

Subscriber access provided by SHANGHAI JIAOTONG UNIV

Lithiation and derivatization of Group IVA bent-sandwich molecules

A. H. Cowley, J. G. Lasch, N. C. Norman, C. A. Stewart, and T. C. Wright Organometallics, **1983**, 2 (11), 1691-1692• DOI: 10.1021/om50005a038 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on April 24, 2009**

More About This Article

The permalink<http://dx.doi.org/10.1021/om50005a038>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

a- [**(2,2-dimethylpropanoyl)oxy]stilbene,** 86846-74-4; *(3-a-* [(2,2 dimethylpropanoyl)oxy]stilbene, 86846-75-5; (E)- α -(benzoyloxy)stilbene, 86846-76-6; **(2)-a-(benzoyloxy)stilbene,** 86846-77-7; **l-(benzoyloxy)-2,2-diphenylethylene,** 86123-17-3; (E)-a-[(p**fluorobenzoyl)oxy]stilbene,** 86846-78-8; (Z)-a-[(p-fluorobenzoyl)oxy]stilbene, 86846-79-9; 1-[**(p-fluorobenzoyl)oxy]-2,2** diphenylethylene, 86846-80-2; **(E)-a-[(p-methylbenzoyl)oxy]** stilbene, 86846-81-3; **(Z)-a-[(p-methylbenzoyl)oxy]stilbene,** 86846-82-4; **l-[(p-methylbenzoyl)oxy]-2,2-diphenylethylene,** 86846-83-5; (E)-β-(benzoyloxy)styrene, 86846-84-6; (Z)-β-(benzoyloxy)styrene, 84262-78-2; α -(benzoyloxy)styrene, 838-58-4; (E)-4-acetoxy-4-octene, 86846-85-7; dimethyl 2-acetoxy-2-butenedioate, 78704-24-2.

Llthlatlon and Derlvatlzatlon of Group 4A Bent-Sandwlch Molecules

A. H. Cowley,' J. G. Lasch, N. C. Norman, C. A. Stewart, and T. C. Wright

Department of Chemistry, The University of Texas at Austin Austin, Texas 78712

Received Ju/y 14, 1983

Summary: Dilithiation of stannocene, $(\eta^5$ -C₅H₅)₂Sn, produces the synthetically useful 1,1'-dilithiostannocene, 1. Treatment of 1 with 2 equiv of $Me₃SiCl$ or $(i-Pr₂N)₂PCl$ affords the disubstituted derivatives (Me₃SiC₅H₄)₂Sn (2) and ((i-Pr₂N)₂PC₅H₄)₂Sn (3), respectively. The structure of **3** has been determined by X-ray diffraction.

Interest in the reactivity of annulene complexes of the main-group elements has focused principally on ligative behavior, protolytic cleavage, oxidative addition, and ligand exchange reactions.¹ However X α -SW calculations on bent-sandwich² and open-faced-sandwich³ η^5 -C₅H₅ compounds indicate that the HOMO is primarily ring localized. Thus, main-group annulene complexes should exhibit a ring substitution chemistry. To the best of our knowledge only two ring substitution reactions of bent-sandwich molecules have been documented, viz., the reaction of $(\eta^5$ -C₅H₅)₂Sn with Me₃SnNEt₂⁴ and $[(i$ -Pr₂N)₂P][AlCl₄].⁵ We now report that, like ferrocene,⁶ (η^5 -C₅H₅)₂Sn readily forms a synthetically useful, 1,l'-dilithio derivative.

A THF solution of $(\eta^5-C_5H_5)_2$ Sn was treated with 2 equiv. of n-BuLi at -78 °C. The ¹H and ¹³C{¹H} NMR spectra of the resulting dark red solution comprised singlets at **6 5.6** and 102.9, respectively, indicating that 1,l'-dilithiostannocene **(1)** is fluxional at 30 "C (see later).

The dilithium compound **1** is reactive toward maingroup organometallic chlorides. Treatment of 1 with 2 equiv of Me_3 SiCl in THF at -78 °C caused an immediate discharge of the red color. After the solution was warmed to room temperature and the THF removed, the light yellow residue was extracted with n-hexane. Distillation

3

Figure 1. Structure of $[(i-Pr_2N)_2PC_5H_4]_2Sn$ (3) showing the atom numbering scheme. The hydrogen atoms are omitted. Important parameters include Sn(1)-C = 2.527 (8) - 2.807 (8) Å, C(1)-P(1) $= 1.679(5)$ Å. $= 1.822$ (7) Å, C(6)-P(2) = 1.824 (8) Å, P(1)-N(1) = 1.681 (8) Å, P(1)-N(2) = 1.686 (5) Å, P(2)-N(3) = 1.687 (6) Å, and P(2)-N(4)

of the resulting yellow oil (bp 115 \degree C at 5 \times 10⁻³ torr) afforded 30-40% yields of **1,l'-bis(trimethylsily1)stan**nocene, 2.⁷ Compound 2 can also be prepared via the reaction of $Me_3SiC_5H_4Li$ with $SnCl_2$ in THF solution at 0 "C, thus supporting the above formulation.

Treatment of 1 with 2 equiv of $(i-Pr_2N)_2PC1$ in THF at -78 "C followed by removal of solvent and recrystallization from n-hexane afforded 30-40% yields of yellow crystalline 1,l'-bis(**(diisopropylamino)phosphido)stannocene, 3,** mp 162-164 "C (see Scheme I).8 The structure of **3** was es-

⁽⁷⁾ Anal. Calcd for $C_{16}H_{26}Si_2Sn$: C, 48.7; H, 6.6. Found: C, 48.6; H, 6.8. ¹H NMR (200 MHz): δ 0.30 (s, 18 H, SiMe₃), 6.05 (m, 4 H, H_{2,5} or H_{3,4}), 6.15 (m, 4 H, H_{2,5} or H_{3,4}). ¹³C^{{1}H} NMR (20 MHz):

^{(8) 3:} ¹H NMR **(90 MHz)** δ 1.05 **(d, 12 H, Me (i-Pr group),** ${}^{3}J_{HH} = 6.9$ Hz), 1.20 (d, 12 H, Me', ${}^{3}J_{\text{HH}} = 6.9$ Hz), 3.40 (m, 4 H, Me₂CH), 5.90 (m, 4 H, H_{2,5} or H_{3,4}), 6.10 (m, 4 H, H_{2,5} or H₃₄); ¹³C^{{1}H} NMR (20 MHz) δ
24.4 (d, Me, ³J_{PC} = 10.3 Hz), 24.7 (d, Me', 3 (relative to **85%** H3P0,) **46.6.** Jpc = **15.9** Hz), **132.6 (d,** C1, 'Jpc = **6.4** Hz); 31P(1HI NMR **(36.4** MHz) 6

⁽¹⁾ For a review of the reactivity of bent-sandwich molecules see: (a) Connolly, J. W.; Hoff, C. *Adu. Organomet. Chem.* **1981, 19, 123.** For examples of the reactivity of open-faced sandwich molecules see: (b) Habeeb, J. J.; Tuck, D. G. J. Chem. Soc., Dalton Trans. 1975, 1815. (c) Conteras, J. G.; Tuck, D. G. *Inorg. Chem.* 1973, 12, 2596.
Conteras, J. G.; Tuck

W. P.; Stewart, C. A. J. Am. Chem. Soc. 1982, 104, 4064.

W. P.; Stewart, C. A. J. Am. Chem. Soc. 1982, 104, 4064.

(3) Lattman, M.; Cowley, A. H. Inorg. Chem., in press.

(4) Bulten, E. J.; Budding, H. A. J. Organomet. Ch **104,3239.**

⁽⁶⁾ **See,** for example: Benkeser, R. A.; Goggin, D.; Scholl, G. *J. Am. Chem. SOC.* **1954, 76,4025.** Nesmeyanov, A. **N.;** Perevalova, E. G.; Golovinya, E. G.; Nesmayanova, D. A. *Dokl. Akad. Nauk SSSR* **1954,97, 659.** Rausch, **M. D.;** Ciappenelli, D. J. *J. Organornet. Chem.* **1967,10,127.**

tablished by a single-crystal X-ray diffraction study (Figure 1). The structure consists of isolated neutral molecules of **3** in which the Sn atom is *q5* bonded to two *(i-* Pr_2N)₂PC₅H₄ ligands. The range of Sn-C bond lengths is typically large $(2.53-2.81 \text{ Å})$, cf. in stannocene itself¹¹ $(2.56$ molecules.¹² The ring centroid-metal-ring centroid angle is 150.2' and thus slightly larger than that in stannocene $(148.0^{\circ}$ (molecule A) and 143.7° (molecule B)). The two $(i-Pr₂N)₂P$ moities adopt a mutually trans arrangement, and each nitrogen center is trigonal planar within experimental error. $(2)-2.85$ (3) Å), a situation often observed in bent-sandwich

Finally we note two aspects of the reaction of stannocene with 1 equiv of n-BuLi. First, the 'H and *'3c* NMR spectra show only single resonances, implying a time-averaged spectrum as a result of a fluxional process. Second, treatment of this solution with 1 equiv of $Me₃SiCl$ affords **2 as** the only isolable product. This result and others will be discussed in detail in a future paper.

Acknowledgment is made to the donors of the Petroleum Fund, administered by the American Chemical Society, for the support of this research.

Registry No. 1, 87050-55-3; 2, 87050-56-4; **3,** 87050-57-5; $(\eta^5-C_5H_5)_2\$ Sn, 1294-75-3; Me₃SiC₅H₄Li, 76514-39-1; (*i*-Pr₂N)₂PCl, 56183-63-2.

Supplementary Material Available: Tables of fractional coordinates, thermal parameters, bond lengths, and bond angles and a listing of structure factor amplitudes for 3 (29 pages). Ordering information is given on any current masthead page.

(10) The weighting scheme used was of the form $w = (4F^2/\sigma^2)(F^2)$ + $P^2\hat{F}^4$) with $P = 0.06$.

(11) Atwood, J. L.; Hunter, W. E.; Cowley, A. H.; Jones, R. A.; Stewart, C. A. J. Chem. Soc., Chem. Commun. 1981, 925.
(12) See, for example: Lappert, M. F.; Riley, P. I.; Yarrow, P. I. W.; Atwood, J. L.; Hunter, W. E.; Za

Trans. 1981,814.

Preparatlon of a Carbon-Rich Metallacarborane from **a Metallacycle**

David B. Palladlno and Thomas P. Fehlner'

Department of Chemlstty, University of Notre Dame Notre Dame, Indiana 46556

Received July 12, 1983

Summary: The reaction of $BH₃$ -THF with the cobaltacycle baltacarborane 3,4,5,6-(C₆H₅)₄-1,3,4,5,6-(η^5 -C₅H₅)CoC₄BH in 20% yield. This result demonstrates a new route to $(\eta^5$ -C₅H₅)[P(C₆H₅)₃]CoC₄(C₆H₅)₄ produces the *nido*-cocarbon-rich metallacarboranes, i.e., organometallic compounds with polyhapto heterocyclic rings.

In a general sense, there are three, pair-wise routes to metallacarboranes, i.e., clusters containing a transition metal, carbon, and boron. The first involves reaction of a suitable carborane ligand with a metal fragment. The second is the reaction of a metallaborane with a source of carbon fragments. The final alternative is the reaction of a transition-metal hydrocarbon complex with a source of borane fragments. The first constitutes the major existing route to metallacarboranes and is well illustrated by the work of Hawthorne¹ and Grimes.² Examples of the second approach exist, but it has yet to be demonstrated that this is also a viable route to these systems. 3 Although there are notable exceptions⁴ these two methods lead to compounds with cages containing high atom percents of boron whereas the third route leads naturally to carbon-rich cages. Indeed, the original synthesis of $(\eta^5$ -C₅H₅)Co(η^6 - $C_5H_5BC_6H_5$ resulted from the insertion of a borane fragment into a C_5H_5 ring of cobaltacene.⁵ We report here another example of the third route to metallacarboranes in which metallacycles are used as the metal-carbon source.

Some years ago we demonstrated the photochemical insertion of a borane fragment into $(\eta^4$ -C₄H₄)Fe(CO)₃ to yield the six-atom, nido cage $(CO)_{3}FeBC_{4}H_{5}$ ⁶ Although providing a demonstration of the third approach (above), yields were tiny and we have since sought other routes. **As** a nido cage can be viewed as a cyclic ligand bound to a capping $\tilde{BH},^{4,7}$ we thought the reaction of a suitable metallacycle with a source of borane would provide a viable method. As many metallacycles contain metal-bound Lewis bases,⁸ the use of BH_3 .THF provides for both a source of the borane fragment as well as a means of removing the free ligand, generated in activating the metallacycle, from the reaction. The thermolysis of (tri**phenylphosphine)cyclopentadienylcobalta-2,3,4,5-tetra**phenylcyclopentadiene, 1,⁹ has already been shown to yield the cyclobutadiene complex 2.1° Presumably an unsaturated metallacycle intermediate is produced, and, thus, we chose this system to investigate initially.

Reflux of 0.1 mmol of **1** in toluene with 0.2 mmol of BH₃.THF for 6 h, followed by hexane extraction and chromatography on silica gel, permitted the identification

-
- (2) Grimes, R. N. Acc. Chem. Research 1978, 11, 420.

(3) See for example: Weiss, R.; Bowser, J. R.; Grimes, R. N. Inorg.

Chem. 1978, 17, 1522. Fehlner, T. P. J. Am. Chem. Soc. 1980, 102, 3424. **(4)** See: Grimes, R. N. *Coord. Chem. Rev.* **1979,28, 47.**
- **(5)** Herberich, G. E.; Greiss, *G.;* Heil, H. F. *Angew. Chem.,* Int. *Ed.*
- *Engl.* **1970, 9, 905. (6)** Fehlner, **T.** P. *J.* Am. *Chem. SOC.* **1978, 100, 3250.**
- **(7)** Fehlner, **T.** P. In 'Homoatomic Rings, Chains and Macromolecules of the Main-Group Elements"; Rheingold, A. L., Ed.; Elsevier: New York,
- 1977, Chapter 7, p 191.

(8) Chappell, S. D.; Cole-Hamilton, D. J. Polyhedron 1982, 1, 739.

(9) Yamazaki, H.; Wakatsuki, Y. J. Organomet. Chem. 1977, 139, 157.

(10) Yamazaki, H.; Hagihara, N. J. Organomet. Chem. 1967, 7,
-
-

0276-7333/83/2302-1692\$01.50/0 © 1983 American Chemical Society

⁽⁹⁾ Crystal data for 3: C,HaN,P2Sn; *M,* = **708.36,** triclinic, space group **P1** (No. 2)(by refinement), **a** = **9.209 (2) A,** *b* = **14.325 (3) A,** *c* = 14.726 (4) Å, $\alpha = 92.80$ (2)°, $\beta = 96.60$ (2)°, $\gamma = 92.62$ (2)°, $U = 1924.9$
Å³, $D_{\text{(2d)d}} = 1.225$ g cm⁻³, $Z = 2$, λ (Mo K α) (graphite monochromator) = 0.71069 Å, μ (Mo K α) = 7.7 cm⁻¹. From a total of reflections were used to solve (Patterson and difference Fourier) and refine (full-matrix least-squares) the structure of 3. All non-hydrogen atoms were located and refined by using anisotropic thermal parameters although some carbon atoms showed a high degree of thermal motion. All unique hydrogen atoms were either located or calculated and allowed to refine positionally with a fixed isotropic temperature factor. Methyl hydrogens were neither located nor refined. **This** was the result of a low percentage of observed data as a result of poor crystal quality. Refine-
ment with a weighting scheme¹⁰ converged to give final residuals *R* = 0.0540, $R_w = 0.0695$, and GOF = 1.575.

⁽¹⁾ Hawthorne, M. F. *J. Organomet. Chem.* **1975,** *100,* **97.**