

Subscriber access provided by SHANGHAI JIAOTONG UNIV

Lithiation and derivatization of Group IVA bent-sandwich molecules

A. H. Cowley, J. G. Lasch, N. C. Norman, C. A. Stewart, and T. C. Wright Organometallics, **1983**, 2 (11), 1691-1692• DOI: 10.1021/om50005a038 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on April 24, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/om50005a038 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

 α -[(2,2-dimethylpropanoyl)oxy]stilbene, 86846-74-4; (Z)- α -[(2,2dimethylpropanoyl)oxy]stilbene, 86846-75-5; (E)- α -(benzoyloxy)stilbene, 86846-76-6; (Z)- α -(benzoyloxy)stilbene, 86846-77-7; 1-(benzoyloxy)-2,2-diphenylethylene, 86123-17-3; (E)- α -[(pfluorobenzoyl)oxy]stilbene, 86846-78-8; (Z)- α -[(p-fluorobenzoyl)oxy]stilbene, 86846-79-9; 1-[(p-fluorobenzoyl)oxy]-2,2diphenylethylene, 86846-80-2; (E)- α -[(p-methylbenzoyl)oxy]stilbene, 86846-81-3; (Z)- α -[(p-methylbenzoyl)oxy]stilbene, 86846-82-4; 1-[(p-methylbenzoyl)oxy]-2,2-diphenylethylene, 86846-83-5; (E)- β -(benzoyloxy)styrene, 86846-84-6; (Z)- β -(benzoyloxy)styrene, 84262-78-2; α -(benzoyloxy)styrene, 838-58-4; (E)-4-acetoxy-4-octene, 86846-85-7; dimethyl 2-acetoxy-2-butenedioate, 78704-24-2.

Lithlation and Derivatization of Group 4A **Bent-Sandwich Molecules**

A. H. Cowley,* J. G. Lasch, N. C. Norman, C. A. Stewart, and T. C. Wright

Department of Chemistry, The University of Texas at Austin Austin, Texas 78712

Received July 14, 1983

Summary: Dilithiation of stannocene, $(\eta^5-C_5H_5)_2$ Sn, produces the synthetically useful 1,1'-dilithiostannocene, 1. Treatment of 1 with 2 equiv of Me₃SiCl or (*i*-Pr₂N)₂PCl affords the disubstituted derivatives $(Me_3SiC_5H_4)_2Sn$ (2) and $((i-Pr_2N)_2PC_5H_4)_2Sn$ (3), respectively. The structure of 3 has been determined by X-ray diffraction.

Interest in the reactivity of annulene complexes of the main-group elements has focused principally on ligative behavior, protolytic cleavage, oxidative addition, and ligand exchange reactions.¹ However $X\alpha$ -SW calculations on bent-sandwich² and open-faced-sandwich³ η^5 -C₅H₅ compounds indicate that the HOMO is primarily ring localized. Thus, main-group annulene complexes should exhibit a ring substitution chemistry. To the best of our knowledge only two ring substitution reactions of bent-sandwich molecules have been documented, viz., the reaction of $(\eta^5-C_5H_5)_2$ Sn with Me₃SnNEt₂⁴ and $[(i-Pr_2N)_2P][AlCl_4]$.⁵ We now report that, like ferrocene, $^6(\eta^5-C_5H_5)_2$ Sn readily forms a synthetically useful, 1,1'-dilithio derivative.

A THF solution of $(\eta^5 - C_5 H_5)_2$ Sn was treated with 2 equiv. of *n*-BuLi at -78 °C. The ¹H and ¹³C{¹H} NMR spectra of the resulting dark red solution comprised singlets at δ 5.6 and 102.9, respectively, indicating that 1,1'-dilithiostannocene (1) is fluxional at 30 °C (see later).

The dilithium compound 1 is reactive toward maingroup organometallic chlorides. Treatment of 1 with 2 equiv of Me₃SiCl in THF at -78 °C caused an immediate discharge of the red color. After the solution was warmed to room temperature and the THF removed, the light yellow residue was extracted with n-hexane. Distillation

Scheme I^a

Figure 1. Structure of $[(i \cdot Pr_2N)_2PC_5H_4]_2Sn$ (3) showing the atom numbering scheme. The hydrogen atoms are omitted. Important parameters include Sn(1)-C = 2.527(8) - 2.807(8) Å, C(1)-P(1)= 1.822 (7) Å, C(6)-P(2) = 1.824 (8) Å, P(1)-N(1) = 1.681 (8) Å, P(1)-N(2) = 1.686 (5) Å, P(2)-N(3) = 1.687 (6) Å, and P(2)-N(4)= 1.679 (5) Å.

of the resulting yellow oil (bp 115 °C at 5×10^{-3} torr) afforded 30-40% yields of 1,1'-bis(trimethylsilyl)stannocene, 2.7 Compound 2 can also be prepared via the reaction of $Me_3SiC_5H_4Li$ with $SnCl_2$ in THF solution at 0 °C, thus supporting the above formulation.

Treatment of 1 with 2 equiv of (i-Pr₂N)₂PCl in THF at -78 °C followed by removal of solvent and recrystallization from n-hexane afforded 30-40% yields of yellow crystalline 1,1'-bis((diisopropylamino)phosphido)stannocene, 3, mp 162-164 °C (see Scheme I).⁸ The structure of 3 was es-

⁽⁷⁾ Anal. Calcd for $C_{16}H_{26}Si_2Sn: C, 48.7; H, 6.6.$ Found: C, 48.6; H, 6.8. ¹H NMR (200 MHz): δ 0.30 (s, 18 H, SiMe₃), 6.05 (m, 4 H, H_{2.5} or H_{3.4}), 6.15 (m, 4 H, H_{2.5} or H_{3.4}). ¹³Cl¹H NMR (20 MHz): δ 1.4 (SiMe₃), 114.3 (C_{2.5} or C_{3.4}), 117.5 (C_{2.5} or C_{3.4}), 121.9 (C₁).

^{(8) 3: &}lt;sup>1</sup>H NMR (90 MHz) δ 1.05 (d, 12 H, Me (*i*-Pr group), ³J_{HH} = 6.9 Hz), 1.20 (d, 12 H, Me', ³J_{HH} = 6.9 Hz), 3.40 (m, 4 H, Me₂CH), 5.90 (m, 4 H, H_{2,5} or H_{3,4}), 6.10 (m, 4 H, H_{2,5} or H_{3,4}); ¹³Cl¹H} NMR (20 MHz) δ 24.4 (d, Me, ³J_{PC} = 10.3 Hz), 24.7 (d, Me', ³J_{PC} = 9.7 Hz), 47.5 (d, Me₂CH, ²J_{PC} = 11.4 Hz), 110.4 (d, C_{2,5} or C_{3,4}, J_{PC} = 6.0 Hz), 115.0 (d, C_{2,5} or C_{3,4}, J_{PC} = 15.9 Hz), 132.6 (d, C₁, ¹J_{PC} = 6.4 Hz); ³¹P{¹H} NMR (36.4 MHz) δ (relative to 85% H₃PO₄) 46.6.

⁽¹⁾ For a review of the reactivity of bent-sandwich molecules see: (a) Connolly, J. W.; Hoff, C. Adv. Organomet. Chem. 1981, 19, 123. For Habeeb, J. J.; Tuck, D. G. J. Chem. Soc., Dalton Trans. 1975, 1815. (c)
Conteras, J. G.; Tuck, D. G. Inorg. Chem. 1973, 12, 2596.
(2) Baxter, S. G.; Cowley, A. H.; Lasch, J. G.; Lattman, M.; Sharum,
W. P.; Struct C. A. J. Am. Cham. Soc. 1922, 104, 4064.

⁽a) Datter, S. G., Cowley, A. H., Lasch, J. G., Lattman, M., Sharum, W. P.; Stewart, C. A. J. Am. Chem. Soc. 1982, 104, 4064.
(a) Lattman, M.; Cowley, A. H. Inorg. Chem., in press.
(b) Bulten, E. J.; Budding, H. A. J. Organomet. Chem. 1978, 157, C3.
(c) Cowley, A. H.; Kemp, R. A.; Stewart, C. A. J. Am. Chem. Soc. 1982, 104 (2014) 104, 3239.

⁽⁶⁾ See, for example: Benkeser, R. A.; Goggin, D.; Scholl, G. J. Am. Chem. Soc. 1954, 76, 4025. Nesmeyanov, A. N.; Perevalova, E. G.; Golovinya, E. G.; Nesmayanova, D. A. Dokl. Akad. Nauk SSSR 1954, 97, 659. Rausch, M. D.; Ciappenelli, D. J. J. Organomet. Chem. 1967, 10, 127.

tablished by a single-crystal X-ray diffraction study (Figure 1). The structure consists of isolated neutral molecules of 3 in which the Sn atom is η^5 bonded to two (*i*- $Pr_2N)_2PC_5H_4$ ligands. The range of Sn-C bond lengths is typically large (2.53-2.81 Å), cf. in stannocene itself¹¹ (2.56 (2)-2.85 (3) Å), a situation often observed in bent-sandwich molecules.¹² The ring centroid-metal-ring centroid angle is 150.2° and thus slightly larger than that in stannocene (148.0° (molecule A) and 143.7° (molecule B)). The two $(i-\Pr_2N)_2P$ moities adopt a mutually trans arrangement, and each nitrogen center is trigonal planar within experimental error.

Finally we note two aspects of the reaction of stannocene with 1 equiv of n-BuLi. First, the ¹H and ¹³C NMR spectra show only single resonances, implying a time-averaged spectrum as a result of a fluxional process. Second, treatment of this solution with 1 equiv of Me₃SiCl affords 2 as the only isolable product. This result and others will be discussed in detail in a future paper.

Acknowledgment is made to the donors of the Petroleum Fund, administered by the American Chemical Society, for the support of this research.

Registry No. 1. 87050-55-3; 2. 87050-56-4; 3. 87050-57-5; $(\eta^{5}-C_{5}H_{5})_{2}Sn, 1294-75-3; Me_{3}SiC_{5}H_{4}Li, 76514-39-1; (i-Pr_{2}N)_{2}PCl,$ 56183-63-2.

Supplementary Material Available: Tables of fractional coordinates, thermal parameters, bond lengths, and bond angles and a listing of structure factor amplitudes for 3 (29 pages). Ordering information is given on any current masthead page.

(10) The weighting scheme used was of the form $w = (4F^2/\sigma^2(F^2) +$ P^2F^4) with P = 0.06.

(11) Atwood, J. L.; Hunter, W. E.; Cowley, A. H.; Jones, R. A.; Stewart,
(11) Atwood, J. L.; Hunter, W. E.; Commun. 1981, 925.
(12) See, for example: Lappert, M. F.; Riley, P. I.; Yarrow, P. I. W.;
Atwood, J. L.; Hunter, W. E.; Zaworotko, M. J. J. Chem. Soc., Dalton Trans. 1981, 814.

Preparation of a Carbon-Rich Metallacarborane from a Metallacycle

David B. Palladino and Thomas P. Fehiner*

Department of Chemistry, University of Notre Dame Notre Dame, Indiana 46556

Received July 12, 1983

Summary: The reaction of BH3. THF with the cobaltacycle $(\eta^5-C_5H_5)[P(C_6H_5)_3]CoC_4(C_6H_5)_4$ produces the *nido*-cobaltacarborane 3,4,5,6-(C₆H₅)₄-1,3,4,5,6-(η^{5} -C₅H₅)CoC₄BH in 20% yield. This result demonstrates a new route to carbon-rich metallacarboranes, i.e., organometallic compounds with polyhapto heterocyclic rings.

In a general sense, there are three, pair-wise routes to metallacarboranes, i.e., clusters containing a transition metal, carbon, and boron. The first involves reaction of a suitable carborane ligand with a metal fragment. The second is the reaction of a metallaborane with a source of carbon fragments. The final alternative is the reaction of a transition-metal hydrocarbon complex with a source of borane fragments. The first constitutes the major existing route to metallacarboranes and is well illustrated by the work of Hawthorne¹ and Grimes.² Examples of the second approach exist, but it has yet to be demonstrated that this is also a viable route to these systems.³ Although there are notable exceptions⁴ these two methods lead to compounds with cages containing high atom percents of boron whereas the third route leads naturally to carbon-rich cages. Indeed, the original synthesis of $(\eta^5 - C_5 H_5) Co(\eta^6 - \eta^6 - M_5) Co(\eta^6 - M_5)$ $C_5H_5BC_6H_5$) resulted from the insertion of a borane fragment into a C₅H₅ ring of cobaltacene.⁵ We report here another example of the third route to metallacarboranes in which metallacycles are used as the metal-carbon source.

Some years ago we demonstrated the photochemical insertion of a borane fragment into $(\eta^4 - C_4 H_4) Fe(CO)_3$ to yield the six-atom, nido cage $(CO)_3FeBC_4H_5$.⁶ Although providing a demonstration of the third approach (above), yields were tiny and we have since sought other routes. As a nido cage can be viewed as a cyclic ligand bound to a capping BH,^{4,7} we thought the reaction of a suitable metallacycle with a source of borane would provide a viable method. As many metallacycles contain metal-bound Lewis bases,⁸ the use of BH₃ THF provides for both a source of the borane fragment as well as a means of removing the free ligand, generated in activating the metallacycle, from the reaction. The thermolysis of (triphenylphosphine)cyclopentadienylcobalta-2,3,4,5-tetraphenylcyclopentadiene, 1,9 has already been shown to yield the cyclobutadiene complex 2^{10} Presumably an unsaturated metallacycle intermediate is produced, and, thus, we chose this system to investigate initially.

Reflux of 0.1 mmol of 1 in toluene with 0.2 mmol of BH₃·THF for 6 h, followed by hexane extraction and chromatography on silica gel, permitted the identification

- Grimes, R. N. Acc. Chem. Research 1978, 11, 420.
 See for example: Weiss, R.; Bowser, J. R.; Grimes, R. N. Inorg. Chem. 1978, 17, 1522. Fehlner, T. P. J. Am. Chem. Soc. 1980, 102, 3424. (4) See: Grimes, R. N. Coord. Chem. Rev. 1979, 28, 47.
- (5) Herberich, G. E.; Greiss, G.; Heil, H. F. Angew. Chem., Int. Ed. Engl. 1970, 9, 905
- (6) Fehlner, T. P. J. Am. Chem. Soc. 1978, 100, 3250.
- (7) Fehlner, T. P. In "Homoatomic Rings, Chains and Macromolecules of the Main-Group Elements"; Rheingold, A. L., Ed.; Elsevier: New York,
- (a) Chappell, S. D.; Cole-Hamilton, D. J. Polyhedron 1982, 1, 739.
 (b) Yamazaki, H.; Wakatsuki, Y. J. Organomet. Chem. 1977, 139, 157.
 (c) Yamazaki, H.; Hagihara, N. J. Organomet. Chem. 1967, 7, 22.

⁽⁹⁾ Crystal data for 3: $C_{34}H_{64}N_4P_2Sn; M_r = 708.36$, triclinic, space group PI (No. 2)(by refinement), a = 9.209 (2) Å, b = 14.325 (3) Å, c = 14.726 (4) Å, $\alpha = 92.80$ (2)°, $\beta = 96.60$ (2)°, $\gamma = 92.62$ (2)°, U = 1924.9 Å³, $D_{calcd} = 1.225$ g cm⁻³, Z = 2, λ (Mo K α) (graphite monochromator) = 0.71069 Å, μ (Mo K α) = 7.7 cm⁻¹. From a total of 6738 unique reflections, measured on an Enraf-Nonius CAD-4 diffractometer, 3382 ($I > 2.0\sigma(I)$) and reflections were used to solve (Patterson and difference Fourier) and refine (full-matrix least-squares) the structure of 3. All non-hydrogen atoms were located and refined by using anisotropic thermal parameters although some carbon atoms showed a high degree of thermal motion. All unique hydrogen atoms were either located or calculated and allowed to refine positionally with a fixed isotropic temperature factor. Methyl hydrogens were neither located nor refined. This was the result of a low percentage of observed data as a result of poor crystal quality. Refinement with a weighting scheme¹⁰ converged to give final residuals R = $0.0540, R_w = 0.0695$, and GOF = 1.575.

⁽¹⁾ Hawthorne, M. F. J. Organomet. Chem. 1975, 100, 97.