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Figure 1. ORTEP plot of one of the two crystallographically 
independent molecules in the structure of 2. The thermal el- 
lipsoids are scaled to enclose 30% probability. 

Recently we reported the reductive degradation of the 
tetradecker sandwich complex [(C6H5)Co(C2B,C)]2Ni 
(C2B2C, 4,5-diethyl-1,3-dimethyl-1,3-diborolenyl) to ele- 
mental nickel and the sandwich anion [(C,H,)Co(C,B,C)]- 
(1-), which upon addition of transition-metal dihalides led 
to the formation of the tetradeckers [ (C5H5)Co(C2B2C)12M 
(M = Fe, Co, Zn).' The anion 1- can be conveniently 
generated by deprotonating the novel sandwich complex2J 
(C5H,)Co(l,3-diborolene) (1) which has a three-center, 
two-electron Co..-C...H bond. The complexes [ (C5H5)Co- 
(C2B2C)],M (M = Cr, Mn, Fe, Co, Ni, Cu, Zn) were pre- 
pared via this route.4 Our efforts to exploit the unique 
reactivity of the 18-valence electron sandwich anion 1- have 
now led to the preparation and structural characterization 
of [ (C5HS)Co(C2B2C)l2Sn (2), the first multiple-decker 
sandwich complex containing a non-transition metal. 
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At room temperature and under a nitrogen atmosphere 
a T H F  solution of 1 (650 mg, 2.34 mmol; 30 mL of THF) 
readily reacts with a potassium mirror (140 mg of K, 3.58 
mmol) to form the yellow-brown anion 1-. After being 
stirred for 5 h, the solution is filtered to remove excess 
potassium. Anhydrous SnC12 (210 mg, 1.11 mmol) is 
added, which results in an immediate change in color. 
Dark orange 2 (507 mg, 69%; mp >140 "C dec) is isolated 
from the reaction mixture by evaporating the solvent, 
extracting the residue with petroleum ether, and cooling 
the extract to -30 "C. 

The NMR data5 for 2 are in accord with a tetradecker 
sandwich structure that is highly symmetrical on the NMR 
time scale. The 'lB chemical shift is typical for bridging 
1,3-diborolenyl ligands. The 'H resonances of the ethyl 
groups appear as multiplets of the ABX3 type. The 
methylene protons are diastereotopic because the hetero- 
cyclic ring bridges two different metal atoms. The reso- 
nance of the 1,3-diborolenyl ring proton (6 4.69) occurs a t  
an unusually low field (in comparison t o  'H NMR 6 2.12 
for [ (C6H5)Co(C2B2C)]2Zn).1 Furthermore, a closer exam- 
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ination of this signal reveals the presence of a pair of poorly 
resolved satellites separated by 10 Hz. They are the result 
of a coupling with the spin-active tin isotopes. Individual 
couplings with the l17Sn and 'I9Sn nuclei could not be 
resolved. 

For the molecular structure of 2 in the solid state to be 
established, a single-crystal X-ray diffraction study6 was 
carried out. The structure of one of the two crystallo- 
graphically independent molecules is shown in Figure 1; 
the structure of the second molecule is similar. Two vir- 
tually identical (C6H5)Co(C2B2C) sandwich units are bound 
to the central tin atom in an q5 fashion via the bridging 
1,3-diborolenyl ligands. Unlike the transition-metal tet- 
radecker complexes [(C5H,)Co(C2B2C)l2M with M = Cr,4 
M q 4  Fe,' Co,' Ni,l C U , ~  and Zn' which feature a center of 
inversion, the tetradecker complex 2 exhibits a bent 
structure in which the Co-Sn vectors form a 130" angle. 
The distances and angles within the (C5H5)Co(C2B2C) 
units are almost identical with those found in the com- 
pounds [(C5H5)Co(C2BzC)l2M (M = CrAZn). The Co 
atom occupies a position approximately above and below 
the centroids of the planar (f0.01 A) CzB2C and C5H5 
rings. The coordination of the tin atom to the 1,3-di- 
borolenyl ligands is markedly asymmetric. The average 
Sn-B (2.59, 2.71 A) and Sn-C(2) (2.43 A) distances are 
much shorter than the Sn-C(4,5) distances (2.96,2.89 A). 
For stannocene7 and decamethylstannocenes a similar 
scatter in the ring carbon-tin bond distances due to "ring 
slippage" has been observed (2.56-2.859 and 2.59-2.78 A,8 
respectively). In the two independent molecules of 2 the 
angle between the normals to the planes defined by the 
1,3-diborolenyl rings is 112 and 114O, respectively. This 
unusually small bending angle in comparison to those of 
stannocene (133,134")'O and decamethylstannocene (144, 
145°)8 suggests that  the bending in 2 most likely is con- 
trolled by electronic rather than steric factors. The MO 
consideration of stannocene8 may be qualitatively applied 
to the bent tetradecker sandwich because of the isolobal 
r e l a t i ~ n s h i p ~ , ~ '  (C5H5)--p[(C5H5)Co(C2B2C)]-. In 2 the 
negative population overlap between Sn and C is larger 
than in stannocene. Hence, an optimal decrease in energy 
of the MO in 2 that  corresponds to the 3a1 orbital of 
stannocene ("lone pair")12 can only be attained a t  smaller 
values of the bending angle. 
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Stannocenes and 2 exhibit a similar chemical behavior 
toward HBF,, which cleaves the molecules. Analogous to 
the formation of cation8 [(C5Me5)Sn]+ we obtain a cationic 
dinuclear species. The constitution of the brown solid 

2 + HBF, - [(C6H6)Co(C2B2C)Sn]+BF4- + 1 

follows from analytical and 'H NMR data.13 It exhibits 
a large high-field shift for the proton of the l,&diborolenyl 
ring in comparison to that of 2. An excess of HBFl de- 
stroys the sandwich l .  
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(13) 'H NMR (THF-d,, Me&): 6 4.41 (s,5), 2.3 (m, 2), 1.8 (m, overlap 
with THF-d8), 1.08 (tr, 6), 0.90 (8, 6), 0.05 (8, 1). 
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Summary: 1,l-Dimethylsilole is an effective ligand for 
transition-metal complexes. Direct displacement of car- 
bonyl ligands from Fe,(CO)S and CO~(CO)~ results In the 
stable complexes (q4-C,H,SiMe,)Fe(CO), and [(q4- 
C,H,SiMe,)(CO),Co],, respectively. (q4-C,H4SiMe,)- 
(CO),Fe undergoes carbonyl replacement with PPh,. 
Cleavage of the cobalt-cobalt bond is achieved with both 
iodine and sodium amalgam. The anion obtained from the 
reduction with sodium amalgam displaces chloride in 
Ph,SnCI. Displacement of 1,5-~yclooctadiene in (1 3-C- 
OD),Ni and (1,5-COD)Mo(CO), affords the Nio sandwich 
complex (q4-C,H,SiMe,),Ni and the molybdenum complex 
(q4-C,H4SiMe,),Mo(CO)2, respectively. 

Transition-metal complexes of substituted siloles are 
well-known' and are interesting as potential sources of the 
unknown (~5-silacyclopentadienyl)metal complexes. 

Recently two groups reported the synthesis of 1,l-di- 
m e t h y l s i l ~ l e ~ ~ ~  from the readily available 3,3-dimethyl-3- 
silacyclopentene, thus potentially allowing access into 
C-unsubstituted silole-transition-metal complexes. The 
recent report by Dubac and co-workers on the trapping 
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of 1,l-dimethylsilole with iron carbonyl4 prompts us to  
report our results concerning the complexation of 1,l-di- 
methylsilole with iron, cobalt, molybdenum, and nickel. 

1,l-Dimethylsilole (prepared from the benzoate ester I3 
was collected in T H F  at  -196 "C. After being warmed to 
0 O C ,  the solution was transferred to a flask containing an 
excess (twice the equimolar amount) of Fe2(CO)9 and 
stirred at  0 "C for 40 min. After this time the solution was 
warmed to room temperature and allowed to stir for 2 h. 
Removal of the solvent afforded an oil that  was chroma- 
tographed on silica gel with hexane. The yellow band was 
collected and concentrated to afford a yellow oil that was 
shown by 'H NMR to be the silole complex 111 and the 
dimer of dimethyl~ilole~ in 9O:lO ratio. Pure 1115 was ob- 
tained by elution with hexane through a short silica gel 
column containing 10% AgNO, (52% yield based on I) 
(Scheme I). 

UV irradiation of 111 with an equimolar amount of Ph3P 
in hexane resulted in the substitution of a carbonyl ligand. 
The complex IV was obtained as yellow-orange crystals 
after chromatography on silica gel with hexane and crys- 
tallization (42% yield)6 (Scheme I). 

In an analogous synthesis of 111, an excess of 1,l-di- 
methylsilole was reacted with C O ~ ( C O ) ~  at  0 "C using 
hexane as the solvent. Careful crystallizations from hexane 
at  -78 "C afforded an orange solid that was shown by 'H 
NMR spectroscopy to be a mixture of the two isomers VA 
and VB (32% yield based on C O ~ ( C O ) ~ ) ~  (Scheme 11). This 
is surprising since in the case of the reaction of 1,l-di- 

(4) Laporterie, A.; Iloughmane, H.; Dubac, J. J. Organomet. Chem. 
1983,244, C12. 

(5) 111: orange yellow oil; 'H NMR (6 relative to (CH3)4Si in CC14) 5.89 
(m, Hb), 1.96 (m, Ha), 0.83 (8, endo-CH,), -0.18 (8, exo-CH,); IR (cyclo- 
hexane) I, (CO) 2055 (s), 1985 (s) cm-'; mass spectrum, m / e  (assignment) 
250 (molecular peak). 

(6) IV: orange crystals; mp 170.5-171.5 "C; 'H NMR (in CsD6, 6) 
7.63-6.73 (m, aromatic), 5.00 (m, Hb), 1.17 (m, Ha), 0.70 (8, endo-CH,), 
-0.14 (s, exo-CH,); IR (cyclohexane) c (CO) 1975 (s), 1920 (s) cm-'; mass 
spectrum, m / e  (assignment) 484 (molecular peak). Anal. Calcd for 
C2,H2,Fe02PSi: C, 64.46; H, 5.17; P. 6.40. Found: C, 64.61; H, 5.35; P. 
6.53. 

(7) V (mixture of isomers A and B): 'H NMR (in C&, 6) 5.48 (m, Hb), 
5.18 (m, Hb), 2.71 (m, Ha), 0.51 (8, endo-CH,), 0.45 (s, endo-CH,), 4 . 2 2  
(a, exo-CH3), -0.41 ( 8 ,  exo-CH,). Isomer VA: red-orange crystals; mp 

endo-CH,), -0.22 (s, exo-CH,); IR (cyclohexane) v(C0) 2020 (s), 2000 (s), 
1830 (m) cm-'; mass spectrum, m / e  (assignment)) 450 (molecular peak). 
Anal. Calcd for C16H20C0201Si2: C, 42.67; H, 4.44. Found: C, 42.52; H, 
4.40. 

161-161.5 "C; 'H NMR (CsDs, 6) 5.18 (m, Hb), 2.71 (m, Ha), 0.51 (9, 
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