Synthesls and X-ray Crystal Structure of a Unique Rhodlum(I) phosphine Complex: A Novel Intermolecular Rlng Closure To Produce a Bldentate Phosphorus Alkyl Bound Ligand[†]

Brendan D. Murray, Marilyn M. Olmstead, and Philip P. Power'

Department of Chemisfty, University of California Davis, California 956 16

Received August 1, 1983

Summary: **Methane, isobutene, and a novel phosphorus-carbon bound rhodium(** I) **complex are the products of the reaction** of **(1,5-cyclooctadiene)(2-methylallyl)rhodium(** I) **with bis[bis(trimethylsilyl)methyl] phosphine. The reaction with di-tert-butylphosphine is also discussed.**

The reaction of (1,5-cyclooctadiene) (2-methylally1)rhodium(I), $[Rh(\eta^4-1, 5\text{-COD})(\eta^3-2\text{-Me-C}_3H_4)],$ 1, with bis-**[bis(trimethylsilyl)methyl]phosphine, 2,** in hexane at **65** ^oC results in the production of methane, isobutene, and $(\eta^2-3,3,5,5\text{-tetramethyl-syn-2-}(trimethylsilyl)-anti-6-(tri$ methylsilyl)-1-phospha-3,5-disilacyclohex-4-yl) $(\eta^4$ -1,5cyclooctadiene)rhodium(I), **3,** a novel phosphorus-carbon bound rhodium(1) complex that still contains the COD group (Scheme I).¹

The yellow crystalline complex **3** is very soluble in aromatic and hydrocarbon solvents but can be recovered in 80% yield by cooling a saturated hexane solution to -30 OC. The complex melts at 182 "C (sealed capillary) with subsequent darkening. The unusually high thermal stability of 3 may be due to the lack of β -hydrogen that precludes the usual β -elimination pathway of σ -bound rhodium alkyls.

The volatile products of the reaction between 1 and **2** were analyzed by a Finnigan 3200 GC/MS equipped with a 30-m column. The presence of isobutene was detected. We believe the other product is $CH₄$ due to the presence of a very volatile gas that condenses at about -160 °C and freezes at near liquid N_2 temperatures when separated by trap-to-trap distillation. The presence of $CH₄$ is also supported by the reaction stoichiometry.

The reactions of **1** with various monodentate and bidentate phosphites and phosphines have been examined in a number of recent publications. $4-6$ In sharp contrast to our results, the addition of the phosphorus ligand(s) has resulted in the loss of the COD group to produce some interesting four- or five-coordinate rhodium(1) complexes. These complexes characteristically have the phosphorus bases arranged in a cis geometry. The large steric bulk of the phosphine **2** may account for the difference in reactivity and the products obtained. Further evidence for the size of **2** is that the complex trans-[Rh(CO)Cl(PH- $\{CH(SiMe₃)₂\}_{2}$] is the exclusive product (¹H NMR, ³¹P)

Figure **1.** ORTEP **drawing of 3.**

NMR, and X-ray data),⁷ when $[Rh(CO)₂Cl]₂$ is treated with an excess of **2.**

The mechanism of the reaction in Scheme I is not known, but it may initially involve a complex that contains COD, phosphine, and a η^3 -methylallyl,^{8,9} followed by a Lewis base promoted $\pi-\sigma$ transformation to produce a η^1 -methylallyl species.¹⁰ The η^1 -methylallyl group may assist in a hydrogen transfer from a γ -carbon¹¹ to yield isobutene. The fact that these reactions are known does not preclude a radical mechanism or other pathway.

Intramolecular metalation reactions involving aromatic carbon in phosphines have been extensively studied over the past 15 years. 12,13 Corresponding reactions of purely aliphatic phosphines have been the subject of much fewer articles.¹⁴⁻¹⁷ These metalation reactions are thought to be promoted by bulky substituents on phosphorus and the formation of four- and five-membered rings.

The structure of **3,** as determined by X-ray crystallography,18 is depicted in Figure 1. Some important bond

(7) Murray, B. D.; Hvoslef, J.; Power, P. P., to be submitted for pub lication.

- (9) We have recently prepared the complex $Ir(\eta^3-C_3H_5)(\eta^4-1,5-1)$ $COD[HP(t-C_4H_9)_2].$
- (10) Carturan, G.; Scrivanti, A.; Belluco, U.; Morandini, F. Inorg. *Chirn.* Acta **1978,** 26, 1.
- (11) Andersen, R. A.; Jones, R. A.; Wilkinson, G. *J.* Chem. SOC., Dalton Trans. **1978,** 446.
	- (12) Parshall, G. W. **Acc.** Chem. Res. **1970,** 3, 139.

(14) Goel, R. G.; Montemayer, R. G. Inorg. Chem. **1977,** *16,* 2183.

(15) Cheney, A. J.; Shaw, B. L. *J.* Chem. **SOC.** A **1972, 754,** 860.

- (16) Hietkamp, S.; Stufkens, D. J.; Vrieze, K. J. Organomet. Chem. **1977,** 139, 189.
	- (17) Goel, R. G.; Ogini, W. 0. Organometallics **1982,** I, 654.

No reprints available.

⁽¹⁾ All operations were carried out in a Vacuum Atmosphere HE-43-2 drybox, in a conventional vacuum system or by using standard Schlenk
techniques. Bis{bis(trimethylsilyl)}methylphosphine,^{2a,b} di-*tert*-butylphosphine,³ and Rh(COD)(2-Me-C₃H₄)⁴ were prepared by standard literature procedures. All solvents used were dried, distilled, and degassed prior to use.

^{(2) (}a) Power, P. P. Ph.D. Thesis, University of Sussex, 1977. (b) Cowley, A. H.; Kemp, R. A. Inorg. Chem. **1983,22,** 547.

⁽³⁾ Fild, M.; Stelzer, 0.; Schmutzler, R. Inorg. Synth. **1973,** *14,* 4. *(4)* Fryzuk, M. D. Inorg. Chem. **1982,** *21,* 2134.

⁽⁵⁾ Fryzuk, M. D. Inorg. *Chirn.* Acta **1981,54,** L265.

⁽⁶⁾ Sivak, A. J.; Muertterties, E. L. *J.* Am. *Chem. SOC.* **1979,101,4878.**

⁽⁸⁾ Muetterties, E. L.; Tau, K. D.; Kirner, J. F.; Harris, T. V.; Stark, J.; Thompson, M. R.; Day, V. W. Organometallics **1982,** I, 1562.

⁽¹³⁾ Parshall, G. W. Acc. Chem. Res. **1975,** 8, 113.

Table **I.** Selected Bond Distances **(A)** and Angles (deg) for **3**

distances and angles are presented in Table I.

The unusual bidentate, heterocyclic ligand can be viewed **as** a **cis-bicyclo[2.2.l]heptane** (norbornane) analogue that has a rhodium atom at the bridgehead position.

Formation of **3** involves the activation of Rh-C, C-Si, and C-H bonds as well as the elimination of CH_4 and isobutene. The drive to form the new Rh-P and Rh-C bonds is assisted by the increased entropy of the products and the ease at which the volatile products can be removed. The production of **3** results in a buildup of ring strain. Considerable distortion occurs at $C(1)$, $C(2)$, and $C(3)$ where the $Si(1)-C(1)-Si(3)$, $Si(1)-C(2)-Si(4)$, and $Si(3)-$ C(3)-Si(2) angles are 117.6 (1)^o, 121.2 (1)^o, and 120.6 (1)^o. The Rh-C(1)-Si(1), P-C(2)-Si(1), and P-C(3)-Si(3) angles are 100.3 (1)^o, 101.5 (1)^o, and 101.7 (1)^o. These angles differ widely from those of a tetrahedral carbon (109.5°) . The $Si(1)-C(2)$ and $Si(3)-C(3)$ bond distances are very long $(\sim 1.92 \text{ Å})$, which provides further evidence for ring strain. The rhodium atom is in a distorted square-planar geometry with the P-Rh-C(1) angle being $77.5(1)$ °. The compression of this angle from the normal square-planar angle of 90° is related to the length of the $Si(1)-C(2)$ and $Si(3)-C(3)$ bonds. Wider angles would require additional stretching of these bonds, and they are already lengthened considerably (1.92 **A)** from that of a typical Si-C bond (1.85 **A).**

The cyclooctadiene group exists in the expected boat configuration with the $C(14)-C(21)$ and $C(17)-C(18)$ bond distances of 1.381 (4) **A** and 1.378 (5) **A,** respectively. The four olefinic carbon to rhodium bond distances range from 2.157 (2) to 2.217 (3) **A.**

The X-ray structure of **3** agrees with the spectroscopic data obtained:¹⁹ ¹H NMR (200 MHz, C_6D_6 , ppm) 5.00, 4.26 (br s, 4 H, COD vinyl protons), 4.12 (d of d, 1 H, $^{1}J_{\text{P-H}}$ = exo and endo methylene protons of COD), 0.49, 0.40 (s, 12 H, SiMe₂), 0.30 (s, 18 H, SiMe₃); ³¹P{¹H} NMR (81 MHz, 292.3 Hz, ${}^{3}J_{\text{PH-CH}} = 5.5$ Hz, P-H), 2.18, 1.98 (br m, 8 H, C_6D_6 , ppm) -15.2 (d, ¹J_{Rh-P} = 152.3 Hz).

the ³¹P spectra.
(20) "International Tables for X-ray Crystallography"; Kynoch Press:
Birmingham, 1962; Vol. 3.

(21) One of the crystalline products of obtained is $Rh(\eta^4-1, 5-COD)(\eta^3-2-Me-C_3H_6)[HP(t-C_4H)_2]$.

The reaction of di-tert-butyl phosphine with **1** at 25 "C in benzene- d_6 produces a number of products. We have monitored the reaction by 31P NMR and witnessed the immediate disappearance of the free phosphine peak at +20 ppm with the subsequent production of many peaks downfield. A number of these peaks can be assigned to phosphine-bound rhodium species as they exhibit ${}^{1}J_{\text{Rh-P}}$ of between 110 and 190 Hz and have large ${}^{1}J_{\rm P-H}$ (\sim 300 Hz). We have obtained colorless crystals from cooling hexane solutions and will present their structures in a full account of this work.²¹

Acknowledgment. This research **was** supported by the National Science Foundation (Grant CHE-8116355), U.C. Davis NMR Facility, and a generous loan of rhodium chloride by Johnson Matthey, Inc. B.D.M. would like to thank U.C. Davis for a generous graduate research award.

Supplementary Material Available: Tables of bond distances and angles, structure factors, and positional and thermal parameters (38 pages). Ordering information is given on any current masthead page.

Synthesis of Trlnuciear Alkylidyne Complexes from Dinuclear Alkyne Complexes and Metal Hydrldes. CIDNP Evidence for Vinyl Radical Intermediates In the Hydrogenolysis of These Clusters

Paul F. Seidler, Henry E. Bryndza, Jane E. Frommer, Louis S. Stuhi, and Robert G. Bergman"

Department of Chemistry, University of California Berkeley, California *94720*

Received August 23, *1983*

Summary: Treatment of dicobalt alkyne complexes $Co_2(CO)_{6}$ (HCCR) (R = alkyl, aryl) with H₂ and $Co_2(CO)_{8}$ or CpMo(CO)₃H leads to μ_3 -alkylidyne complexes with molecular formula $Co_3(CO)_9CCH_2R$ and $CpMo(CO)_2Co_2 (CO)_6$ CCH₂R, respectively, in high yield and purity. Hydrogenation of these clusters occurs under mild conditions $(60-90$ °C, benzene solution, 3-4 atm of H₂) and gives olefins, paraffins, and carbonyl compounds. A radical pathway for the hydrogenolyses is suggested by the observation of CIDNP in the olefinic product from some of the trinuclear clusters. Isotope labeling studies on the reaction of $Co_3(CO)_9CCH_2C(CH_3)_3$ (2) with H₂ are consistent with the intervention of vinyl radical intermediates.

Although metal-carbon bond hydrogenolysis is an important step in many catalytic processes, relatively few direct mechanistic investigations of this reaction exist.¹ We have undertaken a study of homogeneous reactions of trinuclear alkylidyne complexes with hydrogen to inves-

⁽¹⁸⁾ X-ray diffraction data for RhC₂₁H₄₄PSi₄, 3: crystal system, tri-clinic; space group PI, No. 2; cell dimensions at 140 K; $a = 10.554$ (2) Å, $b = 11.239$ (2) Å, $c = 13.189$ (2) Å; $\alpha = 103.00$ (1)°, $\beta = 101.27$ 108.09 (2)°; $V = 1388.3$ (5) $\mathbf{\hat{A}}^3$; $Z = 2$; $\mu(\text{Mo K}\alpha) = 8.38 \text{ cm}^{-1}$; crystal size = 0.22 × 0.27 × 0.37 mm; yellow prisms; $\rho^{298K}(\text{exptl}) = 1.279 \text{ g} \cdot \text{cm}^{-3}$, $\rho^{140K}(\text{calcl}) = 1.30 \text{ g} \cdot \text{cm}^{-3}$; diffracto range, 1°; scan speed, 15° min⁻¹; 2*0* range 0–55°; reflections collected, 6349 unique, 5807 with $F_o > 3\sigma(F_o)$. All calculations were carried out on a Data General ECLIPSE computer using the SHELXTL program system. The atomic form factors including anomalous scattering were from ref 14. The data **was** corrected for absorption. The structure was solved by a com- bination of Patterson and difference Fourier techniques. All of the hydrogen atoms were located and refined: $R = 0.031$ with non-hydrogen atoms assigned anisotropic and hydrogen atoms assigned isotropic thermal parameters; $R_r = 0.027$, weighting scheme $1/\sigma^2(F)$.

^{(19) &#}x27;H and 31P NMR data were obtained on a NT-200 spectrometer operating at **200** and 81 MHz. All samples were run in freshly dried and distilled benzene- d_6 . 85% H_3PO_4 was used as an external standard for