

Subscriber access provided by SHANGHAI JIAOTONG UNIV

A new route to metal alkylidene complexes. Synthesis of ylide adducts (CO)4Fe-CH(R)P+Ar3 from aldehydes, triarylphosphines, and [cyclo] (CO)4FeSi(CH3)2CH2CH2Si(CH3)2

Hiroshi Nakazawa, Dennis Lee Johnson, and J. A. Gladysz

Organometallics, **1983**, 2 (12), 1846-1851• DOI: 10.1021/om50006a025 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on April 25, 2009**

More About This Article

The permalink<http://dx.doi.org/10.1021/om50006a025>provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

A New Route to Metal Alkylidene Complexes. Synthesis of Ylide Adducts (CO)₄Fe⁻CH(R)P⁺Ar₃ from Aldehydes, Triarylphosphines, and (CO)₄FeSi(CH₃)₂CH₂CH₂Si(CH₃)₂

Hiroshi Nakazawa,^{1a} Dennis Lee Johnson,^{1b} and J. A. Gladysz^{*1,2}

Depa~ments of Chemistry, University of Utah, Salt Lake City, Utah 84 112, and University of California, Los Angeles, California 90024

Received July 8, 1983

II. Chelated disilane complex $\frac{1}{2}$ **(CO)₄FeSi(CH₃)₂CH₂CH₂Si(CH₃)₂(1) is treated with a variety of aromatic** and aliphatic aldehydes (RCHO). Disiloxane OSi(CH₃)₂CH₂CH₂Si(CH₃)₂ (2), iron carbonyls, and, in the case of benzaldehyde, trans-stilbene are formed. When these reactions are conducted in the presence of $P(C_6H_5)_3$ or $P(p\text{-}C_6H_4CH_3)_3$, ylide complexes $(CO)_4Fe\text{-}CH(R)P^+Ar_3$ are isolated in high yields. The displacement of $P(C_6H_5)_3$ from $(CO)_4Fe^-CH(p-C_6H_4OCH_3)P^+(C_6H_5)_3$ **(4)** by $P(CH_3)_3$ is shown to proceed via a dissociative mechanism. All of these reactions are interpreted as proceeding via reactive alkylidene intermediates $(CO)_4F$ e=CHR. Protonation of $(CO)_4F$ e⁻CH(C_6H_5) $P^+(C_6H_5)_3$ (3) with CF₃SO₃H affords $C_6H_5CH_2P^+(C_6H_5)_3CF_3SO_3$. The spectral properties, relative stabilities, and mechanism of formation of the ylide complexes are discussed. It is proposed that the formation of disiloxane **2** constitutes a powerful driving force for the generation of $(CO)_4Fe=XL_n$ species from 1 and $O=XL_n$ precursors.

Introduction

Organometallic complexes with metal-carbon double bonds have been of intense recent interest. 3 Previously, we described a number of reactions of transition-metal trialkylsilanes such as $(CO)_{5}MnSi(CH_{3})_{3}^{4}$ and cis- $(CO)_4Fe[Si(CH_3)_3]_2^{4a,5}$ with oxygen-containing organic compounds that yield organometallic complexes with metal-carbon single bonds. We therefore sought to determine if similar strategies could be used to generate complexes with metal-carbon double bonds.

In this paper, we give a detailed account of our studies of the reactions of the chelated bis(silane) (CO)₄FeSi(C-

 H_3 ₂CH₂CH₂Si(CH₃)₂ (1)⁶ with aldehydes. In the presence of triarylphosphines, ylide complexes $(CO)_4 \text{Fe}^{\text{-}}CH(R)P^+Ar_3$ are isolated in high yield. These species are shown to be in facile equilibrium with alkylidene complexes $(CO)_4$ Fe=CHR. Hence, this transformation constitutes a fundamentally new route to complexes with metal-carbon double bonds. It also provides one of the very few means^{4e} for the direct incorporation of aldehydes into organometallic molecules. A portion of this study has been communicated.^{4a}

Results

A rapid reaction occurred when benzaldehyde (1.1 equiv) was added to a 5 °C solution of cis - $(CO)_{4}FeSi$ - $(CH_3)_2CH_2CH_2Si(CH_3)_2$ (1) in benzene (eq 1). Considerable insoluble material deposited. Analysis by GLC after 2 h showed that cyclic disiloxane $\overrightarrow{OSi(CH_3)_2CH_2CH_2Si}$ $(CH₃)₂$ (2)⁷ had formed in 95% yield.⁸ The only other volatile organic product present in significant quantity was trans-stilbene (1&25% of theory). An IR spectrum of the heptane-soluble products showed $Fe₃(CO)₁₂$ and $Fe(CO)₅$. *<u>quiv)</u>*
^{*FeSi-*}

Disiloxane **2** also formed in 95% yield in reactions of 1 with p -methoxybenzaldehyde, p -(dimethylamino)benzaldehyde, and octanal. The first two reactions were monitored by ¹H NMR in toluene- d_8 at -30 and -50 °C, respectively. No low-field resonances attributable to $(CO)₄Fe=CHR$ species,⁹⁻¹² or resonances due to any other reaction intermediate, were noted.

Brookhart has reported that the iron benzylidene complex $[(\eta$ -C₅H₅)Fe(CO)₂(=CHC₆H₅)]⁺ decomposes to trans-stilbene (50%) over the course of 1 h at $25 \text{ °C}.10$ Similarly, Casey has found that $(CO)_{5}W=C(C_{6}H_{5})_{2}$ decomposes in refluxing heptane to, among other products, tetraphenylethylene (35%). In view of these observations, the formation of trans-stilbene in eq 1, and the high-yield formation **of** disiloxane **2** in all of the above reactions, we considered it highly probable that $(CO)_4Fe=CHR$ intermediates were being generated from 1. Hence we conducted trapping experiments.

Reaction of 1.03-1.07 equiv of benzaldehyde with **1** in

0276-7333/83/2302-1846\$01.50/0 © 1983 American Chemical Society

⁽¹⁾ (a) University of **Utah.** (b) University of California.

⁽²⁾ To whom correspondence should be addressed at the University of **Utah.** Fellow of the Alfred P. Sloan Foundation **(198C-1984)** and Camille and Henry Dreyfus Teacher-Scholar Grant Recipient **(1980-1985).**

⁽³⁾ This literature, which originated with E. 0. Fischer, is extensive. Some lead articles are as follows: (a) Brown, F. J. *Prog. Inorg. Chem.* **1980**, 27, 1. (b) Schrock, R. R. *Science* (*Washington D.C.*) **1983**, 219, 13. rev. 1, B.; Ott, K. C.; Grubbs, R. H. J. Am. Chem. Soc. 1982, 104, 7491.
(d) Casey, C. P.; Miles, W. H.; Tukada, H.; O'Connor, J. M. Ibid. 1982,
104, 3761. (e) Brookhart, M.; Tucker, J. R.; Husk, G. R. Ibid. 1983, 105, **258.** *(0* Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. *Ibid.* **1983, 105, 5804.**

^{(4) (}a) Johnson, D. L.; Gladysz, J. A. J. Am. Chem. Soc. 1979, 101, 6433. (b) Brinkman, K. C.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1980, 1260. (c) Johnson, D. L.; Gladysz, J. A. Inorg. Chem. 1981, 20, 2508. (d) Marsi, M.; Gladysz, J. A. *Organometallics* **1982,1, 1467.** (e) Brinkman, K. C.; Gladysz, J. A. *Organometallics,* in press.

⁽⁵⁾ (a) Blakeney, A. J.; Gladysz, J. A. *J. Organomet. Chem.* **1981,210, 303.** (b) Blakeney, A. J.; Johnson, D. L.; Donovan, P. W.; Gladysz, J. A. *Inorg. Chem.* **1981, 20, 4415.**

⁽⁶⁾ Vancea, **L.;** Graham, W. A. G. *Inorg. Chem.* **1974, 13, 511.**

⁽⁷⁾ Piccoli, **W.** A.; Haberland, G. G.; Merker, R. L. *J. Am. Chem.* SOC. **i960,82,1883.**

⁽⁸⁾ In all cases, yields are based upon the limiting reactant. Yields determined by GLC and **'H** NMR are judged to be accurate within **&5%. (9)** Casev. C. P.: Polichnowski, S. W.: Shusterman, A. J.; Jones, C. R.

J. Am. Chkm. SOC. **1979,101, 7282. (10)** Brookhart, M.; Nelson, G. 0. J. *Am. Chem. SOC.* **1977,99, 6099.**

⁽¹¹⁾ Marsella, **J.** A.; Folting, K.; Huffman, J. C.: Caulton, K. G. *J. Am. Chem. SOC.* **1981,103, 5596.**

⁽¹²⁾ Kiel, **W.** A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, 0.; Gladysz, J. A. *J. Am. Chem. SOC.* **1982,104, 4865.**

⁽¹³⁾ Casey, C. P.; Burkhardt, T. J.; Bunnell, C. A.; Calabrese, J. C. J. *Am. Chem.* SOC. **1977, 99, 2127.**

the presence of 1.0-1.1 equiv of $P(C_6H_5)_3$ at 5 °C for 2 h gave, after workup, ylide complex (CO)4Fe⁻CH- $(C_6H_5)P^+(C_6H_5)$ ₃ (3) as fine yellow crystals in 92-99% yields (eq 2). Disiloxane **2** was also detected by GLC

(95%). Complex **3** was characterized by IR and NMR spectroscopy as summarized in Table I and by microanalysis. The zwitterion was indefinitely stable in the solid state but slowly decomposed upon standing in benzene to $(CO)_{4}FeP(C_{6}H_{5})_{3}$ (2051 (m), 1978 (m), 1947 (vs) cm⁻¹) and $(CO)_{3}Fe(P(C_{6}H_{5})_{3})_{2}$ (1886 (vs) cm⁻¹), as assayed by IR spectroscopy **.I4**

The low-temperature reaction of equimolar quantities of 1, benzaldehyde, and $P(C_6H_5)_3$ in CD_2Cl_2 was ¹H NMR monitored. An identical, side-by-side experiment was conducted without $P(C_6H_5)_3$. Both reactions proceeded at the same rate. Products slowly began to appear upon warming to -10 °C. No intermediates were observed.

The transformation depicted in eq 2 proved general for a variety of aromatic and aliphatic aldehydes, as summarized in entries 2-9 of Table I. In some reactions, $P(p C_6H_4CH_3$)₃ was used in place of $P(C_6H_5)$ ₃ to enhance the crystallinity of the ylide complex. The p-(dimethylamino)phenyl- and cyclohexyl-substituted ylides **5** and **10** (entries 3, 8) were less stable in solution than **3.**

Ylide complexes $L_nM^--CXYP^+R_3$ have commonly been prepared by the equilibrium addition of a phosphine, $PR₃$, to a carbene complex, $L_nM=CXY$.^{9,15} Hence, the accessibility of $(CO)_4$ Fe⁻CHR intermediates from adducts 3-11 was probed. Zwitterion 4 was treated with 1 equiv of $P(CH_3)$ in C_6D_6 (eq 3). Complete conversion to $P(CH_3)_3$ in C_6D_6 (eq 3). $(CO)_4Fe^-CH(p-C_6H_4OCH_3)P^+(CH_3)_3(12)$ was observed by 'H NMR over the course of several hours at room temperature. The new ylide complex **12** was an oil and could not be separated from byproduct $P(C_6H_5)_3$. However, it

could be characterized by IR and 'H and 31P NMR spectroscopy.

The rate of disappearance of 4 in eq 3 was monitored by ¹H NMR at 35.5 °C through 2.3 $t_{1/2}$ under the conditions summarized in Table **11.** The rate law

$$
d[4]/dt = -k_{\text{obsd}}[4][P(CH_3)_3]^0
$$
 (4)

was followed. Hence, phosphine substitution occurs via a dissociatiue mechanism.

Casey and Brookhart have shown that $(CO)_{5}W=CH C_6H_5$ and $[(\eta$ -C₅H₅)Fe(CO)₂(=CHC₆H₅)]⁺ react with a variety of olefins to give phenylcyclopropanes. $9,16$ Isobutylene was found to be the most reactive substrate. Thus, eq 1 was repeated at -78 °C in the presence of a large excesss of isobutylene. The major phenyl-containing product was again trans-stilbene (18%). No 1,l-dimethyl-2-phenylcyclopropane was found. **A** 5 % yield would have been detected. Similarly, no reaction occurred when **3** was treated with a large excess of isobutylene at -20 °C (9 h) and then room temperature (15 h).

Cooke and Collman have shown that iron anions $(CO)₄Fe⁻R$ liberate alkanes RH when treated with acid.¹⁷ Hence, 3.1 equiv of CF_3SO_3H was added to ylide complex **3** in CD₃CN. The yellow color of the reaction was immediately discharged. The reaction was stirred overnight, after which time 'H NMR analysis showed $C_6H_5CH_2P^+(C_6H_5)_3$ $CF_3SO_3^-$ to be present in spectroscopically quantitative yield. Product identity was confirmed by 31P NMR and comparison to an authentic sample.

Finally, reactions of **1** with substrates other than those listed in Table I were briefly examined. Crotonaldehyde, **1, and** $P(C_6H_5)$ **₃ yielded what appeared to be a mixture of** ylide complexes. The reaction of α -methylbutyraldehyde, 1, and $P(C_6H_5)_3$ or $P(p-C_6H_4CH_3)_3$ gave an extremely unstable product which upon attempted characterization yielded $(CO)_{3}Fe(PAr_{3})_{2}$. The reaction of cyclohexanone and **1** gave disiloxane **2** in 95% GLC yield. When this reaction was conducted in the presence of $P(C_6H_5)_3$, only $(CO)_4 \text{FeP}(C_6H_5)_3$ and $(CO)_3 \text{Fe}(P(C_6H_5)_3)_2$ were detected.

^{(14) (}a) Clifford, A. F.; Mukherjee, A. K. *Inorg. Synth.* **1966,** *8,* **185.**

⁽b) Reckziegel, A.; Bigorgne, M. J. Organomet. Chem. 1965, 3, 341.
(15) (a) Fischer, H.; Fischer, E. O.; Kreiter, C. G.; Werner, H. Chem.
Ber. 1974, 107, 2459. (b) Kreissl, F. R.; Held, W. Ibid. 1977, 110, 799. (c) Fischer, H. J. Organomet. Chem. 1979, 170, 309. (d) Choi, H. S.; Sweigart, D. A. *Ibid.* 1982, 228, 249. (e) Tam, W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141.

⁽¹⁶⁾ Brookhart, M.; Humphrey, M. B.; Kratzer, H. J.; Nelson, G. 0. *J. Am. Chem.* **SOC. 1980,** *102,* **7802.**

⁽¹⁷⁾ (E) Cooke, M. P. *J. Am. Chem.* **SOC. 1970, 92,6080.** (b) **Collman,** J. **P.** *Acc. Chem. Res.* **1975,** *8,* **342.**

The reaction of acetone, 1, and $P(C_2H_5)_3$ gave a similar result.

Discussion

We consider the high-yield formation of disiloxane **2** in eq 1 to be evidence for the simultaneous generation of a species of empirical formula $(CO)_4FeCHC_6H_5$, such as $(CO)_4Fe=CHC_6H_5$. When this reaction is conducted in the presence of $P(C_6H_5)$ ₃ (eq 2), the rate is unaffected. Under these conditions, ylide complex **3,** which is an adduct of $(CO)_4$ Fe=CHC₆H₅ and P(C₆H₅)₃, is isolated in high yield. **A** mechanism which encompasses these observations, and others given above, is shown in Scheme I.

The initial step of Scheme I is the insertion of the benzaldehyde carbonyl group into an iron-silicon bond of **1.** Although the resulting intermediate **13** contains a seven-membered ring, a strong silicon-oxygen bond $(106-127 \text{ kcal/mol})^{18}$ is formed. Furthermore, this insertion has good chemical precedent in the reactions of (C- $O_{5}MnSi(CH_{3})_{3}$ and cis- $(CO)_{4}Fe[Si(CH_{3})_{3}]_{2}$ with benzaldehyde to give **(C0)5MnCH(C6H5)OSi(CH3)34C,e** and $(CO)_4Fe[Si(CH_3)_3]CH(C_6H_5)OSi(CH_3)_3$ ^{5b} respectively. Importantly, the latter compound, which lacks the chelate ring of **13,** undergoes only iron-carbon bond homolysis at room temperature.

Intermediate **13** could subsequently extrude disiloxane **2** via several possible pathways. For instance, we have shown that manganese-silicon and iron-silicon bonds can be heterolytically cleaved by attack of ether oxygens upon silicon.^{4b,e,5} Hence, the ether oxygen in 13 could displace the remaining silicon from iron.

The overall thermodynamics for $1 + \text{benzaldehyde} \rightarrow$ $2 + (CO)_{4}Fe = CHC_{6}H_{5}$ (steps a and b, Scheme I) can be estimated. The carbon-oxygen double bond in benzaldehyde is worth on the order of 175 kcal/mol.¹⁹ The two silicon-oxygen bonds in **2** likely provide at least **225** kcal/mol of driving force.¹⁸ Direct measurements of metal-trialkylsilyl bond strengths have not yet been made. However, the iron-silicon bond in $(\eta$ -C₅H₅)Fe(CO)₂Si- $(CH₃)₂CH₂Br$ has been shown to be no more than 5-7 kcal/mol stronger than the iron-carbon bond in $(n C_5H_5$)Fe(CO)₂CH₂Si(CH₃)₂Br.²⁰ Therefore, in view of current estimates of first-row transition-metal-carbon bond strengths,21 the iron-silicon bonds in **1** are unlikely to be worth much more than 30 kcal/mol each. On the basis of the calculated Fe=C bond strength in $(CO)_4$ Fe=CHOH²² and recent determinations of rotational barriers about $L_nM=CHR$ bonds,²³ the iron-carbon double bond in $(CO)_4$ Fe=CHC₆H₅ is unlikely to be significantly stronger than **35** kcal/mol. Thus, an approximate *AH* for steps a and b of Scheme I is **-15** kcal/mol. This suggests that $L_nX=O$ double bonds considerably stronger than the C=O bond of benzaldehyde might be cleaved by **1,** thus providing a novel and direct entry into a variety of $(CO)₄Fe=XL_n$ species.

Our inability to trap $(CO)_4Fe=CHC_6H_5$ with isobutylene is surprising in view of Casey's and Brookhart's results. $9,16$

^{(18) (}a) Ebsworth, E. A. V. In "Organometallic Compounds of the Group IV Elements"; MacDiarmid, A. G., Ed.; Marcel Dekker: New York, 1968; Vol. 1, Part 1, pp 46–50. (b) Walsh, R. Acc. Chem. Res. 1981, 14, **246.**

⁽¹⁹⁾ Cottrell, T. **L.** "The Strengths of Chemical Bonds", 2nd ed.; **(20)** Windus, C.: Sujishi, S.; Giering, W. P. *J. Am. Chem. SOC.* **1974,** Butterworths: London, **1958;** p **275.**

^{96, 1951.}

Acc. Chem. Res. **1982,** *15,* **238. (21)** (a) Connor, J. **A.** *Top. Curr. Chem.* **1977, 71,71.** (b) Halpern, **J.**

⁽²²⁾ Nakatsuii. **H.:** Ushio, J.; Han, S.: Yonezawa, T. *J. Am. Chem.* SOC. **1983,** *105,* **426.**

G. **S.;** Gladysz, J. **A.** J. *Am. Chem.* SOC. **1983,** *105,* **4958. (23)** See citations in ref **3f** and **12** and: Kiel, W. **A.;** Lin, G.-Y.; Bodner,

Table **11.** Summary **of** Rate Data **for** Equation 3 in C_6D_6 at 35.5 °C

run	$[4]_0$, mmol/L	$[P(CH_3),]_0$ mmol/L	10^{4} <i>k</i> obsd, s^{-1}
	58.2	58.2	3.61 ± 0.16
$\overline{2}$	58.2	3×58.2	3.69 ± 0.10
3	58.2	6×58.2	3.79 ± 0.10
4	58.2	10×58.2	3.67 ± 0.10
5	0.5×58.2	58.2	3.99 ± 0.31

Scheme I. Proposed Pathway **for** the Reaction **of** 1 with Benzaldehyde

Thermal decomposition must be preferred over cyclopropane formation. It should also be emphasized that an alternative route from 1, benzaldehyde, and $P(C_6H_5)_3$ to ylide complex 3, which does not pass through $(CO)_4Fe=$ CHC_6H_5 , may exist.

Ylide complexes **3-1 1** exhibit the expected spectroscopic properties (Table I). The IR spectra closely resemble those reported by Siegl and Collman for alkyls $[(C_6H_5)_3P]_2N^+(CO)_4Fe^-R.^{24}$ The H_α NMR chemical shifts and $J_{\rm ^1H^{-31}P}$ values are close to those found by Casey for $(CO)_{5}W^{-}CH(C_{6}H_{5})P^{+}(C_{6}H_{5})_{3}$ (δ 3.82 ($J = 15.6$ Hz)).⁹ This compound was synthesized by trapping the observable benzylidene $\text{(CO)}_5\text{W}=\text{CHC}_6\text{H}_5$ with $\text{P}(\text{C}_6\text{H}_5)_3$ at -78 °C. The C_{α} ¹J₁₃_C₃₁_P in **3**-11 (12-27 Hz) are quite low for directly bonded couplings. Interestingly, assignments made via the 'H-coupled 13C NMR spectrum of **7** indicate that for the ylide chain ${}^{3}J_{^{13}C_{-}^{31}P} > {}^{1}J_{^{13}C_{-}^{31}P} > {}^{2}J_{^{13}C_{-}^{31}P}$.

The most straightforward interpretation of the rate expression for eq 3 (eq 4) is that initial $P(C_6H_5)$ ₃ dissociation from 4 occurs to give $(CO)_4Fe=CH(p-C_6H_4OCH_3)$. The equilibrium $L_nM=CXY + PR_3 = L_nM-CXYP^+R_3$ has been shown to be influenced by **(1)** the basicity of the phosphine, **(2)** the Lewis acidity of the carbene carbon, and (3) steric effects.^{15a-d} Hence in eq 3, the less basic phosphine is displaced. Interestingly, alkoxy-substituted carbene complexes $L_nM=C(OR)R$ are reluctant to form $P(C_6H_5)_3$ adducts, presumably due to their lower Lewis acidity.^{3a,15a-d} The lower solution stability of p -(dimethy1amino)phenyLsubstituted ylide **5** is also probably due to decreased C_{α} Lewis acidity.^{15c}

The absence of ylide complex products from the reaction of **1,** ketones, and phosphines is probably due to a combination of steric and electronic factors; any $(CO)_4$ Fe= CR_2 intermediate would be bulkier and of lower Lewis acidity than $(CO)_{4}$ Fe=CHR. It also appears, due to the instability of cyclohexyl-substituted ylide complex **10** and the initial product from 1, Par_3 , and α -methylbutyraldehyde, that C_{β} branching decreases ylide complex stability.

Finally, the reaction shown in eq *5* is most plausibly interpretated **as** proceeding via initial protonation on iron to give a $(CO)_4$ FeHR intermediate, followed by reductive elimination. Thus, this series of ylide complexes behaves, to some extent, like the corresponding unfunctionalized iron alkyls."

Conclusion

This study has provided a facile and novel entry into a variety of ylide complexes $(CO)_4Fe^-CH(R)P^+Ar_3$. The synthetic strategy employed is potentially of broad generality for the generation of $(CO)_4Fe=XL_n$ and other species with multiple bonds to metals. Extensions of this strategy, and the chemical properties of the new ylide complexes, are under active investigation.

Experimental Section

General Remarks. All reactions were carried out under an inert atmosphere. Solvents were dried and deoxygenated as previously described.^{4a,d,5} Silane 1 and disiloxane 2 were prepared by published methods.^{6,7} Aldehydes were obtained from common commercial sources and were purified by standard procedures.²⁵ Phosphines, $C_6H_5CH_2P^+(C_6H_5)_3Cl$, and CF_3SO_3H were obtained from Aldrich or Strem Chemicals. Triarylphosphines were recrystallized from 1:1 methanol/benzene, and CF_3SO_3H was distilled prior to use. Isobutylene (Phillips) was used without purification.

All 'H NMR data were obtained at 90-200 MHz, and all 13C NMR data were obtained at 50-75 MHz, unless noted. Spectra were referenced to internal $(CH_3)_4Si.$ ³¹P NMR spectra were obtained on a Varian FT-80 spectrometer and were referenced to external 85% H_3PO_4 . IR spectra were obtained on Perkin-Elmer Model 521 and 1500 (FT) spectrometers. GLC analyses were performed as previously described.^{4c,8} Microanalyses were conducted by Schwartzkopf.

Reaction of 1 with Benzaldehyde. A 5-mm NMR tube was charged with 281 mg (0.90 mmol) of 1 and 0.50 mL of benzene- d_6 in a glovebox and capped with a septum. The tube was removed from the box and cooled to 5° C. Then benzaldehyde (100 μ L, 1.06 mg, 1.00 mmol) was injected by syringe. Considerable insoluble material formed rapidly. A ¹H NMR spectrum (60 MHz) showed only severely broadened resonances. GLC analysis was conducted after 2 h at *5* "C and included coinjectiop with authentic product samples. Data are given in the results section. In separate experiments, the formation of disiloxane **2** was confirmed by 'H NMR.

Reaction of 1 **with p-Methoxybenzaldehyde and p-(Dimethy1amino)benzaldehyde.** The following experiment is representative. Additional details are provided elsewhere.²⁶

A 5-mm NMR tube was charged with 79 mg (0.25 mmol) of 1 in a glovebox and capped with a septum. The tube was removed from the box and cooled to 5 °C . Then toluene- d_8 (0.25 mL) was added by syringe. The tube was shaken and cooled to -78 °C. A toluene- d_8 solution of p -(dimethylamino)benzaldehyde (37 mg) , 0.25 mmol) was then slowly added in a manner that allowed it to be considerably cooled on the wall of the tube before it came into contact with the solution of 1. The tube was then transferred to a -50 "C Bruker WP-200 NMR probe. 'H NMR monitoring showed the formation of siloxane **2** over the course of 2 h. However, no resonances ascribable to $(CO)_4Fe=CH(p-C_6H_4N (CH₃)₂$) or other intermediates were observed. The reaction was allowed to warm to room temperature, whereupon GLC analysis indicated a 95% yield of **2.** No other volatile organic products were formed in significant quantities.

Preparation of $(CO)_4$ **Fe⁻CH** $(C_6H_5)P^+(C_6H_5)$ **₃ (3). A solution** of 1 (408 mg, 1.31 mmol) and $P(C_6H_5)_3$ (367 mg, 1.40 mmol) in 3 mL of benzene was cooled to 5° C. Then $142 \mu L$ (149 mg, 1.40

⁽²⁴⁾ Siegl, W. 0.; Collman, J. P. J. *Am. Chem.* SOC. **16,** *94,* **2516.**

⁽²⁵⁾ Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. "Purification of (26) Johnson, D. L. Ph.D. Thesis, UCLA, 1980. Laboratory Chemicals"; Pergamon Press: New **York,** 1980.

mmol) of benzaldehyde was added, and the reaction was magnetically stirred for 1.5 h at *5* "C. Then 6 mL of heptane was added. Fine yellow crystals formed, which were isolated by filtration, washed with heptane, and dried in vacuo. Thus obtained was 672 mg (1.29 mmol, 99%) of **3,** dec pt 115-120 "C. Anal. Calcd for $C_{29}H_{21}FeO_4P$: C, 66.94; H, 4.07; Fe, 10.73; P, 5.95. Found: C, 67.07; H, 4.68; Fe, 11.33; P, 6.18.

Preparation of $(CO)_4$ **Fe⁻CH(p-C₆H₄OCH₃)P⁺(C₆H₅)₃ (4).** A solution of 1 (124 mg, 0.40 mmol) and $P(C_6H_5)_3$ (108 mg, 0.41 mmol) in 3 mL of benzene was cooled to 5 °C. Then 49 μ L (54 mg, 0.40 mmol) of p-anisaldehyde was added, and the reaction was magnetically stirred for 2 h at *5* "C. Then 6 mL of heptane was added. Yellow crystals formed, which were isolated by filtration, washed with 3×6 mL of heptane, and dried in vacuo. Thus obtained was 217 mg (0.39 mmol, 99%) of 4, dec pt 94-110 °C. Anal. Calcd for $C_{30}H_{23}FeO_5P: C$, 65.47; H, 4.21; Fe, 10.15; P, 5.63. Found: C, 65.28; H, 4.25; Fe, 10.02; P, 5.80.

Preparation of $(CO)_4$ **Fe⁻CH(p-C₆H₄N(CH₃)₂)P⁺(C₆H₅)₃(5).** A solution of 1 (223 mg, 0.71 mmol) and $\dot{P}(C_6H_5)_3$ (189 mg, 0.72 mmol) in 3 mL of benzene was cooled to 5 °C. Then 107 mg (0.72 mmol) of **p-(dimethy1amino)benzaldehyde** was added, and the reaction was magnetically stirred for 2 h at *5* "C. To the resulting brown homogeneous solution was added 6 mL of heptane. A yellow precipitate formed, which was isolated by filtration and recrystallized from benzene/heptane. Thus obtained was 200 mg (0.36 mmol, 50%) of **5 as** fine yellow crystals, dec pt 115-125 "C.

Preparation of $(CO)_4 \text{Fe}^{-}CH(2\text{-naphthyl})\text{P}^+(C_6H_5)_3$ **(6).** Yellow crystalline 6, dec pt 121-126 °C, was prepared in a manner identical with that for 2 in 98% yield (470 mg, 0.82 mmol) from 262 mg (0.84 mmol) of 1, 223 mg (0.85 mmol) of $P(C_6H_5)_3$, and 133 mg (0.85 mmol) of 2-naphthaldehyde.

Preparation of $(CO)_4\text{Fe}^{\bullet}CH(CH_2CH_3)P^+(C_6H_5)_3$ **(7). Yellow** crystalline 7, mp 130 "C (dec **ca.** 131 "C), was prepared in a manner identical with that for **3** in 70% yield (158 mg, 0.34 mmol) from 150 mg (0.48 mmol) of 1, 140 mg (0.53 mmol) of $P(C_6H_5)_3$, and 34.4 μ L (28 mg, 0.48 mmol) of propionaldehyde.

Preparation of $(CO)_4$ **Fe⁻CH(CH₂CH₂CH₃)P⁺(p-C₆H₄CH₃)₃ (8).** A solution of 1 (129 mg, 0.41 mmol) and $\vec{P}(p-C_6H_4CH_3)$ ₃ (128) mg, 0.42 mmol) in 1 mL of benzene was cooled to *5* "C. Then $37 \mu L$ (30 mg, 0.42 mmol) of butyraldehyde was added, and the reaction was magnetically stirred for 4.5 h at *5* "C. Then *5* mL of heptane was added, and the reaction mixture was concentrated in vacuo. A yellow precipitate formed, which was recrystallized from heptane and dried in vacuo to give 112 mg (0.21 mmol, 51%) of **8** as fine yellow crystals, mp 99-101 "C dec.

Preparation of $(CO)_4 \text{Fe}^{\dagger}CH(n-C_7H_{15})\text{P}^{\dagger}(C_6H_5)$ **₃ (9). Yellow** crystalline 9, dec pt 112-115 "C, was prepared in a manner identical with that for **3** in 85% yield (320 mg, 0.54 mmol) from 201 mg (0.64 mmol) of 1, 171 mg (0.65 mmol) of $P(C_6H_5)_3$, and 102 μ L (83 mg, 0.65 mmol) of octanal. Anal. Calcd for $C_{30}H_{31}FeO_4P$: C, 66.41; H, 5.76; Fe, 10.30; P, 5.71. Found: C, 66.63; H, 5.98; Fe, 10.49; **P,** 5.81. Anal.

Preparation of $(CO)_4$ **Fe⁻CH** $(c$ **-C₆H₁₁)P⁺(p-C₆H₄CH₃)₃ (10).** Yellow powder 10, dec pt 58-62 °C, was prepared in a manner identical with that for **8** in 42% yield (107 mg, 0.19 mmol) from 1 (142 mg, 0.45 mmol), $P(p-C_6H_4CH_3)_3$ (138 mg, 0.45 mmol), and cyclohexanecarboxaldehyde *(55* pL, 50 mg, 0.45 mmol).

Preparation of (CO) **₄Fe⁻CH(2-furyl)P⁺(p-C₆H₄CH₃)₃ (11).** Yellow crystalline 11, dec pt 120-135 °C, was prepared in a manner identical with that for **3** in 93% yield (175 mg, 0.32 mmol) from 1 (107 mg, 0.34 mmol), furfural (29 μ L, 34 mg, 0.35 mmol), and $P(p-C_6H_4CH_3)$ ₃ (107 mg, 0.35 mmol).

Reaction of 1 **with Benzaldehyde and Isobutylene.** A Schlenk flask was charged with 1 (113 mg, 0.36 mmol), CH_2Cl_2 (2.0 mL), and a stir bar and was cooled in a liquid nitrogen bath. Then benzaldehyde (38 μ L, 39 mg, 0.37 mmol) was added. The flask was evacuated, and ca. 9 mmol of isobutylene gas was introduced. The reaction was warmed to -78 "C and stirred for 1 h. It was subsequently warmed to -40 °C (1 h), -10 °C (1 h), 0 °C (1 h), and room temperature (3 h). Subsequent GLC analysis showed trans-stilbene (18%) and disiloxane 2 (74%) to be present, but no **l,l-dimethyl-2-phenylcyclopropane** *(<5%*). An IR spectrum indicated $Fe₃(CO)₁₂$ (2048 (s), 2028 (sh) cm⁻¹) to be the major iron-containing product. Additional analysis (column chromatography, 'H NMR) gave no evidence for a cyclopropane product.

Preparation of $(CO)_4 \text{Fe}^{\,\text{-}}CH(p \text{-} C_6H_4OCH_3) \text{P}^{\,\text{+}}(CH_3)_3$ **(12).** A Schlenk flask was charged with 4 (17.3 mg, 0.031 mmol), $PCH₃$ ₃ (2.4 mg, 0.031 mmol), and benzene- d_6 (1.0 mL). An aliquot was transferred to a 5-mm septum-capped NMR tube. After several hours, starting material ¹H and ³¹P NMR resonances were absent; only resonances ascribable to 12 and $P(C_6H_5)$ ₃ (³¹P, -5.86 ppm) were present. The contents of the Schlenk flask and NMR tube were combined. The solvent was removed to give a yellow oil from which neither component could be induced to crystallize. The rate constants in Table **I1** were obtained from similar experiments employing procedures previously described.^{12,15e} Data on 12: ¹H NMR (δ C₆D₆) 0.77 (d, J_{H-P} = 12.0 Hz, 9 H), 2.64 (d, J_{H-P} = 14.0 Hz, 1 H), 3.36 (s, 3 H), 6.6-7.5 (m, 4 H); ³¹P NMR (δ , $C_6^2D_6$) 30.04 ppm; IR (cm^{-1}, C_6D_6) 2024 (m), 1941 (m), 1910 (vs).

Reaction of 3 with CF₃SO₃H. A Schlenk flask was charged with 3 (8.0 mg, 0.015 mmol), toluene internal standard (2 μ L), and $CD₃CN$ (1.0 mL). Two 0.5-mL aliquots of this solution were transferred to two separate septum-capped 5-mm NMR tubes. The 'H NMR spectrum of one tube was recorded. The other tube was treated with CF_3SO_3H (2 μ L, 3.4 mg, 0.023 mmol). The solution turned from yellow to colorless and was allowed to stand overnight. NMR spectra showed **3** to be consumed, and the characteristic ¹H (and ³¹P) resonances of $\rm C_6H_5CH_2P^+(C_6H_5)_3$ to be present in quantitative yield vs. the toluene standard: $\rm{^{1}H}$ NMR (δ, CD_3CN) 4.62 (d, J_{H-P} = 15.0 Hz, 2 H), 6.8-8.0 (m, 20 H); ³¹P NMR (CD_3CN) 22.15 ppm. These values corresponded closely to those of an authentic sample of $C_6H_5CH_2P^+(C_6H_5)_3PF_6^-$, which was obtained as a white powder from the addition of $NH_4^+PF_6^-$ (41.9 mg, 0.257 mmol) to an aqueous solution (20 mL) of $C_6H_5CH_2P^+(C_6H_5)_3 Cl^-(100 \text{ mg}, 0.257 \text{ mmol}).$

Acknowledgment. We thank the National Science Foundation for support of this research. FT NMR spectrometers utilized in this study were provided by NSF departmental instrumentation grants.

Registry No. 1, 43198-13-6; **2,** 7418-20-4; **3,** 72098-96-5; **4,** 87412-14-4; **5,** 87412-15-5; **6,** 87412-16-6; **7,** 87412-17-7; **8,** 87412-18-8; **9,** 87412-19-9; 10, 87412-20-2; 11, 87412-21-3; 12, 87412-22-4; $C_6H_5CH_2P^+(C_5H_5)_3PF_6^-$, 87412-23-5; P(C_6H_5)₃, 603-35-0; P(p-C₆H₄CH₃)₃, 1638-95-5; benzaldehyde, 100-52-7; panisaldehyde, 123-11-5; **p-(dimethylamino)benzaldehyde,** 100-10-7; 2-naphthaldehyde, 66-99-9; propionaldehyde, 123-38-6; butyraldehyde, 123-72-8; octanal, 124-13-0; cyclohexanecarboxaldehyde, 2043-61-0; furfural, 98-01-1; isobutylene, 115-11-7.