

Subscriber access provided by SHANGHAI JIAOTONG UNIV

Synthesis and chemistry of chiral rhenium acyls (.eta.-C5H5)Re(NO)(PPh3)(COR)

William E. Buhro, Andrew Wong, James H. Merrifield, Gong Yu Lin, Anthony C. Constable, and J. A. Gladysz *Organometallics*, **1983**, 2 (12), 1852-1859• DOI: 10.1021/om50006a026 • Publication Date (Web): 01 May 2002 **Downloaded from http://pubs.acs.org on April 25, 2009**

More About This Article

The permalink http://dx.doi.org/10.1021/om50006a026 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Synthesis and Chemistry of Chiral Rhenium Acyls $(\eta - C_5 H_5) Re(NO)(PPh_3)(COR)$

William E. Buhro,¹ Andrew Wong,^{1b} James H. Merrifield,^{1b} Gong-Yu Lin,^{1b} Anthony C. Constable, 1b and J. A. Gladysz*1,2

Departments of Chemistry, University of Utah, Salt Lake City, Utah 84112, and University of California. Los Angeles, California 90024

Received July 20, 1983

Rhenium acyls $(\eta - C_5H_5)Re(NO)(PPh_3)(COR)$ (R = CH₃ (2), CH₂CH₃ (3), CH₂-n-C₈H₁₇ (4), C₆H₅ (5), CH₂C₆H₅ (6), CH₂C₄C₅H₅(7), CH=CH₂ (8), CH₂CH=CH₂ (9)) are prepared in high yield by RMgX attack upon $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COOCH₃) (1). Acyl $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COC=CCH₃) (10) is prepared by LiC=CCH₃ attack upon $[(\eta$ -C₅H₅)Re(NO)(PPh₃)(CO)]^+BF₄-. Acyls 2, 5, and 7 are also prepared in optically active form from optically active 1. These compounds are characterized by IR, ¹H NMR, ¹³C NMR, and (when optically active) ORD and CD. They are shown to undergo high-yield (1) BH₃ reduction ((-)-(R)-2, 4, (+)-(R)-5, 7) to the corresponding alkyls (η -C₅H₅)Re(NO)(PPh₃)(CH₂R), (2) methylation with CH₃SO₃F/NH₄⁺ PF₆⁻ (2, 5) to methoxycarbenes [(η -C₅H₅)Re(NO)(PPh₃)(=C(OCH₃)R)]⁺ PF₆⁻, and (3) protonation with CF₃SO₃H (2, 3) to hydroxycarbenes [(η -C₅H₅)Re(NO)(PPh₃)(=C(OH)R)]⁺CF₃SO₃⁻. Structures for the preferred conformers of 2-10 and their methylation and protonation products are suggested.

Introduction

Metal acyl complexes L_nMCOR are a ubiquitous class of compounds. They are known for every transition metal³ and are particularly common where there exists a readily available metal anion precursor $(L_n M^-)$ which can be acylated⁴ or metal alkyl precursor (L_nMR) which can be carbonylated.⁵ Metal acyls have also been synthesized via Grignard or alkyllithium attack upon metal carbonyl precursors $L_n MCO^{x+}$ (x = 1, 0, -1), or their equivalents.^{3,6}

We have found that a number of remarkably stereospecific ligand-based transformations⁷ can be observed with easily resolved⁸ chiral $(\eta - C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(X)$ compounds. Hence, we desired to synthesize a series of chiral rhenium acyls, $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COR), in order to probe two contemporary aspects of metal acyl chemistry: (1) the conversion of these complexes to cationic vinylidene complexes via the method developed by Hughes⁹ and (2) their deprotonation to, among other possible products, metal-substituted enolates.¹⁰ In this paper, we detail the synthesis of nine representative rhenium acyls, $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COR), including some

(3) Completensive organometanic chemistry, Whatson, Scherk, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982.
(4) (a) King, R. B. Acc. Chem. Res. 1970, 3, 417. (b) Ellis, J. E. J. Organomet. Chem. 1975, 86, 1. (c) Gladysz, J. A.; Williams, G. M.; Tam. W.; Johnson, D. L.; Parker, D. W.; Selover, J. C. Inorg. Chem. 1979, 18, 553.

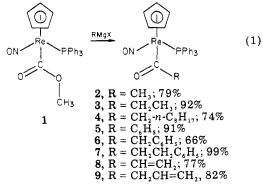
(5) (a) Wojcicki, A. Adv. Organomet. Chem. 1973, 11, 87. (b) Calderazzo, F. Angew. Chem., Int. Ed. Engl. 1977, 16, 299.

(6) (a) Brunner, H.; Langer, M. J. Organomet. Chem. 1973, 54, 221.

(b) (a) Brunner, H.; Langer, M. J. Organomet. Chem. 1973, 54, 221.
(b) Casey, C. P.; Bunnell, C. A. J. Am. Chem. Soc. 1976, 98, 436. (c) Lukehart, C. M. Acc. Chem. Res. 1981, 14, 109.
(7) (a) Kiel, W. A.; Lin, G.-Y.; Gladysz, J. A. J. Am. Chem. Soc. 1980, 102, 3299. (b) Kiel, W. A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. A. Ibid. 1982, 104, 4865. (c) Wong, A.; Gladysz, J. A. Ibid. 1982, 104, 4865. (c) Wong, A.; Gladysz, J. A. Ibid. 1982, 104, 4948. (d) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J. A. Ibid. 1983, 105, 4958. (e) Merrifield, J. H.; Lin, G.-Y.; Kiel, W. A.; Gladysz, J. A. *Ibid.* **1983**, *105*, 5811. (f) Hatton, W. G.; Gladysz, J. A. *Ibid.* **1983**, *105*, 6157. (8) Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics

1982, 1, 1204.

(9) Boland-Lussier, B. E.; Churchill, M. R.; Hughes, R. P.; Rheingold, A. L. Organometallics 1982, 1, 628. (10) (a) Theopold, K. H.; Becker, P. N.; Bergman, R. G. J. Am. Chem.


Soc. 1982, 104, 5250. (b) Aktogu, N.; Felkin, H.; Davies, S. G. J. Chem. Soc., Chem. Commun. 1982, 1303. (c) Liebeskind, L. S.; Welker, M. E. Organometallics 1983, 2, 194. (d) Baird, G. J.; Davies, S. G. J. Organomet. Chem. 1983, 248, C1.

in optically active form, and describe their reactivity toward the electrophilic reagents BH₃, CH₃SO₃F, and CF₃- SO_3H .

Results

Numerous reactions of RMgX and RLi reagents with the cation¹¹ $[(\eta - C_5H_5)Re(NO)(PPh_3)(CO)]^+BF_4^-$ were attempted. However, conditions for the high-yield synthesis of acyls $(\eta - C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(\text{COR})$ could not be found. For instance, reaction of $[(\eta - C_5H_5)Re(NO)(PPh_3)(CO]^+$ BF_4^- with C_6H_5Li in CH_2Cl_2 gave benzoyl $(\eta - C_5H_5)Re$ - $(NO)(PPh_3)(COC_6H_5)$ (5) in at best 12% yield.¹² We attributed most of this difficulty to homogeneity problems. $Cation[(\eta - C_5H_5)Re(NO)(PPh_3)(CO)]^+BF_4^-$ is insoluble in Grignard-inert solvents such as hydrocarbons and ethers.

In an alternative approach, cation $[(\eta - C_5 H_5) Re(NO) (PPh_3)(CO)$ ⁺BF₄ was first treated with CH₃ONa to give the previously described,⁸ benzene-soluble "methyl ester" $(\eta - C_5 H_5) \text{Re}(\text{NO})(\text{PPh}_3)(\text{COOCH}_3)$ (1). When 1 and a variety of Grignard reagents were reacted, acyls $(\eta$ -C₅H₅)-Re(NO)(PPh₃)(COR) (2-9, eq 1) formed in high yield.

Distinctly lower yields of acyls were obtained when 1 was treated with alkyllithium reagents. It was found, however, that acyl $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COC=CCH₃) (10) could be prepared in 48% yield directly from commercial Li-C=CCH₃ and cation $[(\eta - C_5H_5)Re(NO)(PPh_3)(CO)]^+BF_4^-$. All of the above reactions could be conveniently monitored by TLC.

^{(1) (}a) University of Utah, (b) University of California.

⁽²⁾ To whom correspondence should be addressed at the University of Utah; Fellow of the Alfred P. Sloan Foundation (1980-1984) and Camille and Henry Dreyfus Teacher-Scholar Grant Recipient (1980-1985).

^{(3) &}quot;Comprehensive Organometallic Chemistry"; Wilkinson, G.; Stone,

⁽¹¹⁾ Tam, W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141.

⁽¹²⁾ Constable, A. G.; Gladysz, J. A. J. Organomet. Chem 1980, 202, C21.

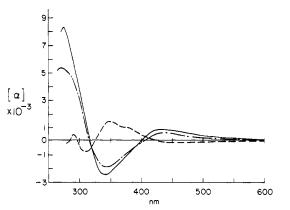
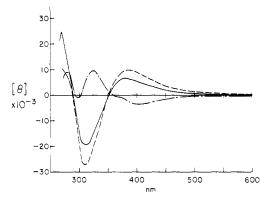
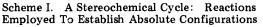
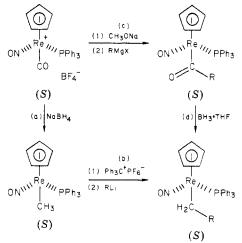


Figure 1. ORD spectra of $(+)-(S)-(\eta-C_5H_5)Re(NO)(PPh_3)-(COCH_3)((+)-(S)-2)(--); (-)-(S)-(\eta-C_5H_5)Re(NO)(PPh_3)(COC_6H_5)$ $((-)-(S)-5)(---); (+)-(S)-(\eta-C_5H_5)Re(NO)(PPh_3)(COCH_2CH_2C_6H_5)$ ((+)-(S)-7)(--).


Figure 2. CD spectra of (+)-(S)- $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COCH₃) $((+)-(S)-2)(---); (-)-(S)-(\eta-C_5H_5)Re(NO)(PPh_3)(COC_6H_5)((-)-$ (S)-5) (---); (+)- $(S)-(\eta-C_5H_5)Re(NO)(PPh_3)(COCH_2CH_2C_6H_5)$ ((+)-(S)-7) (--).

Acyls 2-10 were isolated as yellow to light orange, indefinitely stable powders. They were characterized by IR, ¹H NMR, and ¹³C NMR spectroscopy, as summarized in Table I, and in some cases by microanalysis, ³¹P NMR and UV spectroscopy, and mass spectrometry (Experimental Section).

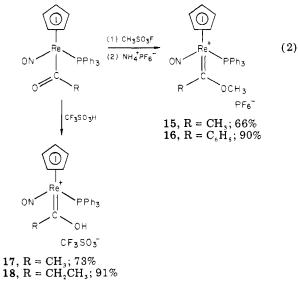
Optically active, 98% ee (-)-(R)-1⁸ was similarly used to prepare optically active acetyl (-)-(R)-2 ([α]²⁴⁵₅₈₉-212°), benzoyl (+)-(R)-5 ([α]^{24.5}₅₈₉ 6.2°), and β -phenylpropionyl (-)-(R)-7 ([α]^{24.5}₅₈₉ -114°).¹³ These transformations were also carried out starting with the enantiomer, (+)-(S)-1 (98% ee). Absolute configurations were assigned as described below. ORD and CD spectra are given in Figures 1 and 2.

Relatively recently, it was discovered that BH₃·THF reduces acyclic metal acyls to metal alkyls.¹⁴ Hence, acetyl (-)-(R)-2, decanoyl 4, benzoyl (+)-(R)-5, and β -phenylpropionyl 7 were treated with excess BH₃·THF. Alkyls $(-)-(R)-(\eta-C_5H_5)Re(NO)(PPh_3)(CH_2CH_3)$ ((-)-(R)-11; $[\alpha]^{24.5}_{589} - 114^{\circ}),^{8} (\eta - C_{5}H_{5}) \text{Re}(\text{NO})(\text{PPh}_{3})(\text{CH}_{2}\text{CH}_{2}-n - C_{8}H_{17})$ (12), $(-)-(R)-(\eta-C_5H_5)Re(NO)(PPh_3)(CH_2C_6H_5)$ ((-)-(R)-13; $[\alpha]^{24.5}_{589}$ -116°),⁸ and $(\eta - \tilde{C}_5 H_5) \tilde{Re}(NO)(PPh_3)$ -

 $(CH_2CH_2CH_2C_6H_5)$ (14) were subsequently isolated in 74-93% yields. The similar BH₃·THF reduction of phenylacetyl 6 to $(\eta$ -C₅H₅)Re(NO)(PPh₃)(CH₂CH₂C₆H₅) has been previously reported.^{7d} Acryloyl 8 first underwent C=C reduction to propional 3 when treated with BH_{3} . THF.

Absolute configurations were assigned to the optically active rhenium complexes via the following observations and arguments. First, the absolute configuration of the benzyl complex (-)-(R)-13, prepared via steps a and b in Scheme I (illustrated with the enantiomer), has been established by an X-ray crystal structure.⁸ The reactions comprising steps a and b do not involve attack at rhenium and have been assigned as proceeding with retention.⁸ Second, Brunner has examined the stereochemistry^{6a,15} of several types of nucleophilic attack upon the CO ligand of homologous manganese cation $[(\eta - C_5H_5)Mn(NO) (PPh_3)(COJ)^+PF_6^-$. His results were most plausibly interpreted as indicating retention at manganese. Finally, the BH₃·THF reduction of formyl $(\eta$ -C₅H₅)Re(NO)- $(PPh_3)(CHO)$ to $(\eta - C_5H_5)Re(NO)(PPh_3)(CH_3)$ has been shown, via a stereochemical cycle, to proceed with >99%retention.⁸ Together, these data constitute compelling evidence that steps c and d of Scheme I both proceed with retention at rhenium.

The alkylation of neutral metal acyls to cationic alkoxycarbene complexes has abundant precedent.¹⁶ Hence, acetyl 2 and benzoyl 5 were treated with CH_3SO_3F (eq 2). Workup with $NH_4^+PF_6^-$ gave crystalline $[(\eta \cdot C_5H_5)Re-(NO)(PPh_3)(=C(OCH_3)CH_3)]^+PF_6^-(15)$ and $[(\eta \cdot C_5H_5)-(\eta \cdot C_5H_5)]^+PF_6^-(15)$ $Re(NO)(PPh_3)(=C(OCH_3)C_6H_5)]^+PF_6^-$ (16) in 66% and 90% yields, respectively. These compounds were characterized by IR, ¹H NMR, and ¹³C NMR spectroscopy as summarized in Table II. The room-temperature ¹H and 13 C NMR spectra of 15 and 16 showed only single η -C₅H₅, OCH_3 , and CH_3 resonances.


Alkylidenes $[(\eta - C_5H_5)Re(NO)(PPh_3)(=CHR)]^+$ have been shown to exist as Re=C geometric isomers that undergo nucleophilic attack predominantly from a direction anti to the PPh_3 ligand.^{7a,d} In order to aid the assignment of stereochemistry about the Re=C bond of 16, conversion to the previously described alkyl $(\eta$ -C₅H₅)Re(NO)- $(PPh_3)(CH(OCH_3)C_6H_5)^{7b}$ was attempted. Thus 16 was treated with 0.8 equiv of $Li(C_2H_5)_3BH$ at -78 °C. The reaction was then quenched with H_2O to minimize side

^{(13) (}a) Absolute configurations at rhenium are assigned according to the Baird/Sloan modification of the Cahn-Ingold-Prelog priority rules. The C_5H_5 ligand is considered to be a pseudoatom of atomic number 30, giving the sequence $\pi^5 \cdot C_5H_5 > PPh_3 > NO > acyl or alkyl. In complexes$ with more than one chiral center, the rhenium configuration is specified first. (b) Prefixes (+)- and (-)- refer to rotations at 589 nm. (c) Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1975, 97, 6598. Sloan, T. E. Top. Stereochem. 1981, 12, 1.

⁽¹⁴⁾ Van Doorn, J. A.; Masters, C.; Volger, H. C. J. Organomet. Chem 1976, 105, 245.

⁽¹⁵⁾ Brunner, H. Adv. Organomet. Chem. 1980, 18, 151.

⁽¹⁶⁾ Brown, F. J. Prog. Inorg. Chem. 1980, 27, 1.

reactions, and $(C_6H_5)_3SiCH_3$ standard was added. Analysis of the η -C₅H₅ ¹H NMR resonances indicated the presence of $(SS,RR) - (\eta - C_5H_5)Re(NO)(PPh_3)(CH(OCH_3)C_6H_5)$ (27%; see III below),^{7b,13} (SR,RS)- $(\eta$ -C₅H₅)Re(NO)(PPh₃)(CH- $(OCH_3)C_6H_5)$ (6.5%), $(\eta - C_5H_5)Re(NO)(PPh_3)(CH_2C_6H_5)$ (19%), and 16 (17%). These data will be interpreted below.

The existence of C-OR geometric isomers in carbene complexes $L_n M = C(OR')R$ has also been previously observed.¹⁷ This possibility was probed by variable-temperature NMR. When an acetone- d_6 solution of 15 was cooled to -27 °C, two isomers appeared in a (66 ± 4):(34 \pm 4) ratio. Their η -C₅H₅, OCH₃, and CH₃ resonances were at δ 6.01, 4.26, and 2.42 (major isomer) and δ 6.21, 3.85, and 2.70 (minor isomer). The -25 °C ¹³C NMR spectrum of 15 showed two η -C₅H₅ resonances (97.8 and 98.4 ppm) in a (68 ± 3) : (32 ± 3) intensity ratio. When an acetone- d_6 solution of 16 was cooled to -85 °C, no ¹H NMR decoalescence was observed.

Acetone- d_6 solutions of 15 and 16 were irradiated at -78 $^{\circ}C^{7b,c,18}$ and were then rapidly transferred to a -27 $^{\circ}C$ ^{1}H NMR probe. The spectra obtained were identical with those noted above.

The protonation of neutral metal acyls to cationic hydroxycarbenes has also been previously observed.¹⁶ Hence, acetyl 2 and propionyl 3 were treated with CF_3SO_3H (eq 2). Workup gave $[\eta - C_5 H_5) \operatorname{Re}(\operatorname{NO})(\operatorname{PPh}_3)(=C(OH) (CH_3)$]+ $CF_3SO_3^-$ (17) and $[(\eta - C_5H_5)Re(NO)(PPh_3)(=C-C_5H_5)Re(NO)($ $(OH)CH_2CH_3$]+CF₃SO₃ (18) as yellow solids in 73% and 91% yields, respectively. These compounds were characterized as summarized in Table II. When propionyl 3 was treated with less than 1 equiv of CF_3SO_3H in $CDCl_3$, only one set of ¹H NMR resonances was observed. These resonances were intermediate in chemical shift between 3 and 18 and showed no decoalescence down to -80 °C.

When an acetone- d_6 solution of 17 was cooled to -27 °C, two isomers appeared in a (80 ± 3) : (20 ± 3) ratio. The η -C₅H₅ and CH₃ ¹H NMR resonances appeared at δ 6.02 and 2.25 (major isomer) and 6.14 and 2.49 (minor isomer). When an acetone- d_6 solution of 18 was cooled to -27 °C, two isomers appeared in a (95 ± 2) : (5 ± 2) ratio. The η -C₅H₅ ¹H NMR resonances were at δ 6.04 and 6.17, respectively.

Discussion

This study has provided a facile, high-yield route to a variety of rhenium acyls $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COR). We attribute the success of eq 1 to its homogeneity and use of a Grignard-inert solvent. However, our results must be extrapolated with caution. For instance, Brunner has found that reactions of alkyllithium reagents RLi with $[(\eta - C_5 H_5)Mn(NO)(PPh_3)(CO)]^+PF_6^-$ proceed in high overall yield.^{6a} However, the manganese acyl products are accompanied by significant amounts of η^4 -C₅H₅R diene complexes formed by RLi attack upon the η -C₅H₅ ligand. Furthermore, reaction of the manganese homologue of 1, $(\eta$ -C₅H₅)Mn(NO)(PPh₃)(COOCH₃), with CH₃MgBr has been reported to give a <2% yield of acetyl $(\eta$ -C₅H₅)Mn-(NO)(PPh₃)(COCH₃).¹⁹

Acyls 2-10 exhibit two characteristic spectroscopic features (Table I). The first is an extremely low IR $\nu_{C=0}$ (1558-1493 cm⁻¹), which has also been noted with the formyl $(\eta$ -C₅H₅)Re(NO)(PPh₃)(CHO).¹¹ This is a result of the excellent electron-donating ability of the $(\eta$ - C_5H_5)Re(NO)(PPh₃) moiety. Consequently, zwitterionic Re⁺=CRO⁻ resonance forms significantly contribute to the ground states of 2-10. The second feature is the acyl carbon ¹³C NMR resonance^{20a} observed at 236-256 ppm.

Out of over 30 optically active $(\eta - C_5 H_5) \operatorname{Re}(NO)$ - $(PPh_3)(X)$ compounds which we have prepared to date,^{7e,8} benzoyl (+)-(R)-5 and enantiomer (-)-(S)-5 are the only ones whose absolute configurations are not correctly predicted by the sign of the ORD or CD spectrum at >500nm (or the sign of the region between the two x axis crossings). For unknown reasons, their chiroptical properties (Figures 1 and 2) are completely anomolous. The BH₃-THF reduction of (+)-(R)-5 gives benzyl (-)-(R)-13, which has entirely ordinary chiroptical properties. This constitutes an important caveat regarding the assignment of absolute configurations on the basis of ORD and CD spectra.

The optical rotations of alkyls (-)-(R)-11 and (-)-(R)-13prepared via steps c and d of Scheme I are approximately 98% of those when the alkyls are prepared via steps a and b. This reflects the small amount of racemization that accompanies the formation of optically active methyl ester 1 (98% ee).⁸ Hence the optically active acyls are obtained in 98% ee, and their BH3. THF reduction must be essentially stereospecific. The specific rotations reported for the optically active acyls should be multiplied by 1.02 to obtain the specific rotations expected for optically pure compounds.

Steps c and d of Scheme I constitute a valuable synthesis of racemic and optically active primary rhenium alkyls. In many cases, we find that overall yields are superior to those realized via alkyllithium attack upon the methylidene $[(\eta - C_5H_5)Re(NO)(PPh_3)(=CH_2)]^+PF_6^-$ (steps a and b).

The X-ray crystal structure of formyl $(\eta$ -C₅H₅)Re- $(NO)(PPh_3)(CHO)$ shows that the CHO plane is nearly parallel to the Re-NO bond.^{11,21} This maximizes overlap of the rhenium d orbital HOMO^{7b} with the formyl carbon p orbital. The formyl hydrogen is located syn to the nitrosyl ligand. On this basis, acyl complexes $(\eta$ -C₅H₅)- $Re(NO)(PPh_3)(COR)$ can be expected to have the preferred conformation I (Newman projection down the acyl carbon-rhenium bond). This orients the alkyl substituent

^{(17) (}a) Kreiter, C. G.; Fischer, E. O. Angew. Chem., Int. Ed. Engl.
1969, 8, 761. (b) Fischer, E. O.; Kreiter, C. G.; Kollmeier, H.J.; Müller,
J.; Fischer, R. D. J. Organomet. Chem. 1971, 28, 237.
(18) McCormick, F. B.; Kiel, W. A.; Gladysz, J. A. Organometallics

^{1982, 1, 405.}

⁽¹⁹⁾ King, R. B.; Bisnette, M. B.; Fronzaglia, A. J. Organomet. Chem. 1966, 5, 341.

⁽²⁰⁾ Mann, B. E.; Taylor, B. F. "¹³C NMR Data for Organometallic Compounds"; Academic Press: New York, 1981: (a) Table 2.7, (b) Table 2.5.

⁽²¹⁾ Wong, W.-K.; Tam, W.; Strouse, C. E.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1979, 530.

10

Table I	Spectroscopic Characterization of Rheniun	Acvls (n-C.H.)Re(NO)(PPh.)(COR)
Table I.	Spectroscopic characterization of knemun	$(\eta - 0_s m_s) ne(n - 0_s m_s) (0 - 0 n)$

	IR $(\text{cm}^{-1}, \text{CHCl}_3),$		¹³ C NMR, ^{b,c} ppm (CDCl ₃)			
complex	$\nu_{N\equiv0}$ and $\nu_{C=0}$	¹ H NMR, ^{<i>a</i>} δ (CDCl ₃)	ReCOR	C,H,	other	
Re PPr3	1658 (s), 1545 (s)	7.53-7.18 (m, 15 H), 5.23 (s, 5 H), 2.03 (s, 3 H)	$254.4 (d, J = 8.3 Hz)^c$	93.0 (s)	135.6 (d, $J = 55$ Hz), ^c 133. (d, $J = 11.1$ Hz), 130.4 (s), 128.3 (d, $J = 8.5$ Hz), 50.2 (s, CH ₃)	
2 (1) PPPr3 CH2CH3	1652 (s), 1554 (s)	7.54-7.21 (m, 15 H), 5.21 (s, 5 H), 2.56 (m, 1 H), 2.24 (m, 1 H), 0.56 (pseudo t, J = 7 Hz, 3 H)	256.2 (d, J = 9.8 Hz)	92.6 (s)	135.8 (d, $J = 53.7$ Hz), 133.6 (d, $J = 12.2$ Hz), 130.4 (s), 128.4 (d, $J = 9.8$ Hz), 55.9 (s, CH ₂), 9.49 (s, CH ₃)	
3	1651 (s), 1550 (s)	7.75-7.35 (m, 15 H), 5.20 (s, 5 H), 2.66 (d of d of d, $J =$ 15, 9, 6 Hz, 1 H), 2.09 (d of d of d, J = 15, 10, 5 Hz, 1 H), 1.41-0.91 (m, 14 H), 0.88 (t, $J =$ 6 Hz, 3 H)	256.4 (br s)	92.7 (s)	135.7 (d, $J = 54.7$ Hz), 133.6 (d, $J = 10.3$ Hz), 130.3 (s), 128.3 (d, $J = 10.1$ Hz), 63.1 (s, COCH ₁), 31.9, 2× 29.7, 2× 29.4, 25.4, 22.7, 14. (s, $n \cdot C_{s}H_{17}$)	
Re PPh3	1658 (s), 1514 (s)	7.44-6.84 (m, 20 H), 5.24 (s, 5 H)	256.4 (d, $J = 9.5 \text{ Hz})^e$	93.1 (s)	157.2, 129.1, 127.7, 127.2 (s, $C_{e}H_{s}$), PPh ₃ at 135.7 (d, $J = 55.0$ Hz), 134.0 (d J = 11.0 Hz), 130.7 (s), 128.7 (d, $J = 10.0$ Hz)	
5	1652 (s), 1558 (s)	7.58-7.39 (m, 15 H), 7.28-7.01 (m, 5 H), 5.03 (s, 5 H), 4.15 (d, $J = 12.8$ Hz, 1 H), 3.18 (d, J = 12.8 Hz, 1 H)	251.3 (d, J = 9.2 Hz)	92.5 (s)	137.9, 129.7, 127.8, 125.2 (s, C_6H_s), PPh ₃ at 135.7 (d, $J = 54.9$ Hz), 133.6 (d J = 11.0 Hz), 130.4 (s), 128.4 (d, $J = 11.0$ Hz), 69.2 (s, CH_2)	
6	1652 (s), 1549 (s)	7.60-6.97 (m, 20 H), 5.13 (s, 5 H), 3.01 (d of d of d, $J =$ 16, 10, 5 Hz, 1 H), 2.72 (d of d of d, J = 15, 9, 5 Hz, 1 H), 2.39 (d of d of d, $J = 15, 10, 5$ Hz, 1 H), 2.13 (d of d of d, $J = 14, 10, 4$ Hz, 1 H)	254.9 (br d)	92.7 (s)	143.0, 128.6, 128.1, 125.1 (s, C ₆ H _s), PPh ₃ at 135.6 (d, $J = 54.5$ Hz), 133.5 (J = 10.3 Hz), 130.4 (s), 128.1 (d, $J = 7.1$ Hz), 64 (s, COCH ₂), 31.5 (s, CH ₂ C ₆ H _s)	
Re CH=CH2 8	1658 (s), 1515 (s) ^d	7.62-7.38 (m, 15 H), 6.56 (d of d, $J =$ 10, 17 Hz, 1 H), 5.26 (s, 5 H), 5.16 (d of d, $J =$ 17, 2 Hz, 1 H), 4.49 (d of d, $J =$ 10, 2 Hz, 1 H)	250.6 (d, $J = 9.6 \text{ Hz})^e$	93.6 (s)	154.0 (s, CH=), ^f 136.0 (d, J = 55.2 Hz), 134.1 (d, J 11.0 Hz), 130.9 (s), 128. (d, $J = 10.9$ Hz), 112.6 (s $= CH_2)^f$	
PPh3 CH2CH=CH2 9	1655 (s), 1520 (s) ^d	$\begin{array}{c} \text{(1, 5 - 16, 2 Hz, 1 H)} \\ \textbf{7.53-7.41 (m, 15 H),} \\ \textbf{5.60 (m, 1 H), 5.21} \\ \text{(s, 5 H), 4.88 (d of m, J = 11 Hz), 4.76} \\ \text{(d of m, J = 17 Hz),} \\ \textbf{3.43 (m, 1 H), 2.82} \\ \text{(m, 1 H)} \end{array}$	253.6 (d, J = 9.5 Hz) ^e	93.1 (s)	136.1 (d, $J = 55.0$ Hz), 135.6 (s, CH=), 134.1 (d J = 11.0 Hz), 131.0 (s), 128.9 (d, $J = 10.9$ Hz), 116.0 (s, =CH ₂), ^f 68.1 (s, CH ₂)	
Re PPra	1675 (s), 1496 (s) ^g	7.54-7.23 (m, 15 H), 5.28 (s, 5 H), 1.88 (s, 3 H)	236.6 (d, J = 11.0 Hz)	93.5 (s)	134.9 (d, $J = 50.5$ Hz), 133.6 (d, $J = 8.8$ Hz), 130.4 (s), 128.3 (d, $J =$ 10.9 Hz), 91.9 and 89.5 (s, C=C), 4.19 (s, CH ₃)	

^{*a*} At 200 MHz unless noted. ^{*b*} At 50 MHz unless noted. ^{*c*} All couplings (*J*) are to ³¹P. ^{*d*} In CH₂Cl₂. ^{*e*} At 75 MHz. ^{*f*} Assignments based on the ¹H coupled spectrum, obtained with the gated decoupler on during the pulse delay and off during acquisition. ^{*g*} $v_{C=C}$ 2183 (w) cm⁻¹.


complex	IR, cm ⁻¹ (KBr)		¹³ C NMR, ^{<i>b</i>,<i>c</i>} ppm			
		¹ H NMR, $a \delta$ (acetone- d_{6})	Re ⁺ =C	C _s H _s	other	
CN CN PPh3	3117-2847 (w), 1697 (vs) ($\nu_{N\equiv0}$) 1588 (w), 1574 (w), 1483 (m), 1461 (m), 1437 (s), 1423 (m), 1351 (m), 1313 (w), 1265 (s	7.81-7.30 (m, 15 H), 5.99 (br s, 5 H), 4.12 (br s, 3 H), 2.55 (s, 3 H)	300.6 (br s) ^{d, e}	98.0 (s)	134.6 (d, $J = 10.9$ Hz), ^c 133.4 (s), 133.3 (d, J = 59.4 Hz), 130.8 (d, $J = 10.9$ Hz), 63.7	

Table II. Spectroscopic Characterization of Rhenium Carbenes $[(\eta - C_s H_s)Re(NO)(PPh_s)(=C(OR')R)]^+ X^-$

CN CN CH3 CH3 CH3 CH3 CH3 CH3 CH3 CH3	$\begin{array}{l} 3117\text{-}2847 \ (\text{w}), \ 1697 \ (\text{vs}) \ (\nu_{N\equiv O}) \\ 1588 \ (\text{w}), \ 1574 \ (\text{w}), \ 1483 \ (\text{m}), \\ 1461 \ (\text{m}), \ 1437 \ (\text{s}), \ 1423 \ (\text{m}), \\ 1351 \ (\text{m}), \ 1313 \ (\text{w}), \ 1265 \ (\text{s}) \\ \text{br}, \ 1193 \ (\text{m}), \ 1163 \ (\text{w}), \ 1118 \\ (\text{m}), \ 1097 \ (\text{s}), \ 1002 \ (\text{m}), \ 930 \\ (\text{w}), \ 840 \ (\text{vs vbr}), \ 750 \ (\text{s}), \ 710 \\ (\text{m}), \ 696 \ (\text{s}) \end{array}$	7.81-7.30 (m, 15 H), 5.99 (br s, 5 H), 4.12 (br s, 3 H), 2.55 (s, 3 H)	300.6 (br s) ^{d, e}	98.0 (s)	134.6 (d, $J = 10.9 \text{ Hz}$), ^c 133.4 (s), 133.3 (d, J = 59.4 Hz), 130.8 (d, $J = 10.9 \text{ Hz}$), 63.7 (s, OCH ₃), 40.4 (s, CH ₃) ^f
ON C6H5 C7H5 C7H5 C7H5 C7H5 C7H5 C7H5 C7H5 C7	3115 (w), 3068 (w), 2942 (w), 2840 (w), 1718 (vs) ($\nu_{N\equiv0}$), 1594 (w), 1575 (w), 1484 (m), 1437 (s), 1424 (m), 1259 (m br), 1193 (m), 1151 (s), 1134 (m), 1096 (m), 1074 (m), 1061 (m), 998 (m), 953 (m), 925 (m), 840 (vs vbr), 769 (m), 751 (m), 705 (m), 694 (m), 664 (m)	8.10-7.16 (m, 18 H), 6.82-6.72 (m, 2 H), 6.08 (br s, 5 H), 3.99 3.99 (br s, 3 H)	298.2 (br s) ^d	98.3 (s)	149.4, 133.3, 129.4, 126.5 (s, C_6H_4), PPh ₃ at 134.5 (d, $J = 11.9$ Hz), 132.6 (d), ^g 132.1 (s), 130.8 (d, J = 12.1 Hz), 66.0 (s, OCH ₃)
ON Re CH3 CH3 CF3503 17	$\begin{array}{l} 3280\mbox{-}2320\ (m\ br),\ 1697\ (vs) \\ (\nu_{N\equiv0}),\ 1485\ (m),\ 1437\ (m), \\ 1424\ (m),\ 1351\ (m),\ 1295 \\ (vs),\ 1231\ (vs),\ 1218\ (vs), \\ 1175\ (s),\ 1162\ (s),\ 1095\ (s), \\ 1022\ (s),\ 1001\ (m),\ 977\ (m), \\ 857\ (m),\ 831\ (m),\ 754\ (m), \\ 708\ (m),\ 695\ (s),\ 637\ (s), \\ 611\ (w) \end{array}$	7.74-7.25 (m, 15 H), 5.94 (s, 5 H), 2.35 (s, 3 H) ^{<i>h</i>,<i>i</i>}	298.1 (s) ^j	96.3 (s)	133.6 (d, J = 12.5 Hz), 132.8 (d, J = 62.6 Hz), 132.5 (s), 129.8 (d, J unresolved), 44.4 (s, CH ₃)
ON Re PPh3 CH3CH2 C OH CF3SO3 18	$\begin{array}{l} 3280\text{-}2280 \ (m \ br), \ 1702 \ (vs) \\ (\nu_{N\equiv0}), \ 1484 \ (m), \ 1437 \ (s), \\ 1424 \ (m), \ 1303 \ (vs), \ 1225 \\ (vs), \ 1211 \ (vs), \ 1168 \ (s), \\ 1161 \ (s), \ 1096 \ (s), \ 1053 \ (m), \\ 1024 \ (s), \ 1013 \ (s), \ 998 \ (m), \\ 924 \ m, \ 850 \ (m), \ 831 \ (m), \\ 751 \ (m), \ 744 \ (m), \ 709 \ (m), \\ 695 \ (s), \ 638 \ (s) \end{array}$	7.79-7.30 (m, 15 H), 5.96 (s, 5 H), 1.00 (t, $J = 7.7$ Hz, 3 H) ^{h,k}	303.2 (s) ^j	96.2 (s)	133.5 (d, $J = 12.5$ Hz), 132.5 (d, $J = 56.3$ Hz), Hz), 132.5 (s), 129.9 (d, $J = 12.5$ Hz), 50.7 (s, CH ₂), 12.1 (s, CH ₃)

^a At 80 MHz, 29 °C. ^b At 75 MHz, 29 °C unless noted. ^c All couplings (J) are to ³¹P. ^d In acetone- d_6 . ^e At 40 °C. ^f The CH₃ resonance is broadened by exchange between 25 and 40 °C; this chemical shift is that of the major isomer present at -25 °C. ^g High-field line of PPh₃ *ipso* carbon doublet; other line obscured. ^h No OH resonances were observed in acetone- d_6 (δ 0-12) or CDCl₃ (δ 0-23). ⁱ Data in CDCl₃ δ 5.59 (s, 5 H), 2.31 (s, 3 H). ^j In CDCl₃, 6.26 Hz/point. ^k Methylene protons not clearly resolved; data in CDCl₃: δ 5.61 (s, 5 H), 2.95-2.18 (m, 2 H), 0.98 (t, J = 7.5 Hz, 3 H).

away from the bulky PPh_3 and medium-sized $\eta\text{-}C_5H_5$ ligands.

The assignment of preferred conformations to acyl methylation and protonation products, alkoxy- and hydroxycarbenes 15–18, is somewhat problematic. Rotational barriers about Re=CHR bonds have been found to be 19–22 kcal/mol (ΔG^*_{298}).^{7b,d} The donor substituent in Re=C(OR')R complexes may slightly weaken the Re=C bond. However, formyl methylation and protonation products, methoxycarbene [(η -C₅H₅)Re(NO)(PPh₃)(=C-(OCH₃)H)]⁺SO₃F⁻ and hydroxycarbene [(η -C₅H₅)Re(NO)(PPh₃)(=C(OH)H)]⁺CF₃SO₃⁻, exist as ca. 95:5 and 50:50 mixtures of Re=C geometric isomers, respectively. No evidence has ever been observed for rapid interconversion of Re=C geometric isomers on the NMR time scale. We therefore assume that the room-temperature ¹H NMR spectra of 15–18 accurately indicate their Re=C

geometric isomer ratios (>98:<2).

As mentioned, a variety of alkyl and hydride nucleophiles have been shown to rapidly attack alkylidene complexes $[(\eta - C_5H_5)Re(NO)(PPh_3)(=CHR)]^+PF_6^-$ at -78 °C from a direction predominantly (90:10 to > 99:1) anti to the PPh_3 ligand. We reason that methoxycarbene 16 should behave similarly. One rotamer of the major product of the reaction of 16 with $Li(C_2H_5)_3BH$, $(SS,RR)-(\eta C_5H_5$)Re(NO)(PPh₃)(CH(OCH₃)C₆H₅), is shown in Newman projection III. Hence, 16 likely has the synclinal^{7b,d} structure depicted in Newman procection II. This experiment, however, deserves cautious interpretation, since an appreciable amount of further reduction to $(\eta - C_5 H_5)$ - $Re(NO)(PPh_3)(CH_2C_6H_5)$ also occurs. Nonetheless, even in the unlikely event that this reduction occurs entirely via the opposite diasteromer—(SR,RS)- $(\eta$ -C₅H₅)Re- $(NO)(PPh_3)(CH(OCH_3)C_6H_5)-(SS,RR)-(\eta-C_5H_5)Re (NO)(PPh_3)(CH(OCH_3)C_6H_5)$ would still constitute the principal initial product.

We propose that 15 also exists in a conformation similar to II. Both phenyl and methyl present a greater steric demand than methoxy,²² and it is unlikely that the pre-

^{(22) (}a) March, J. "Advanced Organic Chemistry", 2nd ed.; McGraw-Hill: New York, 1977; p 130. (b) Tolman, C. A. Chem. Rev. 1977, 77, 313.

ferred orientation of Re=C substituents entirely reverses upon substituting phenyl by methyl. We also propose that hydroxycarbenes 17 and 18 exist with their alkyl and hydroxy substituents oriented as in II. However, as noted above, replacement of the alkyl substituents in 17 and 18 by hydrogen makes the two Re=C geometric isomers of nearly equal energy.

Fischer has shown that the carbene $(CO)_5Cr=C(OC H_3$)CH₃ exists, depending upon solvent, as a 90-50:10-50 mixture of C \rightarrow OCH₃ isomers.^{17a} In acetone- d_6 , the activation energy for isomer interconversion was found to be 12.4 ± 1.0 kcal/mol. Similar results were obtained with a series of phenyl-substituted complexes (CO)₅Cr=C- $(OCH_3)C_6H_4X$.^{17b} In nearly all cases, coalescence of the C-OCH₃ isomer ¹H NMR resonances was observed between -37 and 4 °C. We suggest that the ¹H NMR behavior of 15, 17, and 18 upon cooling is due to similar C-OR' isomers. It is worth noting that at -78 °C, hydroxycarbene $[(\eta - C_5H_5)Re(NO)(PPh_3)(=C(OH)H)]^+$ CF_3SO_3 exists as a mixture of four (Re=C and C-OH) isomers.¹¹

Finally, it should be emphasized that it is exceedingly difficult to unambiguously determine the lowest energy conformations of the methoxycarbene and hydroxycarbene ligands in 15-18. Even X-ray crystal structures would not necessarily reflect the preferred solution Re-C and C-OR geometries.

Alkoxycarbene and hydroxycarbene complexes have a rich chemistry.^{16,23,24} The latter are generally somewhat labile.^{16,23} The first hydroxycarbene complex to be isolated in pure form was $(\eta - \dot{C_5}H_5)\dot{Re}(CO)_2 (= C(\dot{O}H)CH_3)$,^{23a} which is a close relative of 17. Complexes 15-18 exhibit the expected^{20b} carbene carbon ¹³C NMR resonances (Table II). The OH resonance was not detected in the ¹H NMR spectra of hydroxycarbene complexes 17 and 18. However, both compounds show a broad featureless absorbance from 3280 to ca. 2300 cm^{-1} in their IR spectra, which we assign **as** ν_{O-H} .^{23b}

In conclusion we have developed a facile general route to rhenium acyls $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COR) and have examined several fundamental aspects of their chemistry. Novel and useful transformations involving these acyls will be reported in the near future.

Experimental Section

General Remarks. All reactions were carried out under an inert atmosphere. Solvents were dried and deoxygenated as previously described.^{7b,d,e} Racemic¹¹ and optically active⁸ [$(\eta$ - C_5H_5)Re(NO)(PPh₃)(CO)]⁺PF₆⁻ were prepared by published procedures. Reagents CH₃MgBr (3.0 M in ether), CH₃CH₂MgBr (3.0 M in ether), $H_2C=CHMgBr$ (1.0 M in THF), $H_2C=CHC$ -H₂MgBr (1.0 M in THF), BH₃·THF (1.0 M in THF), and Li- $(C_2H_5)_3BH$ (1.0 M in THF) were purchased from Aldrich. Grignards n-C₈H₁₇CH₂MgBr, C₆H₅MgBr, and C₆H₅CH₂CH₂MgBr were prepared by standard methods.²⁵ Reagents C₆H₅CH₂MgCl (1.8 in THF), LiC=CCH₃, and $NH_4^+PF_6^-$ were obtained from Alfa. All RMgX and RLi reagents were used without standardization. Electrophiles CH₃SO₃F and CF₃SO₃H were obtained from Aldrich from $(C_6H_5)_3$ SiCl and CH₃MgBr analogously to the literature procedure.²⁶ Photolyses were conducted as the scribed.7b,18

NMR data other than in the tables were obtained as follows: ¹³C NMR, Varian SC-300, referenced to internal (CH₃)₄Si; ¹H and ³¹P NMR, Varian FT-80, referenced to internal (CH₃)₄Si and external 85% H₃PO₄, respectively. IR spectra were recorded in Perkin-Elmer Model 521 and 1500 (FT) spectrometers. UV spectra were recorded on a Cary 219 spectrometer. Mass spectra were obtained on a AEI-MS9 instrument. Microanalyses were conducted by Galbraith.

Preparation of $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COOH₃) (1). Both the literature synthesis⁸ and the following procedure were employed. A 200-mL flask was charged with 1.91 g (2.90 mmol) of $[(\eta-C_5H_5)Re(NO)(PPh_3)(CO)]^+BF_4^-$, 75 mL of CH_2Cl_2 , and a stir bar. The resulting yellow solution was cooled to -78 °C, and 0.80 g (15 mmol) of NaOCH₃ in 30 mL of CH₃OH was added. The reaction mixture was stirred at -78 °C for 20 min and then allowed to warm to room temperature. After an additional 0.5 h, solvent was removed under reduced pressure. The resulting yellow solid was extracted with toluene, and the extract was filtered through a coarse porosity glass frit. The toluene was removed and the yellow solid vacuum dried to give 1.79 g (2.90 mmol, 100%) of 1. The ¹H NMR spectrum was identical with that of an authentic sample.⁸

Preparation of $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COCH₃) (2). A 200-mL Schlenk flask was charged with 1.80 g (2.9 mmol) of 1, 100 mL of toluene, and a stir bar. Then 1.5 mL of CH₃MgBr (3.0 M in ether) was added, and the reaction mixture was stirred for 0.5 h. The solvents were removed under reduced pressure, and the resulting yellow residue was extracted with acetone. The extract was filtered through silica gel, and the acetone was removed to give a yellow solid which was washed with 5 mL of acetone and vacuum dried. Thus obtained was 1.35 g (2.30 mmol, 79%) of 2: mp 197-202 °C dec; ³¹P{¹H} NMR (ppm, benzene -d₆) 16.72 (s); mass spectrum (16 eV), m/e (relative intensity) 587 (M⁺, $^{187}\text{Re},$ 2), 572 (M^+ – CH₃, 100); UV (nm, CHCl₃) 268 (pk ϵ 3800), 288 (sh, ϵ 2400). Anal. Calcd for $C_{25}H_{23}NO_2PRe: C, 51.18; H, 3.95;$ N, 2.39; P, 5.28. Found: C, 51.48; H, 4.12; N, 2.24; P, 5.14.

Preparation of $(\eta \cdot C_5 H_5) \operatorname{Re}(\operatorname{NO})(\operatorname{PPh}_3)(\operatorname{COCH}_2 \operatorname{CH}_3)$ (3). This compound was prepared from 2.9 mmol of 1 and 2.0 mL of CH₃CH₂MgBr (3.0 M in ether) in a manner identical with that for 2. Thus obtained was 1.60 g (2.67 mmol, 92%) of 3, mp > 220°C.

Preparation of $(\eta$ -C₅H₅)Re(NO)(PPh₃)(COCH₂-*n*-C₈H₁₇) (4). This compound was prepared from 0.0332 mmol of 1 and 0.88 mL of $n-C_8H_{17}CH_2MgBr$ (0.75 M in Et₂O) in a manner similar to that for 2. After the acetone extract was filtered through silica gel, solvent was removed to give a yellow oil. This oil was dissolved in benzene. Hexanes were added, and the mixture was kept at -25 °C for 1 day. Product 4 precipitated as a yellow powder which was collected by filtration and vacuum dried (0.171 g, 0.245 mmol, 74%); mp 104 °C.

Preparation of $(\eta - C_5 H_5) \operatorname{Re}(\operatorname{NO})(\operatorname{PPh}_3)(\operatorname{COC}_6 H_5)$ (5). A synthesis of 5 (12%) from $[(\eta - C_5H_5)Re(NO)(PPh_3)(CO)]^+BF_4^-$ and $C_{e}H_{5}Li$ has been communicated.¹² It is best prepared by a procedure analogous to the one given below for (+)-(R)-5. Data: mp 198-202 °C dec; mass spectrum (70 eV), m/e (relative intensity) 649 (M^+ , ¹⁸⁷Re, 10), 572 ($M^+ - C_6H_5$, 83), 544 ($M^+ - COC_6H_5$, 47), 262 (PPh₃, 100); UV (nm, CHCl₃) 265 (pk, \$\epsilon 4300), 295 (sh, \$\epsilon 2200). When 5 was recrystallized from toluene/hexane, orange crystals of the solvate $5 \cdot (toluene)_{0.4}$ were reproducibly obtained. Calcd for $C_{30}H_{25}NO_2PRe + (C_7H_8)_{0.4}$: C, 57.47; H, 4.15; N, 2.04; P, 4.52. Found: C, 57.64; H, 4.25; N, 2.39; P, 4.47.

Preparation of $(\eta - C_5 H_5) Re(NO)(PPh_3)(COCH_2 C_6 H_5)$ (6). This compound was prepared from 2.9 mmol of 1 and 8.0 mL of $C_6H_5CH_2MgCl$ (1.8 M in THF) in a manner similar to that for 2. After the acetone extract was filtered through silica gel, it was concentrated to 20 mL. Then 5 mL of hexane was added, and the solution was cooled to -20 °C. Orange crystals of 6 formed, which after 24 h were collected by filtration and vacuum dried (1.26 g, 1.90 mmol, 66%); mp >220 °C.

Preparation of $(\eta - C_5 H_5) Re(NO)(PPh_3)(COCH_2 CH_2 C_6 H_5)$ (7). A 250-mL Schlenk flask was charged with 0.900 g (1.52 mmol) of 1, 75 mL of THF, and a stir bar. Then 3 equiv of $C_6H_5CH_2$ -CH₂MgBr (freshly prepared from 4.56 mmol of the alkyl bromide in 50 mL of ether) was added, and the reaction mixture was stirred for 5 h. The solvents were removed under reduced pressure, and the resulting yellow residue was extracted with acetone. The

^{(23) (}a) Fischer, E. O.; Riedel, A. Chem. Ber, 1968, 101, 156. (b) Moss,
J. R.; Green, M.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1973, 975.
(c) Fischer, E. O.; Kreis, G.; Kreissl, F. R. J. Organomet. Chem. 1973, 56,
(237. (d) Darst, K. P.; Lukehart, C. M. Ibid. 1979, 171, 65.
(24) Grötsch, G.; Malisch, W. J. Organomet. Chem. 1983, 246, C42,

C49.

⁽²⁵⁾ Vogel, A. I. "A Textbook of Practical Organic Chemistry", 3rd ed.; Longman, Green and Co.: London, 1956.

⁽²⁶⁾ Marsden, H.; Kipping, F. S. J. Chem. Soc. 1908, 93, 198.

extract was filtered through silica gel, and the acetone was removed to give a yellow solid. Yellow crystals of 7 were obtained from benzene/hexanes (1.01 g, 1.52 mmol, >99%); mp 204-205 °C; ³¹P{¹H} NMR (ppm, CDCl₃, 0 °C) 16.12 (s); mass spectrum (70 eV), m/e (relative intensity) 572 (M⁺ – CH₂CH₂C₆H₅, ¹⁸⁷Re, 100), 544 (M⁺ – COCH₂CH₂C₆H₅, 31), no M⁺ at 16 eV; UV (nm, CHCl₃) 265 (pk ϵ 3000), 288 (sh, ϵ 1700).

Preparation of $(\eta$ -C₅H₅)**Re**(NO)(**PPh**₃)(**COCH=CH**₂) (8). This compound was prepared from 2.9 mmol of 1 and 8.7 mL of H₂C=CHMgBr (1.0 M in THF) in a manner similar to that for 2. After the acetone extract was filtered through silica gel, solvent was removed to give the crude yellow product (1.34 g, 2.24 mmol, 77%). Orange crystals of 9 were obtained from CH₂Cl₂/hexane (1.00 g, 1.67 mmol, 58%); mp 210–215 °C.

Preparation of $(\eta$ -C₅H₅)**Re**(NO)(**PPh**₃)(**COCH**₂CH=**CH**₂) (9). This compound was prepared from 2.9 mmol of 1 and 8.7 mL of H₂C=CHCH₂MgBr (1.0 M in THF) in a manner similar to that for 2. After the acetone extract was filtered through silica gel, solvent was removed to give the crude yellow product (1.45 g, 2.37 mmol, 82%). Orange crystals of 9 were obtained from CH₂Cl₂/hexane (0.98 g, 1.60 mmol, 55%); mp 202-203 °C.

Preparation of $(\eta \cdot C_5H_5)$ **Re**(**NO**)(**PPh**₃)(**COC**=**CCH**₃) (10). A 200-mL Schlenk flask was charged with 0.50 g (0.76 mmol) of $[(\eta - C_5H_5)$ Re(**NO**)(**PPh**₃)(**CO**)]⁺**BF**₄⁻, 50 mL of dry THF, and a stir bar. To the resulting suspension was added 0.048 g (1.04 mmol) of LiC=**CCH**₃, and the reaction was allowed to stir overnight. Solvent was then removed under reduced pressure from the resulting orange solution. The residue was extracted with ca. 100 mL of toluene. The extract was filtered, was concentrated to ca. 20 mL, and was flooded with hexane. The resulting off-white solid was removed by filtering through a medium porosity frit. The orange filtrate was taken to dryness under vacuum. This yielded an orange oil which gave 10 as a yellow powder (0.22 g, 0.361 mmol, 48%), mp 140-150 °C dec, from 80:20 CH₂Cl₂/hexane.

Preparation of (-)-(R)- $(\eta$ -C₅H₅)**Re(NO)(PPh₃)(COCH**₃) ((-)-(R)-2). A 100-mL Schlenk flask was charged with 0.215 g (0.359 mol) of 98% ee (-)-(R)-1, 30 mL of CH₂Cl₂, and a magnetic stir bar. Then 0.180 mL of CH₃MgBr (3.0 M in ether) was slowly added, and the reaction was stirred for 0.25 h. The solvents were removed under oil pump vacuum. The resulting yellow residue was extracted with acetone. The extract was filtered through silica gel, and the solvent was removed under vacuum. The resulting yellow solid was recrystallized from CH₂Cl₂/hexane to give 0.197 g (0.337 mmol, 94%) of (-)-(R)-2: mp 225–228 °C dec; $[\alpha]^{24.5}_{589}$ -212° (c 0.41, CHCl₃). The enantiomer (+)-<math>(S)-2 was prepared identically from (+)-(S)-1.

Preparation of (+)-(R)-(\eta-C₅H₅)Re(NO)(PPh₃)(COC₆H₅) ((+)-(R)-5). A 100-mL Schlenk flask was charged with 0.212 g (0.352 mmol) of 98% ee (-)-(*R*)-1, 30 mL of CH₂Cl₂, and a magnetic stir bar. Then 0.315 mL of C₆H₅MgBr (1.7 M in ether) was slowly added, and the reaction was stirred for 0.25 h. The solvents were removed under oil pump vacuum. The resulting yellow residue was extracted with acetone. The extract was filtered through silica gel, and the solvent was removed under vacuum. The resulting yellow solid was triturated with hexanes to give 0.211 g (0.325 mmol, 91%) of (+)-(*R*)-5: mp 182–184 °C dec; [α]^{24.5}₅₈₉ 6.2° (c 0.35, CHCl₃). The enantiomer (-)-(*S*)-5 was prepared identically from (+)-(*S*)-1.

Preparation of (-)-(R)- $(\eta$ - C_5H_5)**Re**(**NO**)(**PPh**₃)-(**COCH**₂**CH**₂**C**₆**H**₅) ((-)-(R)-7). This compound was prepared from 0.350 mmol of (-)-(R)-1 and 0.525 mL of C₆H₅**CH**₂**CH**₂**MgBr** (1.0 M in ether) in a manner identical with that for (+)-(R)-5. Thus obtained was 0.211 g (0.312 mmol, 89%) of (-)-(R)-7: mp 114-115 °C; $[\alpha]^{24.5}_{589}$ -144° (c 0.36, CHCl₃). The enantiomer (+)-(S)-7 was prepared identically from (+)-(S)-2.

Preparation of (-)-(R)- $(\eta$ - C_5H_5)**Re**(**NO**)(**PPh**₃)(**CH**₂**CH**₃) ((-)-(R)-11). A 100-mL Schlenk flask was charged with 0.238 g (0.406 mmol) of (-)-(R)-2 and 30 mL of THF and fitted with a reflux condensor. Then 2.03 mL of BH₃-THF (1.0 M in THF) was added, and the mixture was refluxed for 4 h. The reaction was allowed to cool. Then 2 mL of CH₃OH was added, and the solvent was removed by rotary evaporation. The orange residue was dissolved in benzene and filtered through silica gel. The solvent was removed from the filtrate by rotary evaporation, and the orange solid was recrystallized from CH₂Cl₂/hexane to give 0.213 g (0.374 mmol, 92%) of (-)-(R)-11: mp 179–180 °C; $[\alpha]^{24.5}_{589}$ -114° (CHCl₃) (lit.⁸ -116°). The enantiomer (+)-(S)-11 was prepared identically from (+)-(S)-2.

Preparation of (η-C₅H₅)**Re**(NO)(PPh₃)(CH₂CH₂-*n*-C₈H₁₇) (12). This compound was prepared from 0.0855 g (0.122 mmol) of 4 in 50 mL of THF and 2.40 mL of BH₃·THF (1.0 M in THF) in a manner similar to that for (-)-(*R*)-11. The orange residue obtained after the CH₃OH quench was chromatographed on silica gel in benzene. The orange fraction was collected, concentrated to a solid, and precipitated from cold hexane to give 0.062 g (0.091 mmol, 74%) of 12 as an orange powder: mp 82 °C; IR (cm⁻¹, CH₂Cl₂) $\nu_{N=0}$ 1620 (s); ¹H NMR (δ, CDCl₃) 7.40–7.30 (m, 15 H), 4.89 (s, 5 H) 2.18–1.96 (m, 1 H), 1.79–1.62 (m, 3 H), 1.35–1.18 (m, 14 H), 0.89 (t, J = 6 Hz, 3 H); ¹³C NMR (ppm, CDCl₃) PPh₃ at 136.8 (d, J_{13} _{C-31}_P = 51.3 Hz), 133.7 (d, J = 9.8 Hz), 129.8 (s), 128.2 (d, J = 9.8 Hz), 89.5 (s, C₅H₅), 41.8, 35.7, 32.0, 29.9, 29.8, 29.5, 29.4, 22.7 (s, CH₂), 14.1 (s, CH₃), -9.2 (d, J_{13} _{C-31}_P = 4.9 Hz, ReCH₂).

Preparation of (-)-(R)- $(\eta$ - $C_5H_5)$ **Re**(**NO**)(**PPh**₃)(**CH**₂ C_6H_5) ((-)-(R)-13). This compound was prepared from 0.228 g (0.352 mmol) of (+)-(R)-5 and 1.76 mL of BH₃·THF (1.0 M in THF) in a manner identical with that for (-)-(R)-11. The CH₂Cl₂/hexane recrystallization gave 0.119 g (0.313 mmol, 89%) of (-)-(R)-13: mp 234–237 °C dec; $[\alpha]^{24.5}_{569}$ -116° (CHCl₃) (lit.⁸ -118°). The enantiomer (+)-(R)-13 was prepared identically from (-)-(S)-5.

Preparation of (η-C₅H₅)**Re**(**NO**)(**PPh**₃)(**CH**₂**CH**₂**CH**₂C₆H₅) (14). This compound was prepared from 1.01 g (1.49 mmol) of 7 in 300 mL of THF and 30.4 mL of BH₃·THF (1.0 M in THF) in a manner similar to 12. The orange fraction from the silica gel column was concentrated to a solid and precipitated from cold benzene/hexane to give 0.917 g (1.39 mmol, 93%) of 14 as an orange powder: mp 151-152 °C; IR (cm⁻¹, CH₂Cl₂) $\nu_{N=0}$ 1623 (s); ¹H NMR (δ , CDCl₃) 7.43-7.10 (m, 20 H), 4.88 (s, 5 H), 2.65-2.36 (m, 2 H), 2.22-1.93 (m, 3 H), 1.83-1.70 (m, 1 H); ¹³C NMR (ppm CDCl₃) 144.0, 128.5, 128.0, 125.0 (s, C₆H₅), PPh₃ at 136.6 (d, J_{12C-31P} = 51.3 Hz), 133.6 (d, J = 9.8 Hz), 129.9 (s), 128.2 (d, J = 9.8 Hz), 89.5 (s, C₅H₅), 43.9, 42.1 (s, CH₂), -9.4 (br s, ReCH₂).

Preparation of $[(\eta-C_5H_5)Re(NO)(PPh_3)(=C(OCH_3)-CH_3)]^+PF_6^-(15)$. A 50-mL Schlenk flask was charged with 0.250 g (0.427 mmol) of 2, 25 mL of CH₂Cl₂, and a stir bar. Then 50 μ L (0.067 g, 0.59 mmol) of CH₃SO₃F was added by syringe, and the resultant yellow solution was stirred for 2 h. The solvent was removed under reduced pressure, and the residue was dissolved in 10 mL of acetone. Then 0.695 g (4.27 mmol) of NH₄+PF₆⁻ was added. This solution was stirred for 30 min, after which the acetone was removed under reduced pressure. The residue was extracted with CHCl₃ and filtered. Diffusion addition of ether to the filtrate gave yellow needles of 15 (0.209 g, 0.281 mmol, 66%), mp 177-195 °C dec.

Preparation of $[(\eta-C_5H_5)Re(NO)(PPh_3)(=C-(OCH_3)C_6H_5)^+PF_6^-$ (16). This compound was prepared from 0.250 g (0.386 mmol) of 5, 40 μ L (62 mg, 0.54 mmol) of CH₃SO₃F, and 0.629 g (3.86 mmol) of NH₄+PF₆⁻ in a manner identical with that for 15. Carbene 16 was obtained as irregular yellow-gold crystals (0.280 g, 0.346 mmol, 90%), mp 177-198 °C dec. Anal. Calcd for C₃₁H₂₈F₆NO₂P₂Re: C, 46.02; H, 3.49; N, 1.73; P, 7.66. Found: C, 45.89; H, 3.62; N, 1.79; P, 7.47.

Preparation of $[(\eta$ -C₅H₅)**Re**(**NO**)(**PPh**₃)(=**C**(**OH**)**C**H₃)]⁺ **CF**₃**SO**₃⁻ (17). A 50-mL Schlenk flask was charged with 0.244 g (0.417 mmol) of 2, 25 mL of CH₂Cl₂, and a stir bar. Then 41 μ L (0.069 g, 0.46 mmol) of CF₃**SO**₃H was added by syringe, and the resultant light yellow solution was stirred for 1 h. The solvent was removed, and the residue was extracted with CHCl₃. The extract was filtered. Diffusion addition of ether to the filtrate gave 17 as a yellow-gold semicrystalline solid (0.223 g, 0.303 mmol, 73%), mp 180–181 °C dec.

Preparation of $[(\eta-C_5H_5)\text{Re}(\text{NO})(\text{PPh}_3)(=C(\text{OH})C_2H_5)]^+$ CF₃SO₃⁻ (18). This compound was prepared from 0.250 g (0.417 mmol) of 3 and 41 μ L (0.069 g, 0.46 mmol) of CF₃SO₃H in a manner identical with that from 17. Hydroxycarbene 18 was obtained as a dull yellow semicrystalline solid (0.285 g, 0.380 mmol, 91%), mp 180–181 °C dec.

Reaction of 16 with Li $(C_2H_5)_3$ **BH.** A 50-mL Schlenk flask was charged with 25.0 mg (0.0309 mmol) of 16, 5 mL of CH₂Cl₂, and a stir bar. The yellow solution was cooled to -78 °C, and 25 μ L (0.0250 mmol) of Li(C₂H₅)₃BH (1.0 M in THF) was added by syringe. The resulting orange solution was stirred for 10 min at -78 °C, and then 1 mL of H₂O was added. The solvents were then removed under vacuum below 0 °C. This gave an orange solid residue to which 8.5 mg (0.0309 mmol) of $(C_6H_5)_3$ SiCH₃ standard was added. The mixture was extracted with $CDCl_3$, $(CH_3)_4Si$ was added, and the ¹H NMR yields given in the results section were obtained. The ¹H NMR resonances utilized were as followed: 16, $\delta 5.79;^{12} (SS,RR) - (\eta - C_5 H_5) Re(NO) (PPh_3) (CH(OCH_3)C_6 H_5), \delta 4.89$ and 2.67;^{7b} (SR,RS)- $(\eta$ - $C_5H_5)$ Re(NO)(PPh₃)(CH(OCH₃)C₆H₅), δ 4.65 and 2.55;^{7b} (η-C₅H₅)Re(NO)(PPh₃)(CH₂C₆H₅) δ 4.73.^{7b} na

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research. FT NMR spectra were recorded on spectrometers obtained via NSF departmental instrumentation grants. We are grateful to V. K. Wong and W. G. Hattan for assistance with this

study. W.E.B. and J.H.M. thank the Regents of the University of California for fellowships; J.H.M. also thanks the Chevron Corp. for a fellowship.

Registry No. 1, 82293-79-6; (-)-(R)-1, 82336-22-9; (+)-(S)-1, 87480-09-9; 2, 82582-46-5; (-)-(R)-2, 87412-37-1; (+)-(S)-2, 87480-06-6; 3, 82582-47-6; 4, 87412-24-6; 5, 76770-59-7; (-)-(S)-5, 87480-05-5; (+)-(R)-5, 87480-04-4; 6, 82582-48-7; 7, 87412-25-7; (-)-(R)-7, 87480-07-7; (+)-(S)-7, 87480-08-8; 8, 87412-26-8; 9, 87412-27-9; 10, 87412-28-0; (-)-(R)-11, 82336-34-3; (+)-(S)-11, 82336-35-4; 12, 87412-29-1; 13, 71763-28-5; (-)-(R)-13, 82336-32-1; (+)-(S)-13, 82336-33-2; 14, 87412-30-4; 15, 87412-32-6; 16, 76770-58-6; 17, 87412-34-8; 18, 87412-36-0; (SS,RR)-(η-C₅H₅)Re- $(NO)(PPh_3)(CH(OCH_3)C_6H_5), 76770-56-4; (SR,RS)-(\eta-C_5H_5)Re-$ (NO)(PPh₃)(CH(OCH₃)C₆H₅), 76821-65-3.

Preparation and Properties of Dibismuthines

Arthur J. Ashe, III,* Edward G. Ludwig, Jr., and Josef Oleksyszyn

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109

Received July 13, 1983

Tetramethyldibismuthine, 1, tetraisopropenyldibismuthine, 15, 1,1'-bibismolane, 16, and tetrakis(2methyl-1-propenyl)dibismuthine, 17, have been prepared from the reaction of the corresponding tertiary bismuthines with sodium in liquid ammonia followed by treatment with 1,2-dichloroethane. Tetraphenyldibismuthine, 4, was prepared by an analogous route from diphenylbismuth chloride. While all the dibismuthines are red in solution, 1, 15, and 16 freeze to blue solids. Compounds 4 and 17 form red solids. The Raman, UV, and mass spectra of the dibismuthines are discussed. The dibismuthines thermally decompose to form bismuth metal and corresponding tertiary bismuthine. The reactions of tetramethyldibismuthine with iodine, bromotrichloromethane, benzyl bromide, hydrochloric acid, and butyllithium have been explored. The reactions afford products in which the Bi-Bi bond has been cleaved.

Introduction

Although tetramethyldibismuthine, 1, was reported in 1935,¹ the intervening years have seen little sustained interest in compounds containing bismuth-bismuth bonds.²⁻⁴ This situation changed abruptly in 1982 with reports of the synthesis of tetrakis(trimethylsilyl)dibismuthine, 2.5tetraethyldibismuthine, **3**,⁶ and a reinvestigation of tet-ramethyldibismuthine.⁷ More recently, tetraphenyldibismuthine, 4,⁸ and a series of tetraalkyldibismuthines, 5, 6, and 7,⁹ have been characterized.

$$\begin{array}{cccc} Me_4Bi_2 & (Me_3Si)_4Bi_2 & Et_4Bi_2 \\ 1 & 2 & 3 \\ Ph_4Bi_2 & R_4Bi_2 \\ 4 & 5, R = Pr \\ 6, R = Bu \\ 7, R = i \cdot Pr \end{array}$$

(1) Paneth, F. A.; Loleit, H. J. Chem. Soc. 1935, 366.

- (2) For possible early preparations of tetraphenyldibismuthine, see:
 (a) Gilman, H.; Yablunky, H. L. J. Am. Chem. Soc. 1941, 63, 212. (b)
 Wiberg, E.; Mödritzer, K. Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys., Biol. 1957, 12B, 132. (c) Dessy, R. E.; Chivers, T.;
 Kitching, W. J. Am. Chem. Soc. 1966, 88, 467.
- (3) For low-temperature dimers of bismabenzene see: Ashe, A. J., III Tetrahedron Lett. 1976, 415. Ashe, A. J., III; Diephouse, T. R.; El-Sheikh, M. Y. J. Am. Chem. Soc. 1982, 104, 5693.
 (4) Stelzer, O.; Unger, E.; Wray, V. Chem. Ber. 1977, 110, 3430.
- (5) Becker, G.; Rössler, M. Z. Naturforsch. B: Anorg. Chem., Org.
- Chem. 1982, 37B, 91.
- (6) Breunig, H. J.; Müller, D. Angew. Chem. 1982, 94, 448.
- (7) Ashe, A. J., III; Ludwig, E. G., Jr. Organometallics 1982, 1, 1408. (8) Calderazzo, F.; Morvillo, A.; Pelizzi, G.; Poli, R. J. Chem. Soc.,
- Chem. Commun. 1983, 507. (9) Breunig, H. J.; Müller, D. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1983, 38B, 125.

The major reason for this renaissance of interest in dibismuthine chemistry has been the hope that dibismuthines might show the same dramatic thermochromic effects which have been observed for distibines. For example, the distibine tetramethylbistibolyl, 8, forms blue crystals which melt reversibly to a yellow oil. A crystal structure of 8 shows that the Sb atoms are aligned in linear chains with very short "intermolecular" Sb. Sb contacts.¹⁰ Apparently the solid-phase color is associated with this extended bonding along the Sb-Sb...Sb-Sb chains.¹¹ Similar thermochromic effects are found for tetramethyldistibine, 9,1 tetrakis(trimethylsilyl)distibine, 10,12,13 tetraisopropenyldistibine, 11,14 and bistibolane, 12.15 Crystal structures show that 9¹⁶ and 10¹³ have intermolecular association similar to that of 8. On the other hand, distibines such as tetraphenyldistibine, 13,¹⁷ and tetra-

- (10) Ashe, A. J., III; Butler, W.; Diephouse, T. R. J. Am. Chem. Soc. 1981. 103. 207.
- (11) For a molecular orbital model see: Hughbanks, T.; Hoffmann, R.;
 (11) For a molecular orbital model see: Hughbanks, T.; Hoffmann, R.;
 (11) For a molecular orbital model see: Hughbanks, T.; Hoffmann, R.;
 (12) Martin Martin, K. R.; Eisenstein, O.; Canadell, E. J. Am. Chem. Soc. 1982, 104, 3876.
 (12) Breunig, H. J.; Breunig-Lyriti, V. Z. Naturforsch., B: Anorg.
 (13) Becker, G.; Freudenblum, H.; Whitthauer, C. Z. Anorg. Allg.
- Chem. 1982, 492, 37.
- (14) Ashe, A. J., III; Ludwig, E. G., Jr.; Pommerening, H. Organo-(15) Meinema, H. A.; Martens, H. F.; Noltes, J. G.; Bertazzi, N.;
- Barbieri, R. J. Organomet. Chem. 1977, 136, 173.
- (16) Ashe, A. J., III; Huffman, J. C.; Oleksyszyn, J., unpublished crystal structure.
- (17) Morgan, G. T.; Davies, G. R. Proc. R. Soc. London, Ser. A 1926, 110, 523. Blicke, F. F.; Oakdale, U. O.; Smith, F. D. J. Am. Chem. Soc. 1931, 53, 1025.