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Summary: 'H NMR and X-ray structural studies show that 
borohydride addition to dicarbonylnitrosylcyclo- 
hexadienylmanganese cations to give cyclohexadiene 
complexes occurs in a stereospecific endo fashion. This 
is the first example of stereospecific endo hydride addition 
to a coordinated cyclic .rr-hydrocarbon. 

The addition of nucleophiles to coordinated cyclic a- 
hydrocarbons is a fundamental organometallic reaction 
that finds mechanistic, synthetic, and catalytic applica- 
tions. Virtually all carbon, nitrogen, phosphorus, oxygen, 
and sulfur donor nucleophiles add stereospecifically exo 
to the coordinated ring. Lewis et a1.2 have shown that 
methoxide can add to cyclohexadienyltricarbonyliron to 
give the endo cyclohexadiene, but even in this case the 
kinetic product is the exo isomer. 

Hydride donors (LiA1H4, NaBH,, LiBR3H, etc.) also 
usually add to coordinated rings in a stereospecific exo 
manner. For example, exo hydride addition has been 
verified for (C6Hs)Mn(C0)3+ (C,H,)Mn(CO), (2),3 
(C~Me&e(C0)3+ (3),4 (C6H7)Fe(C0)3+ (4)f5 and (C6H6)- 
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Cr(C0)2NO+ (5).6 There are, however, several reports7-10 
of hydride addition yielding a mixture of exo and endo 
products with the amount of endo being at most 50%; due 
to the reaction conditions used, some of these results may 
reflect thermodynamic exo/endo equilibration. We re- 
cently reported'l hydride addition to 6 (R = Ph, Me) ac- 
cording to eq 1 and provided NMR evidence that this high 
yield (>go%) reaction represented the first example of 
stereospecific endo addition to a coordinated ring. Fur- 
thermore, the products obtained were kinetic ones since 
at  equilibrium the exo:endo distribution of deuteride in 
7 would be close to 1:l. We have designed a reaction 
scheme to rigorously test these novel conclusions, and this 
is reported herein. 

Complexes 8 and 9 (see Scheme I) were prepared in 
yields of 68% and loo%, respectively, by methods pre- 
viously described.12J3 Reaction of 9 with NOPF, produced 
10 quantitatively as the PF, salt.', To 10 in THF/MeCN 
(2:l) a t  -5 "C under nitrogen excess NaBH, was added, 
and the mixture was stirred for 30 min and then allowed 
to warm to room temperature. Solvent evaporation fol- 
lowed by extraction with pentane gave an isolated yield 
of 89% of a 1.5:l mixture of 11 and 12. Separation was 
effected by TLC on alumina with hexane. Complex 11 is 
very stable, but 12 slowly decomposes in ~ o l u t i o n . ' ~ J ~  

NMR decoupling experiments showed that 5-H and 6-H 
in 11 are coupled by J = 11 Hz, which strongly implies that 
5-H is endo, as shown.'l The reason for doing the chem- 
istry illustrated in Scheme I was to conclusively prove the 
endo addition by obtaining the X-ray structure of 11. Slow 
cooling of a pentane solution of 11 gave suitable crystals 
for X-ray diffra~ti0n.l~ Figure 1 shows the structure, and 
Table I gives some pertinent bond lengths and angles. The 
crystal structure of 11 consists of well-separated monom- 
eric units and confirms that hydride addition to 10 occurs 
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(14) Compound 10: IR (CH3NO2) uco 2103,2068 cm-', UNO 1833 cm-'; 
'H NMR (CD,C12) 6 1.96 (s, Me), 3.87 (8 ,  OMe), 4.14 (d, 6-H), 4.28 (m, 
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(15) Compound 11: IR (hexane) uco 2034,1983 cm-', U N O  1748 crn-'; 
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(16) Compound 12: IR (hexane) uco 2029, 1968 cm-', YNO 1739 cm-'; 
'H NMR (CDCI,) 6 1.63 (s, Me), 2.32 (dd, J = 5, 16 Hz, 5-H exo), 2.88 
(dd, J = 11, 16 Hz, 5-H endo), 3.35 (m, 6-H), 3.53 (s, OMe), 4.93 (d, J = 
5 Hz, 2-H), 5.83 (d, J = 5 Hz, 3-H). Compound too unstable for elemental 
analysis. 

Hz, J(4-H, 5-H) = 3.5 Hz, J(l-H,G-H) = 2.5 Hz, J(l-H,S-H) = 2.5 Hz. 
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Table I. Selected Bond Lengths ( A )  and 
Angles (deg) for Complex 11 

Bond Lengths 

Communications 

Mn-cl 
Mn-C2 
Mn-N 
c1-01 
c2-02  
N - 0 3  
Mn-c3 
Mn-c4 
Mn-C5 
Mn-C6 

Mn-c1-01 
Mn-C2-02 
Mn-N-03 
c3-c4-c5 
C4-C5-C6 
C5-C6-C7 
C6-C7-C8 
C3-C8-C7 

1.823 ( 4 )  
1.841 (4)  
1.675 (3) 
1.151 (5)  
1.127 (5)  
1.174 (3)  
2.134 (3)  
2.145 (3)  
2.079 (3)  
2.118 (3) 

Bond 
178.0 ( 3  
178.4 ( 3  
176.7 ( 3  
114.8 ( 3  
112.4 ( 3  

108.7 (2 
108.6 ( 2  

119.9 ( 3  

C4-04 
04-C9 
c3 -c4  
C3-C8 
c4 -c5  
C5-C6 
C6-C7 
C7-C8 
C7-C10 
C8-Cll  

1.362 (4)  
1.404 (4) 
1.401 (4)  
1.510 (4) 
1.407 (4)  
1.418 (5)  
1.500 (4)  
1.565 (5)  
1.525 (4)  
1.519 (4)  

h g l e s  
C4-C3-C8 120.9 (2)  
C3-C8-Cll 113.8 (3)  
C6-C7-C10 109.2 (3)  
C7-C8-Cll 114.3 (2)  
C8-C7-C10 114.7 (3)  
04-C4-C5 125.9 (2)  
04-C4-C3 118.9 (3)  

N 
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Figure 1. Structure and atom numbering scheme for di- 
carbonylnitrosyl[ 1-4-~4-(2-methoxy-5-methyl-6-phenylcyclo- 
hexa-1,3-diene)]manganese, complex 11. 

endo. This result and the correlation of NMR coupling 
constants for 11 and 7 also confirm that deuteride adds 
stereospecifically endo to 6 as shown in eq 1." 

The diene portion of 11 (C3-C4-C5-C6, Figure 1) is 
approximately planar (maximum deviation 0.034 A; C3- 
C4-C5-C6 dihedral angle = 7.1O). The carbon atoms 
C3-C6-C7-C8 are only roughly planar (maximum devia- 
tion 0.058 A). The dihedral angle between these two planes 
is 42.5', a typical value for cyclohexadiene complexes.19~20 

A small dihedral angle of -10.3' for H7-C7-C8-H8 agrees 
with the large coupling constant (11 Hz) for H7-H8. The 
hydrogen atoms H3, H5, and H6 are displaced slightly 
(0.06 A) toward the metal, an expected result.20 Bond 
lengths and angles for 11 are typical, except for the C8- 
C7-ClO and C7-C&C11 angles of 114.7 (3)O and 114.3 (2)O, 
respectively, which are several degrees larger than expected 
probably due to slight steric repulsion of the exo methyl 
and phenyl groups. 

Having established that borohydride adds stereo- 
specifically endo to complexes 6 and 10, i t  remains to 
unravel the reasons why dicarbonylnitrosylcyclo- 
hexadienylmanganese cations react in this unique manner. 
Although the answer is not yet known, several observations 
can be made at this time. Endo hydride addition is not 
due to steric congestion around the carbon being attacked 
since 3 undergoes exo hydride addition and 6 (R = Me, 
Ph) is known to add PBu, exo with little steric interaction 
in the diene We also found that hydride adds 
endo to 6 (R = Ph) even when one of the CO ligands is 
replaced by the bulky PBu, ligand? Brookhart et al.l0 have 
proposed that apparent endo hydride addition at a carbon 
bonded to a methyl in tricarbonyl(l,3,5-trimethylcyclo- 
hexadieny1)manganese may in fact occur via exo addition 
at an unsubstituted carbon to give a u,r-allyl intermediate 
that undergoes endo hydride migration via the metal to 
give product. Such a mechanism in our reactions can be 
ruled out because of the results of eq 1 with borodeuteride 
and because the reaction conditions are too mild to allow 
ring isomerizations. 

Endo hydride addition to 6 and 10 suggests an initial 
interaction at  the metal or CO, followed by migration to 
the ring. The presence of a nitrosyl ligand may be im- 
portant since it can act as an electron sink if the metal is 
attacked. It is also quite possible that the initial inter- 
action of borohydride and 6 and 10 involves single electron 
transfer to generate a reactive radical that can be a 19- or 
17-electron species depending on the nitrosyl bonding 
mode. However, electron transfer does not necessarily lead 
to an endo product since (arene)Fe(cp)+ cations give exo 
hydride addition productse that are thought to be formed 
following initial electron transfer.22 

Experiments designed to establish the mechanism of 
endo hydride addition to 6, 10, and related species are in 
progress. 
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