W(CO)₂(η^3 -CH(CH₃)C₆H₅), which was isolated and characterized by ¹H and ¹³C NMR Tamps allords $\eta^{-}C_5H_5W(CO)_2(\eta^{-}CH(CH_3)C_6H_5)$, which was isolated and characterized by 'H and 'C NMR and IR spectroscopy and mass spectrometry. It appears to be nonfluxional at temperatures up to 117 °C in toluene- d_8 by ¹H NMR spectroscopy. The same product obtains on irradiation of $\eta^{5-}C_5H_5W(CO)_3H$ and excess styrene and of $\eta^{5-}C_5H_5W(CO)_3CH(CH_3)C_6H_5$. Photolysis of $\eta^{5-}C_5H_5W(CO)_3CHDCHDC_6H_5$ -three in cyclohexane solution does not change its diastereomeric purity. This result is interpreted by the absence of any significant photochemically induced W-C σ bond homolysis. Irradiation of $\eta^{5-}C_5H_5W$ -(CO) CD CU L hoto to re-thermethy L Dependence in protected by the absence of the stars the thermethy the protected by the stars of $\eta^{5-}C_5H_5W$ - $(CO)_3CD_2CH_2C_6H_5$ leads to no observable H-D scrambling in unreacted tungsten-phenethyl complex. The η^3 -methylbenzyl complex η^5 -C₅H₅W(CO)₂(η^3 -CH_{1-y}D_y(CH_{3-x}D_x)C₆H₅), isolated from photolysis of each of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅ and η^5 -C₅H₅W(CO)₃CD₂CH₂C₆H₅ in cyclohexane, shows essentially statistical distribution of ¹H between the (CH_{3-x}D_x)(CH_{1-y}D_y) positions. These results are rationalized by rapid isomerization via hydrogen (or deuterium) shifts of photogenerated 16-electron η^5 -C₅H₅W-(CO)₂CH_{2-x}D_xCH_{2-y}D_yC₆H₅ to η^5 -C₅H₅W(CO)₂CH_{1-y}D_y(CH_{3-x}D_x)C₆H₅, followed by collapse of the latter to η^5 -C₅H₅W(CO)₂(η^3 -CH_{1-y}D_y(CH_{3-x}D_x)C₆H₅). β -Hydrogen (or -deuterium) transfer in η^5 -C₅H₅W(CO)₂-(phenethyl) to give η^5 -C₅H₅W(CO)₂(H or D)(styrene) appears to be much faster than CO capture to yield η^5 -C₅H₅W(CO)₃(phenethyl), even under 1 atm of CO.

Introduction

The α,β -dideuteriophenethyl group, CHDCHDC₆H₅, which exists in the three and erythro diastereomeric forms, can be conveniently introduced onto a transition metal in its threo form.¹⁻³ When ligated, it has been successfully employed as a stereochemical probe for reactions that disrupt the M-C σ bond.⁴ Investigated in this context have been the phosphine-induced CO insertion,³ the SO₂,³ $C_6H_5S(O)_2NSO^5$ and $[p-XC_6H_4S(O)_2N]_2S$ (X = H, Cl)⁵ insertions, the halogen-^{2,6} and HgCl₂-induced⁷ cleavage, and β -hydrogen elimination.¹ Useful mechanistic information was derived from each of the foregoing studies.

We now set out to determine whether the use of CHD- $CHDC_6H_5$ can contribute to a better understanding of the mechanism of photochemical reactions of transitionmetal-alkyl complexes. If homolysis of the M- $CHDCHDC_6H_5$ bond occurs, then the generated •CHDCHDC₆H₅ radical is expected to undergo rapid epimerization, consistent with the behavior of organic alkyl radicals.⁸ Recombination of \cdot CHDCHDC₆H₅ with the

(6) Dong, D.; Baird, M. C. J. Organomet. Chem. 1979, 172, 467.
 (7) Dong, D.; Slack, D. A.; Baird, M. C. Inorg. Chem. 1979, 18, 188.

metal-centered radical would afford a mixture of diastereomeric MCHDCHDC₆H₅. In contrast, if no photochemically induced M- $\check{CHDCHDC}_6H_5$ bond homolysis takes place, then the diastereomeric composition of unreacted metal-alkyl complex will remain constant during the photolysis.

For the proposed study we chose to synthesize and examine the complex η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅. Our choice of the metal system was dictated by the relatively high thermal stability and the recent interest in the photo chemistry of tungsten-alkyl complexes of the type η^5 -C₅H₅W(CO)₃R.⁹⁻¹¹ Following our disclosure¹² of some preliminary results of this study, Wrighton and co-workers reported¹³ on the photochemistry of η^5 -C₅H₅W-(CO)₃CH₂CH₂C₆H₅. Our approach, which is largely stereochemical and utilizes the deuterium-labeled η^5 -C₅H₅W- $(CO)_3CD_2CH_2C_6H_5$ in addition to $\eta^5-C_5H_5W_-$ (CO)₃CHDCHDC₆H₅-threo, differs from that of Wrighton, and the results presented in this paper complement well his findings. We also report here on the stereochemistry

⁽¹⁾ Dunham, N. A.; Baird, M. C. J. Chem. Soc., Dalton Trans. 1975, 774.

Slack, D. A.; Baird, M. C. J. Am. Chem. Soc. 1976, 98, 5539.
 Dong, D.; Slack, D. A.; Baird, M. C. J. Organomet. Chem. 1978, 153, 219.

⁽⁴⁾ This general approach was first applied to organometallic stereo-chemistry by G. M. Whitesides who used the related ligand CHDCHD-CiCH₃)₃; see, for example: (a) Whitesides who used the related fight ChDChD CiCH₃)₃; see, for example: (a) Whitesides, G. M.; Boschetto, D. J. J. Am. Chem. Soc. 1969, 91, 4313. (b) Bock, P. L.; Boschetto, D. J.; Rasmussen, J. R.; Demers, J. P.; Whitesides, G. M. Ibid. 1974, 96, 2814. (5) Severson, R. G.; Leung, T. W.; Wojcicki, A. Inorg. Chem. 1980, 19, (c) Severson, S. G.; Leung, T. W.; Wojcicki, A. Inorg. Chem. 1980, 19, (c) Severson, S. G.; Leung, T. W.; Wojcicki, A. Inorg. Chem. 1980, 19, (c) Severson, S. G.; Leung, T. W.; Wojcicki, A. Inorg. Chem. 1980, 19, (c) Severson, S. G.; Leung, T. W.; Wojcicki, A. Inorg. Chem. 1980, 19, (c) Severson, S. Severson, Se

⁹¹⁵

^{47, 2371. (}e) Greene, F. D.; Berwick, M. A.; Stowell, J. C. J. Am. Chem. (9) Alt, H. G. J. Organomet. Chem. 1977, 124, 167.
 (10) Severson, R. G.; Wojcicki, A. J. Organomet. Chem. 1978, 157, 173.
 (11) Kazlauskas, R. J., Wrighton, M. S. J. Am. Chem. Soc. 1982, 104, 0007

⁶⁰⁰⁵

⁽¹²⁾ Su, S.-C. H.; Wojcicki, A. Abstract 1C08, Tenth International Conference on Organometallic Chemistry, Toronto, Canada, Aug 9–14, 1981, p 47.

⁽¹³⁾ Klein, B.; Kazlauskas, R. J.; Wrighton, M. S. Organometallics 1982, 1, 1338.

of reactions of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo with SO_2 and I_2 .

Experimental Section

General Procedures and Measurements. All thermal reactions were carried out under an atmosphere of purified nitrogen. Elemental analyses were done by Galbraith Laboratories, Inc., Knoxville, TN. Melting points were measured in vacuo on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded on Perkin-Elmer Model 337 and 283 spectrophotometers and were calibrated with polystyrene. Mass spectra were obtained at 70 eV on an AEI Model MS-9 spectrometer by Mr. C. R. Weisenberger. ¹H NMR spectra were recorded on Varian Associates EM-360L and EM-390L and Bruker WM-300 spectrometers with use of Me_4Si as an internal reference. ¹H²H NMR spectra were obtained on a Varian HA-100 spectrometer with a decoupling frequency of 7.6757 MHz. ¹³C NMR spectra were recorded on the Bruker WM-300 at 75.478 MHz and on a home-built spectrometer equipped with a wide-band high-power probe and a Nicolet 1080 computer at 15.1 MHz by Dr. B.-M. Su. Chemical shifts are reported relative to Me₄Si at δ 0.

Irradiation Procedures. Solutions to be irradiated were degassed in four freeze-pump-thaw cycles and then hermetically sealed under argon (or CO, when so stated). All photoreactions were conducted at room temperature in Pyrex tubes equipped with a stirrer. Irradiations were performed with 350-nm lamps in a Rayonet Model RPR-100 photochemical reactor. Photolyzed solutions were analyzed by IR spectroscopy. Ferrioxalate actinometry¹⁴ was used to determine lamp intensities that were on the order of 1×10^{-4} einstein/min.

Materials. THF was distilled from Na/K and benzophenone immediately before use. Reagent grade cyclohexane was further purified by distillation from a blue solution of sodium benzophenone ketyl. Chloroform and dichloromethane were distilled from P_4O_{10} and stored over 4-Å molecular sieves. Diethyl ether was passed through a column of alumina and distilled from sodium benzophenone ketyl under nitrogen. Other solvents were of reagent grade or equivalent quality and were dried over molecular sieves before use.

p-Toluenesulfonyl chloride (from MCB) was recrystallized from chloroform-petroleum ether (bp 35-60 °C). Ethyl phenylacetate and styrene (from Aldrich) were purified as described by Perrin.¹⁵ Sulfur dioxide (from Matheson) was purified before use by passage through concentrated H_2SO_4 and a column packed with P_4O_{10} . Other commercially procured reagents were used as received. η^5 -C₅H₅W(CO)₃H was prepared as described in the literature.¹⁶

Preparation of η^5 -C₅H₅W(CO)₃CH₂CH₂C₆H₅. To a solution of Na[η^5 -C₅H₅W(CO)₃]¹⁶ (from 21.1 g, 60 mmol, of W(CO)₆ and NaC₅H₅) in 120 mL of THF was added 20.8 g (74 mmol) of $\rm C_6H_5CH_2CH_2OS(O)_2C_6H_4CH_3$ $p,^{17}$ and the reaction mixture was stirred under reflux for 2 h. Solvent was removed on a rotary evaporator, and the solid residue was extracted with CH₂Cl₂. The extract was evaporated to dryness and most of the W(CO)₆ contaminant was sublimed off at 40 °C under vacuum. The residue was dissolved in minimum CHCl₃, and the solution was chromatographed on a column packed with grade III neutral alumina in cyclohexane. Elution with cyclohexane afforded a yellow band from which 10.5 g (40% yield based on $W(CO)_6$) of product was obtained on evaporation to dryness. Crystallization from CHCl₃-petroleum ether (bp 35-60 °C) afforded yellow needles: mp 116-117 °C; ¹H NMR (CDCl₃) & 7.17 (s, 5 H, C₆H₅), 5.17 (s, 5 H, C₅H₅), 2.90-2.70, 1.84-1.63 (AA'XX'; 2 H, 2 H; CCH₂C, WCH₂, respectively); ${}^{13}C[{}^{1}H]$ NMR (CDCl₃) δ -8.6 (WCH₂), 42.8 (CCH₂C), 91.5 (C₅H₅), 125.5 (p-C of C₆H₅), 127.8, 128.3 (o,m-C of C₆H₅), 147.3 (ipso-C of C₆H₅), 217.8, 228.5 (CO); IR $(C_6H_{12}) \nu(C = 0)$ 2018 (5300), 2004 (w), 1926 (9500), 1892 (w) cm⁻¹; mass spectrum (probe 140 °C), m/e (relative intensity) 438

 P^+ (9), 410 (P - CO)⁺ (23), 382 (P - 2CO)⁺ (1), 354 (P - 3CO)⁺ (100), 105 $C_8H_9^+$ (57) (P = $C_{16}H_{14}O_3^{184}W$).

Preparation of η^5 -C₅H₅W(CO)₃CD₂CH₂C₆H₅. The procedure was the same as that for η^5 -C₅H₅W(CO)₃CH₂CH₂C₆H₅, except that $C_6H_5CH_2CD_2OS(O)_2C_6H_4CH_3$ -p, from $C_6H_5CH_2CD_2OH^{18}$ and p-CH₃C₆H₄S(O)₂Cl in pyridine, was used in place of its perhydro analogue. The $C_6H_5CH_2CD_2OH$ contained 1.96 atoms of D/ molecule by mass spectrometry. η^5 -C₅H₅W(CO)₃CD₂CH₂C₆H₅: ¹H NMR (CDCl₃) δ 7.14 (s, 5 H, C₆H₅), 5.33 (s, 5 H, C₅H₅), 2.77 $(br s, 2 H, CCH_2C).$

Preparation of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo. The title complex was prepared by additon of erythro-C₆H₅CHDCHDOS(O)₂C₆H₄CH₃- p^2 to a THF solution of Na- $[\eta^5-C_5H_5W(CO)_3]^{16}$ and stirring the mixture at 35 °C for 17 h. Workup as above gave ca. 20% yield (based on W(CO)₆) of yellow crystals: ¹H{²H} NMR (CDCl₃) δ (only <4) 2.77 (d, ³J_{HH} = 4.6 Hz, 1 H, CCHDC), 1.71 (d, ³J_{HH} = 4.6 Hz, 1 H, WCHD); ¹³C{¹H} NMR (CDCl₃) δ (only <50) -8.5 (t, ¹J_{CD} = 20.3 Hz, WCHD), 42.7 (t, ${}^{1}J_{CD}$ = 19.6 Hz, CCHDC); mass spectrum (probe 120 °C) m/e(relative intensity) 440 P⁺ (12), 412 (P - CO)⁺ (28), 384 (P - 2CO)⁺ (1), 356 (P - 3CO)⁺ (100), 305 (P - CO - C₈H₇D₂)⁺ (10), 277 (P - 2CO - C₈H₇D₂)⁺ (12), 249 C₅H₅W⁺ (12), 107 C₈H₇D₂⁺ (3) (P = $C_{16}H_{12}D_2\check{O_3}^{184}W).$

Preparation of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo,erythro (50:50 Mixture). This 50:50 diastereomeric mixture was prepared by addition of 5.41 g (23.1 mmol) of threo, erythro- $C_6H_5CHDCHDI$ (50:50 mixture)² to a THF solution of Na $[\eta^5$ - $C_5H_5W(CO)_3$ ¹⁶ (from 7.03 g, 20 mmol, of W(CO)₆ and NaC₅H₅) and maintaining the resulting solution at reflux for 3 h. Usual workup followed: yield 2.0 g (23% based on W(CO)₆); ${}^{1}H{}^{2}H{}$ NMR (CDCl₃) δ (only <4) 2.77 (2d, ${}^{3}J_{HH} = 13.1$ and 4.6 Hz, 1 H, CCHDC erythro and threo, respectively), 1.71 (2d, ${}^{3}J_{HH} = 13.1$ and 4.6 Hz, 1 H, WCHD erythro and threo, respectively).

Preparation of η^5 -C₅H₅W(CO)₃CH(CH₃)C₆H₅. To a solution of $Na[\eta^5 \cdot C_5H_5W(CO)_3]^{16}$ (from 8.44 g, 24 mmol, of $W(CO)_6$ and NaC₅H₅) in 50 mL of THF was added 6.48 g (36 mmol) of C₆- $H_5CH(CH_3)Cl$, and the reaction mixture was stirred at room temperature for 2.5 days. Solvent was removed, the residue was extracted with CH₂Cl₂, and the extract was chromatographed on a column packed with grade III neutral alumina in pentane. Elution with pentane afforded a yellow band which on removal of the solvent yielded an oil. Dissolution of the oil in cyclohexane and evaporation of the solvent afforded straw-colored crystals: 0.474 g (ca. 5% yield); ¹H NMR (CDCl₃) δ 7.27-6.83 (m, 5 H, $\begin{array}{l} C_{6}H_{5}), 5.11 \; ({\rm s}, 5 \; {\rm H}, \, C_{5}H_{5}), \, 3.75 \; ({\rm q}, \, {}^{3}J_{\rm HH} = 7.5 \; {\rm Hz}, \, 1 \; {\rm H}, \, {\rm CH}), \, 1.90 \\ ({\rm d}, \, {}^{3}J_{\rm HH} = 7.5 \; {\rm Hz}, \, 3 \; {\rm H}, \, {\rm CH}_{3}); \, {\rm IR} \; (C_{6}H_{12}) \; \nu({\rm C=\!O}) \; 2013 \; ({\rm vs}), \, 1930 \end{array}$ (vs), 1920 (vs) cm⁻¹.

Reaction of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo with SO₂. Reaction between the title tungsten complex (0.178 g, 0.404 mmol) and liquid SO_2 (12 mL) was conducted at room temperature for 16 days according to a general literature procedure.¹⁹ Standard workup and crystallization from CHCl3-petroleum ether (bp 35-60 °C) afforded 0.081 g (40% yield) of η^5 -C₅H₅W(CO)₃S- $\begin{array}{ll} (O)_2 CHDCHDC_6 H_5 \ erythro \ as \ a \ yellow \ crystalline \ solid: \ mp \\ 103-105 \ ^\circ C \ dec; \ ^1H_1^2H_1 \ NMR \ (CDCl_3) \ \delta \ 7.22 \ (s, \ 5 \ H, \ C_6 H_5), \ 5.90 \end{array}$ $(s, 5 H, C_5H_5), 3.44, 3.10 (AB q, {}^3J_{HH} = 12.0 Hz, 2 H, SCHD and$ CCHDC, respectively); IR (CHCl₃) ν (C=O) 2049 (1900), 1962 (2400) cm⁻¹, (Nujol) ν (SO₂) 1190 (m), 1052 (s) cm⁻¹.

Reaction of η^{5} -C₅H₅W(CO)₃CH₂CH₂C₆H₅ with SO₂. Conducted as above, this reaction afforded a comparable yield of η^5 -C₅H₅W(CO)₃S(O)₂CH₂CH₂C₆H₅: mass spectrum (probe 80 °C), m/e (relative intensity) 474 (P - CO)⁺ (6), 438 (P - SO₂)⁺ (12), 410 (P - CO - SO₂)⁺ (28), 354 (P - 3CO - SO₂)⁺ (80), 333 (P - 20)⁺ $SO_2 - C_8H_9$ (37), 249 $C_5H_5W^+$ (100), 105 $C_8H_9^+$ (>100) (P = $C_{16}H_{14}O_5S^{184}W$). Anal. Calcd for $C_{16}H_{14}O_5SW$: C, 38.27; H, 2.81; S, 6.38. Found: C, 38.10; H, 2.90; S, 6.26. Reaction of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo with I₂.

This iodination reaction was carried out at room temperature by adding a CHCl₃ solution of 2 equiv of I_2 to a stirred CHCl₃ solution of the title tungsten complex. The reaction mixture was stirred for 1 h, the red precipitate was filtered off and identified as η^5 -C₅H₅W(CO)₂I₃²⁰ by IR and ¹H NMR spectroscopy, and the

⁽¹⁴⁾ Hatchard, C. G.; Parker, C. A. Proc. R. Soc. London, Ser. A 1956, 235, 518.

⁽¹⁵⁾ Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. "Purification of Laboratory Chemicals"; Pergamon Press: Oxford, England, 1966.
(16) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 3, 104.
(17) (a) Tipson, R. S. J. Org. Chem. 1944, 9, 235. (b) Wiseman, P. A.;

Betras, S.; Lindley, B. J. Chem. Educ. 1974, 51, 348.

⁽¹⁸⁾ Saunders, W. H., Jr.; Asperger, S.; Edison, D. H. J. Am. Chem. Soc. 1958, 80, 2421.

⁽¹⁹⁾ Kroll, J. O.; Wojcicki, A. J. Organomet. Chem. 1974, 66, 95.

Table I. Values of ${}^{3}J_{HH}$ for Some Alkyl and Sulfinato Compounds C₆H₅CHDCHDY (CDCl₃ Solution)

- * *	,	
Y	$^{3}J_{\rm HH}({\rm threo})$	³ J _{HH} (erythro)
$\eta^{5}-C_{5}H_{5}Fe(CO)_{2}$ cis-Mn(CO) ₄ [P(C ₂ H ₅) ₃] trans $\eta^{5}-C_{5}H_{5}W(CO)_{2}$ - [P(C ₂ H ₂) ₂]	4.8^{a} 4.6^{b} 4.5^{b}	12.6ª
$\begin{array}{l} \eta^{5} C_{5} H_{5} W(CO)_{3} \\ \eta^{5} C_{5} H_{5} Fe(CO)_{2} S(O)_{2} \\ cis Mn(CO)_{4} [P(C_{2}H_{5})_{3}] S(O)_{2} \\ trans \eta^{5} C_{5} H_{5} W(CO)_{2} \\ [P(C_{2}H_{5})_{3}] S(O)_{2} \\ \eta^{5} C_{5} H_{5} W(CO)_{3} S(O)_{2} \end{array}$	4.6 ^c	$13.1^{c} \\ 12.4^{b} \\ 12.6^{b} \\ 12.5^{b} \\ 12.0^{c} $

^a From ref 2. ^b From ref 3. ^c This work.

filtrate containing threo-C₆H₅CHDCHDI was concentrated: ¹H- 2 H NMR (CHCl₃) of the filtrate δ (only <5) 3.30, 3.06 (AB q, ${}^{3}J_{\rm HH} = 6.0$ Hz, 2 H, CHDI and CCHDC, respectively).

Reaction of η^5 -C₅H₅W(CO)₃CD₂CH₂C₆H₅ with I₂. Conducted as above, the reaction yielded comparable results: ¹H NMR (CHCl₃) of the filtrate δ (only <5) 3.06 (s, 2 H, CCH₂C)

Photochemical Conversion of n⁵-C₅H₅W(CO)₃CH₂CH₂C₆H₅ to η^5 -C₅H₅W(CO)₂(η^3 -CH(CH₃)C₆H₅). A 0.01-0.02 M solution of the title complex in cyclohexane was irradiated for 30-60 min (until ca. 50% of the starting material disappeared). The red precipitate of $[\eta^5 \cdot C_5 H_5 W(CO)_3]_2^{10}$ was filtered off, and the filtrate was evaporated to dryness. The residue was dissolved in minimum $\rm CH_2\rm Cl_2$ and chromatographed on grade III neutral alumina. Cyclohexane first eluted unreacted η^5 -C₅H₅W(CO)₃CH₂CH₂C₆H₅ and then η^5 -C₅H₅W(CO)₂(η^3 -CH(CH₃)C₆H₅), which was obtained as a rust solid, mp 133-133.5 °C dec, in ca. 15% yield by removal of the solvent: ¹H NMR (C₆D₆, Bruker WM-300) δ 7.05 (d, 1 H, H(e)), 6.90 (t, 1 H, H(c)), 6.75 (t, 1 H, H(b)), 6.63 (t, 1 H, H(d)), H(e), 6.30 (t, 1 H, H(c)), 6.73 (t, 1 H, H(d)), 6.83 (t, 1 H, H(d)), 4.66 (s, 5 H, C₅H₅), 4.21 (d, 1 H, H(a)), 2.18 (d, ${}^{3}J_{HH} = 5.7$ Hz, 3 H, CH₃), 1.62 (q, ${}^{3}J_{HH} = 5.7$ Hz, 1 H, H(f)); ${}^{13}C$ NMR, gated (CD₂Cl₂, Bruker WM-300) δ 17.7 (q, $J_{CH} = 127$ Hz, C(8)), 30.6 (d, $J_{CH} = 149$ Hz, C(7)), 61.1 (d, $J_{CH} = 164$ Hz, C(2)), 90.7 (d, $J_{CH} =$ = 176 Hz, C₅H₅), 105.8 (s, C(1)), 122.5 126.8, 128.0 (3d, $J_{CH} = 173$, 121.1 Hz, Hz, expectively, C(2), (d, $J_{CH} = 161$ 161, 151 Hz, respectively, C(3), C(4), C(5)), 135.6 (d, $J_{CH} = 161$ Hz, C(6)), 231.0, 233.7 (2s, 2CO); IR (C₆H₁₂) ν (C=O) 1950 (6300), 112, C(0)), 2516, 265, 162, 260, 117 (Eg112) (C=0) 100 (C000), 1875 (6300) cm⁻¹; mass spectrum (probe 100 °C), m/e (relative intensity) 410 P⁺ (28), 382 (P - CO)⁺ (v weak), 354 (P - 2CO)⁺ (100), 276 C₅H₅WC₂H₃⁺ (15), 104 C₈H₈⁺ (\gg 100), P⁺ observed at m/e 410.050 898, calcd 410.050 373 (P = C₁₅H₁₄O₂¹⁸⁴W). Anal. Calcd for C₁₅H₁₄O₂W: C, 43.93; H, 3.44. Found: C, 43.72; H, 3.50.

Photochemical Reaction of η^5 -C₅H₅W(CO)₃H with Styrene. A cyclohexane solution of the hydrido complex (0.02 M) and ca. tenfold excess of styrene was irradiated for 30 min. Workup followed as in the preceding reaction to afford ca. 10% yield of η^{5} -C₅H₅W(CO)₂(η^{3} -CH(CH₃)C₆H₅) based on η^{5} -C₅H₅W(CO)₃H.

Results and Discussion

Preparation of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo. Reaction of erythro-C₆H₅CHDCHDOS(O)₂C₆H₄CH₃-p with $Na[\eta^5-C_5H_5W(CO)_3]$ requires higher temperatures or longer reaction times than that with $Na[\eta^5-C_5H_5Fe(CO)_2]^2$ When conducted at 35 °C for 17 h, it affords η^5 -C₅H₅W- $(CO)_3 CHDCHDC_6H_5$ -threo (eq 1) in $\geq 95\%$ diastereometric purity. The stereochemistry of the α,β -dideuteriophen-

ethyl group was elucidated by ¹H²H NMR specroscopy and rests on the observations 2,3,7,21 that the vicinal coupling constants for various three and erythre diastereomers containing CHDCHDC₆H₅ are not equal, ${}^{3}J_{HH}$ (threo) <

 ${}^{3}J_{\rm HH}$ (erythro). The coupling constant of 4.6 Hz for the product compares well with that for other transition-metal CHDCHDC₆H₅-threo complexes listed in Table I. Reaction of an equilibrium mixture (50:50) of threo, erythro-C₆H₅CHDCHDI with Na[η^5 -C₅H₅W(CO)₃] yielded a diastereomeric mixture (50:50) of η^5 -C₅H₅W-(CO)₃CHDCHDC₆H₅-threo,erythro, for which a $^3J_{HH}$ (erythro) = 13.1 Hz (cf. Table I) was measured. η^5 -C₅H₅W- $(CO)_3CHDCHDC_6H_5$ -threo, as well as the similarly prepared perhydro and $CD_2CH_2C_6H_5$ analogues, were characterized by a combination of ¹H and ¹³C NMR and IR spectroscopy and mass spectrometry as detailed in Experimental Section.

The foregoing stereochemical result parallels that obtained for the reactions of each of $Na[\eta^5-C_5H_5Fe(CO)_2]$,² $\begin{array}{l} Na[Mn(CO)_4P(C_2H_5)_3],^3 \ and \ Na[\eta^5-C_5H_5W(CO)_2P(C_2H_5)_3]^3 \\ with \ erythro-C_6H_5CHDCHDOS(O)_2C_6H_4CH_3-p. \end{array} The \end{array}$ formation of the M-CHDCHDC₆H₅ bond proceeds with inversion of configuration at carbon, presumably through nucleophilic displacement of p-CH₃C₆H₄SO₃⁻ by the metal carbonyl anion.

Sulfur Dioxide Insertion Reaction of η^5 -C₅H₅W-(CO)₃CHDCHDC₆H₅-threo. Sulfur dioxide insertion into the W–C σ bond of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo proceeds slowly (16 days) in neat SO_2 in a closed vessel at room temperature to afford η^5 -C₅H₅W(CO)₃S- $(O)_2$ CHDCHDC₆H₅-erythro as depicted in eq 2. The

diastereomeric nature of the product was determined from the value of its ${}^{3}J_{\rm HH}$, 12.0 Hz (cf. Table I). The stereochemistry of this \overline{SO}_2 insertion is thus the same as that observed for other 18-electron transition-metal carbonyl alkyls.^{3,4b,22} A proposed mechanism, which is based on inversion at α -carbon, was elaborated elsewhere.^{23,24}

Iodine Cleavage Reactions of η^5 -C₅H₅W- $(CO)_{3}CHDCHDC_{6}H_{5}$ -threo $\eta^5 - C_5 H_5 W$ and $(CO)_3CD_2CH_2C_6H_5$. Iodine cleavage reactions of these two differently labeled tungsten-phenethyl complexes were carried out by using 2 equiv of I_2 in order completely to convert the metal-alkyl complex to phenethyl iodide and the sparingly soluble $\eta^5 \cdot C_5 \hat{H_5} W(CO)_2 I_3$. This clean conversion permits an ¹H (or ¹H{²H}) NMR spectrum of the phenethyl iodide to be recorded on the filtrate from the reaction mixture, without need for further separation and purification. Use of 1 equiv of I₂, on the other hand, affords a mixture of η^5 -C₅H₅W(CO)₂I₃, η^5 -C₅H₅W(CO)₃I, phenethyl iodide, and unreacted tungsten-phenethyl complex; this complicates characterization by NMR spectroscopy without prior separation.

Cleavage of the W-C σ bond proceeds with the stereochemistry shown in eq 3 and 4. Retention of configuration

$$\eta^{5}-C_{5}H_{5}W(CO)_{3}CD_{2}CH_{2}C_{6}H_{5} + 2I_{2} \rightarrow \eta^{5}-c_{5}H_{5}W(CO)_{2}I_{3} + \bigcup_{I}^{C_{6}H_{5}}H_{I} + co \qquad (3)$$
three
$$\eta^{5}-C_{5}H_{5}W(CO)_{3}CD_{2}CH_{2}C_{6}H_{5} + 2I_{2} \rightarrow \eta^{5}-c_{5}H_{5}W(CO)_{2}I_{3} + C_{6}H_{5}CH_{2}CD_{2}I + CO \qquad (4)$$

⁽²⁰⁾ Green, M. L. H.; Lindsell, W. E. J. Chem. Soc. A 1967, 686. (21) Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1977, 99, 1808.

⁽²²⁾ Review: Flood, T. C. Top. Stereochem. 1981, 12, 37.

 ⁽²³⁾ Wojcicki, A. Adv. Organomet. Chem. 1974, 12, 31.
 (24) Miles, S. L.; Miles, D. L.; Bau, R.; Flood, T. C. J. Am. Chem. Soc. 1978, 100, 7278.

carbon in the cleavage of η^5 -C₅H₅W- $(CO)_3 CHDCHDC_6H_5$ -three follows from the value of ${}^3J_{HH}$, 6.0 Hz, of the filtrate from the reaction mixture, which is identical with the value reported for threo-C₆H₅CHDCHDI. The iodination of η^5 -C₅H₅W- $(CO)_3CD_2CH_2C_6H_5$ affords $C_6H_5CH_2CD_2I$ as the only isomer of phenethyl iodide; this was inferred from the ¹H NMR spectrum of soluble product (see Experimental Section). The former result is qualitatively the same as that the iodination of η^5 -C₅H₅Fefor $(CO)_2CHDCHDC_6H_5$ -threo² and cis-Mn $(CO)_4[P(C_2H_5)_3]$ -CHDCHDC₆H₅-threo⁶ under similar conditions. However, the observed degree of retention $(\geq 90\%)$ is greater than that for the iron ($\sim 80\%$) and manganese (63–72%) complexes. The latter result of our study contrasts with that reported²⁵ for the iodination of η^5 -C₅H₅Fe- $(CO)_2CD_2CH_2C_6H_5$ which yields a 50:50 mixture of C₆- $H_5CH_2CD_2I$ and $C_6H_5CD_2CH_2I$. However, it accords with the stereochemistry of I_2 cleavage of Co(py)- $(Hdgy)_2CD_2CH_2C_6H_5$ (py = pyridine, Hdgy = dimethylglyoximato) to give isomerically pure $C_6H_5CH_2CD_2I$.²⁵

The foregoing stereochemical findings may be rationalized on the basis of initial electrophilic attack of I_2 on the metal in η^5 -C₅H₅W(CO)₃(phenethyl) to afford [η^5 - $C_5H_5W(CO)_3$ (phenethyl)I]⁺I⁻. Reductive elimination of phenethyl iodide and coordination of I⁻ to tungsten would then yield η^5 -C₅H₅W(CO)₃I. Oxidation of η^5 -C₅H₅W(CO)₃I to η^5 -C₅H₅W(CO)₂I₃ with a second equivalent of I₂²⁰ completes the reactions in eq 3 and 4. Such a mechanism, analogous to that proposed earlier^{26,27} for electrophilic cleavage reactions of the Fe-C σ bond in η^5 -C₅H₅Fe-(CO)(L)R (L = CO, PR'₃, etc.), would account for the retention of configuration at α -carbon and the absence of scrambling of the phenethyl methylene groups during cleavage. The difference in the stereochemistry of the iodination of η^5 -C₅H₅W(CO)₃CD₂CH₂C₆H₅ and η^5 - $C_5H_5Fe(CO)_2CD_2CH_2C_6H_5$ may be explained if η^5 - $C_5H_5Fe(CO)_2I$ is a better leaving group than η^5 - C_5H_5W - $(CO)_3I$. This would result in the formation of the phenonium ion in the reaction of the iron complex²²—but not of the tungsten complex-thus leading to CH₂-CD₂ scrambling. Evidence for a facile dissociation of η^5 - $C_5H_5Fe(CO)_2E$ (E = electrophile such as HgCl) from several $[\eta^5-C_5H_5Fe(CO)_2(E)R]^+$ species has been presented.²⁸

Irradiation of $\eta^{5-}C_{5}H_{5}W(CO)_{3}CH_{2}CH_{2}C_{6}H_{5}$ and Its Dideuterio Analogues. (a) Photochemistry. Photolysis of ca. 1×10^{-2} M solutions of $\eta^{5-}C_{5}H_{5}W(CO)_{3}CH_{2}CH_{2}C_{6}H_{5}$ in cyclohexane under argon leads to the appearance of two new IR $\nu(C=0)$ absorptions at 1950 and 1875 cm⁻¹ after about 2 min. These bands have been assigned to $\eta^{5-}C_{5}H_{5}W(CO)_{2}(\eta^{3-}CH(CH_{3})C_{6}H_{5})$ (vide infra), formed according to eq 5. Continued irradiation leads to an increase

$$\eta^{5} - C_{5}H_{5}W(CO)_{3}CH_{2}CH_{2}C_{6}H_{5} \xrightarrow{hv} \eta^{5} - C_{5}H_{5}W(CO)_{2}(\eta^{3} - CH(CH_{3})C_{6}H_{5}) + CO (5)$$

in intensity of the aforementioned absorptions and, after ca. 45 min, to the appearance of $\nu(C\equiv O)$ absorptions characteristic of η^5 -C₅H₅W(CO)₃H¹⁶ (2028 and 1938 cm⁻¹) and $[\eta^5$ -C₅H₅W(CO)₃]₂ (1963 and 1914 cm⁻¹). The tungsten dimer was later isolated and identified by comparison of its ¹H NMR and mass spectra with the corresponding

Figure 1. The lettering scheme for the protons a-f and the numbering scheme for the carbons 1-8 of the η^3 -methylbenzyl ligand of η^5 -C₅H₅W(CO)₂(η^3 -CH(CH₃)C₆H₅). The chemical shifts of the protons are given in parentheses.

spectra of an authentic sample. Longer irradiation times generate somewhat higher concentrations of the products. However, the concentration of $[\eta^5-C_5H_5W(CO)_3]_2$ builds up with time, and conversions of only 50–70% were realized after 1–2 h.

Similar results were obtained when the photolysis was conducted under CO. The starting material was observed to disappear essentially at a comparable rate.

Irradiation of η^5 -C₅H₅W(CO)₃H and excess styrene in cyclohexane under argon also affords η^5 -C₅H₅W(CO)₂- $(\eta^3$ -CH(CH₃)C₆H₅) as the only detectable product during short reaction times (eq 6). Photolysis of η^5 -C₅H₅W-(CO)₃CH(CH₃)C₆H₅ in cyclohexane gives η^5 -C₅H₅W-(CO)₂(η^3 -CH(CH₃)C₆H₅) as well, according to eq 7, along with $[\eta^5$ -C₅H₅W(CO)₃]₂.

$$\eta^{5} \cdot C_{5}H_{5}W(CO)_{3}H + C_{6}H_{5}CH = CH_{2} \xrightarrow{nv} \eta^{5} \cdot C_{5}H_{5}W(CO)_{2}(\eta^{3} \cdot CH(CH_{3})C_{6}H_{5}) + CO (6)$$

$$(co)_{3}W - CH \longrightarrow (co)_{2}W + co$$
(7)

Wrighton and co-workers reported^{11,13} that low-temperature (77K) irradiation of η^5 - $C_5H_5W(CO)_3CH_2CH_2C_6H_5$ followed by warming affords $trans - \eta^5 - C_5 H_5 W(CO)_2(H)$ - $(CH_2 = CHC_6H_5)$, which can still be observed at room temperature before rearrangement to η^5 -C₅H₅W(CO)₂- $(\eta^3$ -CH(CH₃)C₆H₅). Furthermore, they were able to detect $trans-\eta^5-C_5H_5W(CO)_2(H)(CH_2=CHC_6H_5)$ on irradiation of η^5 -C₅H₅W(CO)₃H in the presence of styrene. Under the conditions employed in our study, the photoreactions in eq 5-7 all generate η^5 -C₅H₅W(CO)₂(η^3 -CH(CH₃)C₆H₅) as the first product present in sufficient concentration for detection by IR spectroscopy. Apparently under these conditions $trans-\eta^{5}-C_{5}H_{5}W(CO)_{2}(H)(CH_{2}=CHC_{6}H_{5})$ undergoes a more rapid conversion to η^5 -C₅H₅W(CO)₂(η^3 - $CH(CH_3)C_6H_5$) than under the conditions of Wrighton's study. Prolonged irradiation yields η^5 -C₅H₅W(CO)₃H and/or $[\eta^5-C_5H_5W(CO)_3]_2$ as secondary product(s).

(b) Characterization of η^5 -C₅H₅W(CO)₂(η^3 -CH-(CH₃)C₆H₅). Workup of the irradiated solution after ca. 50% of the starting material had disappeared led to the isolation of η^5 -C₅H₅W(CO)₂(η^3 -CH(CH₃)C₆H₅) as described in Experimental Section. This compound was characterized by elemental analysis, exact molecular weight determination by mass spectrometry, and IR and NMR spectroscopy. The IR spectrum shows two ν (C=O) absorptions which are within 10 cm⁻¹ of the values reported²⁹ for the related complex η^5 -C₅H₅W(CO)₂(η^3 -CH₂C₆H₄CH₃-p). The 300-MHz ¹H NMR spectrum exhibits separate resonances for the various kinds of protons. The lettering scheme and the chemical shifts of these protons are presented in Figure

⁽²⁵⁾ Flood, T. C.; DiSanti, F. J. J. Chem. Soc., Chem. Commun. 1975, 18.

 ⁽²⁶⁾ Attig, T. G.; Teller, R. G.; Wu, S.-M.; Bau, R.; Wojcicki, A. J. Am.
 Chem. Soc. 1979, 101, 619.
 (27) Flood, T. C.; Miles, D. L. J. Organomet. Chem. 1977, 127, 33.

 ⁽²⁷⁾ Flood, T. C.; Miles, D. L. J. Organomet. Chem. 1977, 127, 33.
 (28) Dizikes, L. J.; Wojcicki, A. J. Am. Chem. Soc. 1977, 99, 5295.

⁽²⁹⁾ Cotton, F. A.; Marks, T. J. J. Am. Chem. Soc. 1969, 91, 1339.

1. The assignments were made with the aid of homonuclear decoupling experiments. Thus, irradiation at the frequency of the δ 2.18 signal collapses the δ 1.62 quartet to a singlet. Similarly, irradiation at the δ 4.21 and 7.05 signals resulted in a collapse of the apparent triplets at δ 6.75 and 6.63, respectively, to doublets. All resonances in the gated ¹³C NMR spectrum were assigned as well and are given in Experimental Section.

Since η^5 -C₅H₅W(CO)₂(η^3 -CH₂C₆H₄CH₃-p) is fluxional in the temperature range from -30 to +60 °C,²⁹ we examined ¹H NMR spectra of η^5 -C₅H₅W(CO)₂(η^3 -CH(CH₃)C₆H₅) at higher termperatures to ascertain possible fluxional behavior of this molecule. These measurements were made in C_6H_6 and toluene- d_8 solutions at temperatures up to 117 °C. No broadening of the signals was noticeable; in particular, the resonances of protons a and e remain essentially as sharp as they are at room temperature. Lack of exchange between protons a and e militates against a fluxional process that would involve rearrangement of η^3 -CH- $(CH_3)C_6H_5$ to η^1 -CH $(CH_3)C_6H_5$ followed by a 180° rotation about the C(7)–C(1) bond and return to η^3 -CH(CH₃)C₆H₅. Suprafacial shifts²⁹ of η^5 -C₅H₅W(CO)₃, i.e., movements from η^3 -C(7)C(1)C(2) to the more sterically hindered η^3 -C(7)C(1)C(6), are also precluded by the ¹H NMR data. However, antarafacial shifts²⁹ of tungsten between the two faces of the benzyl group in the η^3 -C(7)C(1)C(2) coordination environment may be occurring, but if so, without rotation about the C(7)-C(1) bond. A modification in the structure of our η^3 -benzyl ligand such as substitution of $CH(CH_3)_2$ at C(4) would be necessary to resolve this last point.

(c) Stereochemistry of $\eta^5 - C_5 H_5 W$ -(CO)₃CHDCHDC₆H₅-threo. Stereochemical fate of η^{5} -C₅H₅W(CO)₃CHDCHDC₆H₅-threo (\geq 95% diastereomeric purity) during irradiation was investigated by photolyzing its solutions $(2 \times 10^{-2} \text{ M})$ in cyclohexane under argon until ca. 30% of the complex was consumed (\sim 45 min). Unreacted η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅ was then isolated as described in Experimental Section and analyzed by ¹H²H NMR spectroscopy for diastereomeric purity. In general, three to four samples were examined in each run. All measurements showed η^5 -C₅H₅W- $(CO)_3CHDCHDC_6H_5$ to be $\geq 95\%$ three. Irradiation of a 1.2 \times 10⁻² M cyclohexane solution of η^5 -C₅H₅W- $(CO)_3 CHDCHDC_6H_5$ -three of 67% diastereometric purity gave similar results.

The foregoing findings suggest that very little, if any, W-CHDCHDC₆H₅ bond homolysis occurs during photolysis. Since the disappearance on irradiation at 366 nm of tungsten-alkyl complexes of the type η^5 -C₅H₅W(CO)₃R proceeds with a quantum yield, Φ , of less than 0.4,¹³ a good number of photons absorbed by η^5 -C₅H₅W(CO)₃R cause no net chemical reaction. If such a "no reaction" process were cleavage of the W-CHDCHDC₆H₅ bond and recombination of the radicals, then some epimerization of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo would have been expected as stated in Introduction. Our inference that W-CHDCHDC₆H₅ bond cleavage is not an important primary photochemical process accords with the conclusions of other studies on irradiation of metal carbonyl alkyl complexes.^{10,11,13,30}

(d) Scrambling of Hydrogen and Deuterium from η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo,erythro and η^5 -C₅H₅W(CO)₃CD₂CH₂C₆H₅. Possible hydrogen-deuterium scrambling in the phenethyl group of η^5 -C₅H₅W-(CO)₃CD₂CH₂C₆H₅ was examined during irradiation of a

Scheme I

 1.8×10^{-2} M solution of this complex in cyclohexane under argon for 2 h. Aliquots of the photolyzed solution were withdrawn periodically (in general, three to four times) and the unreacted alkyl complex was separated and analyzed by ¹H NMR spectroscopy. Only the CH₂C₆H₅ methylene proton signal was observed at δ 2.77. The absence of a resonance at δ 1.71, due to WCH₂ or WCHD, indicates that no hydrogen-deuterium scrambling took place. A similar experiment was conducted under CO for 1 h, and again all deuterium remained in the WCD₂ methylene group. Furthermore, when the foregoing reactions under argon and CO were followed by IR spectroscopy, η^5 -C₅H₅W-(CO)₃CD₂CH₂C₆H₅ was found to disappear at about the same rate (±4% error in experimental data).

After 1-2 h of photolysis, η^{5} -C₅H₅W(CO)₂(η^{3} -methylbenzyl) was isolated from each reaction mixture and the isotopic distribution of hydrogen between the C(8)H_{3-x}D_x and C(7)H_{1-y}D_y(f) (cf. Figure 1) groups was determined by ¹H NMR spectroscopy. Essentially three times as much ¹H was found in C(8)H_{3-x}D_x as in C(7)H_{1-y}D_y(f), i.e. $x = {}^{3}/{_{2}}$ and $y = {}^{1}/{_{2}}$. Thus, isotopic distribution between the two positions is statistical.

The same statistical distribution of ¹H was observed for a sample of η^5 -C₅H₅W(CO)₂(η^3 -methylbenzyl) prepared by photolysis of η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅-threo,erythro under argon.

These photochemical results on hydrogen-deuterium distribution in the reactant and the product may be rationalized by the reactions set out in Scheme I. The primary photoreaction is loss of CO from electronically excited η^5 -C₅H₅W(CO)₃(phenethyl) to give η^5 -C₅H₅W- $(CO)_2$ (phenethyl), rather than W-C σ bond homolysis. The 16-electron η^5 -C₅H₅W(CO)₂(phenethyl) undergoes β -hydrogen (or -deuterium) transfer to yield η^5 -C₅H₅W- $(CO)_2(H \text{ or } D)(\text{styrene})$, which converts to another 16electron species, η^5 -C₅H₅W(CO)₂(methylbenzyl). The observed formation of η^5 -C₅H₅W(CO)₂(η^3 -CH(CH₃)C₆H₅) from the reaction of η^5 -C₅H₅W(CO)₃H and styrene under irradiation (vide supra) arises via initial CO substitution by styrene to give η^5 -C₅H₅W(CO)₂(H)(CH₂=CHC₆H₅). Although η^5 -C₅H₅W(CO)₂(H)(styrene) can exist in the cis and trans isomeric forms, we do not include this isomerism in Scheme I, since it has no bearing on the isotopic distribution and, besides, was already discussed by Wrighton and co-workers.¹³

Since photolysis of η^5 -C₅H₅W(CO)₃CD₂CH₂C₆H₅ or η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅ does not lead to observable hydrogen-deuterium scrambling in the phenethyl group of the alkyl complex, even when conducted under CO, the

⁽³⁰⁾ Kazlauskas, R. J.; Wrighton, M. S. Organometallics 1982, 1, 602.

value of $k_1[CO]$ (or $k_1'[CO]$) must be very small compared to k_2 (or k_2') (cf. Scheme I). In other words, 16-electron η^5 -C₅H₅W(CO)₂(phenethyl) species essentially always transfer β -hydrogen (or -deuterium) to give η^5 -C₅H₅W-(CO)₂(H or D)(styrene) rather than capture CO to yield η^5 -C₅H₅W(CO)₃(phenethyl). Unfortunately no rate data are available for β -hydrogen transfer³¹ and CO capture of η^5 -C₅H₅W(CO)₂R to scrutinize this conclusion. However, it was recently shown³² that α -hydrogen transfer in the complex (η^5 -C₅H₅)₂NbCH₂OZr(H)[η^5 -C₅(CH₃)₅]₂ is roughly 4100 times faster than CO trapping at 1 atm. Thus, our observations seem to be entirely reasonable. Perhaps at higher pressures of CO some hydrogen-deuterium scrambling in the phenethyl group of η^5 -C₅H₅W-(CO)₃CD₂CH₂C₆H₅ or η^5 -C₅H₅W(CO)₃CHDCHDC₆H₅ would be observable; however, we did not conduct irradiation experiments at pressures above 1 atm.

Acknowledgment. We are grateful to the National Science Foundation for support of this research through Grant CHE-7911882. We also thank Dr. C. E. Cottrell for his help in recording a number of NMR spectra. The Bruker WM-300 spectrometer used in this study was funded in part by the National Science Foundation, Grant CHE-7910019.

Registry No. $\eta^{5-}C_{5}H_{5}W(CO)_{3}CHDCHDC_{6}H_{5}$ -threo, 86823-62-3; $\eta^{5-}C_{5}H_{5}W(CO)_{3}CHDCHDC_{6}H_{5}$ -erythro, 86852-05-3; $\eta^{5-}C_{5}H_{5}W(CO)_{3}CO)_{2}CHDCHDC_{6}H_{5}$ -erythro, 86834-42-6; $\eta^{5-}C_{6}H_{5}W(CO)_{3}S(O)_{2}CH_{2}CH_{2}C_{6}H_{5}$, 86834-43-7; $\eta^{5-}C_{5}H_{5}W(CO)_{2}$ - $(\eta^{3-}CH(CH_{3})C_{6}H_{5})$, 82615-33-6; $\eta^{5-}C_{5}H_{5}W(CO)_{3}CH(CH_{3}C_{6}H_{5})$, 82615-33-6; $\eta^{5-}C_{5}H_{5}W(CO)_{3}CH(CH_{3}C_{6}H_{5})$, 82615-31-4; $\eta^{5-}C_{5}H_{5}W(CO)_{3}CD_{2}CH_{2}C_{6}H_{5}$, 86823-61-2; $\eta^{5-}C_{5}H_{5}W(CO)_{3}CH_{2}CH_{2}C_{6}H_{5}$, 82615-27-8; $\eta^{5-}C_{5}H_{5}W(CO)_{3}H_{1}$ 12128-26-6; Na $[\eta^{5-}C_{5}H_{5}W(CO)_{3}]$, 12107-36-7; $C_{6}H_{5}CH_{2}CH_{2}OS(O)_{2}C_{6}H_{4}CH_{3-}p$, 36809-05-9; $C_{6}H_{5}CH_{2}CD_{2}OS(O)_{2}C_{6}H_{4}CH_{3-}p$, 26631-76-5; threo- $C_{6}H_{5}CHDCHDOS(O)_{2}C_{6}H_{4}CH_{3-}p$, 26631-76-5; threo- $C_{6}H_{5}CHDCHDI$, 61012-88-0; erythro- $C_{6}H_{5}CHDCHDI$, 61012-88-2; $C_{6}H_{5}CHDCHDI$

Metal-Induced Cleavage of Carbon–Sulfur Bonds in Thiolato Ligands. Thermolysis of $HOs_3(CO)_{10}(\mu$ -SC₆H₅) under CO Pressure. The Synthesis and Crystal and Molecular Structures of Os₄(CO)₁₃(μ_3 -S) and Os₅(CO)₁₅(μ_4 -S)

Richard D. Adams,* Istvan T. Horvath, Brigitte E. Segmüller, and Li-Wu Yang

Department of Chemistry, Yale University, New Haven, Connecticut 06511

Received February 2, 1983

The thermolysis of HOs₃(CO)₁₀(μ -SC₆H₅), I, has been studied under carbon monoxide pressures of 200 and 1800 psi at 150 °C. At 200 psi, I eliminates C₆H₆ and forms the new compounds Os₄(CO)₁₃(μ_3 -S), II, and Os₅(CO)₁₅(μ_4 -S), III, and the known compounds Os₃(CO)₉(μ_3 -S)₂, IV, and Os₃(CO)₁₂. Compounds II and III have been characterized by X-ray crystallographic methods. For II: space group PI, No. 2, a =9.608 (2) Å, b = 15.402 (2) Å, c = 15.703 (3) Å, $\alpha = 113.29$ (2)°, $\beta = 99.04$ (2)°, $\gamma = 95.52$ (2)°, V = 2077(2) Å³, Z = 4, $\rho_{calcd} = 3.70$ g/cm³. The structure was solved by the heavy-atom method. For 3998 reflections ($F^2 \ge 3.0\sigma(F^2)$) $R_F = 0.040$ and $R_{wF} = 0.046$. The structure consists of a butterfly cluster of four osmium atoms with a triply bridging sulfido ligand on one triangular group of three. There are 13 linear terminal carbonyl ligands. When heated in the absence of CO, II loses 1 mol of CO and forms the Os₄(CO)₁₂(μ_3 -S) which contains a closed tetrahedron of four metal atoms. For III: space group $Pna2_1$, No. 33, a = 19.119(4) Å, b = 7.724 (6) Å, c = 16.417 (4) Å, V = 2424 (3) Å³, Z = 4, $\rho_{calcd} = 3.84$ g/cm³. The structure was solved by direct methods. For 1520 reflections ($F^2 \ge 3.0\sigma(F^2)$) $R_F = 0.037$ and $R_{wF} = 0.042$. The structure consists of a square-pyramidal cluster of five osmium atoms with a quadruply bridging sulfido ligand spanning the square base. Each metal atom contains three linear terminal carbonyl ligands. At 1800 psi of CO pressure thermolysis of I yields C₆H₆, Os₃(CO)₉(μ_3 -S)₂, and Os(CO)₅ only. A reaction mechanism involving Os₃-(CO)₉(μ_3 -S) and Os(CO)₄ intermediates is proposed and discussed.

Introduction

We have recently shown how the effects of polynuclear coordination promote the cleavage of carbon–sulfur bonds in organosulfur ligands in osmium carbonyl cluster compounds.¹⁻⁵ Cleavage of the carbon–sulfur bond of the thiolato ligand in the compound $HOs_3(CO)_{10}(\mu$ -SC₆H₅), I, is followed by the elimination of benzene and formation of a variety of new sulfido osmium carbonyl cluster compounds.² Cleavage of the carbon–sulfur bond in the related compound $HOs_3(CO)_{10}(\mu$ -SCH₂C₆H₅) occurs in two ways. One process leads to the elimination of toluene and the formation of sulfido osmium carbonyl clusters analogous to those obtained from compound I. However, by a second process, apparently an homolysis of the carbon–sulfur bond, dibenzyl, and several hydride-containing sulfido

⁽³¹⁾ A recent study¹¹ showed that, for η^5 -C₅H₅W(CO)₂C₂H₅, β -hydrogen transfer to form cis- η^5 -C₅H₅W(CO)₂(H)(C₂H₄) occurs very rapidly compared to cis-to-trans isomerization of the ethylene hydride complex, thus precluding rate constant measurement for the former step. (32) Threlkel, R. S.; Bercaw, J. E. J. Am. Chem. Soc. 1981, 103, 2650.

 ^{(1) (}a) Adams, R. D.; Dawoodi, Z. J. Am. Chem. Soc. 1981, 103, 6510.
 (b) Adams, R. D.; Dawoodi, Z.; Foust, D.; Segmüller, B. Organometallics 1983, 2, 315.

 ⁽²⁾ Adams, R. D.; Yang, L. W. J. Am. Chem. Soc. 1982, 104, 4115.
 (3) Adams, R. D.; Katahira, D. A.; Yang, L. W. Organometallics 1982, 1, 235.

⁽⁴⁾ Adams, R. D.; Golembeski, N. M.; Selegue, J. P. J. Am. Chem. Soc. 1981, 103, 546.

⁽⁵⁾ Adams, R. D.; Horvåth, I. T.; Mathur, P.; Segmüller, B. E. Organometallics 1983, 2, 996.