Organometallic Chemistry of Reactive Organic Compounds. Diazo Compound[†] 41.¹ Metal-Induced Carbyne/Carbene Coupling with Buchner's

Wolfgang A. Herrmann,^{*2a,3} Manfred L. Ziegler,^{2b} and Orhan Serhadli^{2b}

Institut fur Anorganische Chemie der Johann Wolfgang Ooethe-Universitat, Niederurseler Hang, 0-6000 Frankfurt am Main 50, Germany, and Anorganisch-chemisches Institut der Universitat, Im Neuenheimer Feld 270, 0-6900 Heidelberg 1, Germany

Received February 18, 1983

An example of a transition-metal-centered carbon-carbon coupling reaction between a carbyne and a carbene fragment has been encountered through an unexpected diazoalkane fragmentation process: $\rm{Buchner's\,prototypal\,mercuriodiazoalkanes,\,bis[(alkoxycarbony])diazomethyl]mercury, \,Hg[C(=N_{2})CO_{2}R]_{2}$ $(R = C_2H_5$, 2a; t -C₄H₉, 2b), react with bromopentacarbonylmanganese, $(CO)_5$ MnBr (1), in boiling diethyl ether to yield the previously described dinuclear μ -carbyne complexes of composition $\frac{(\mu\text{-CCO}_2\text{R})\text{Mn}(\text{CO})_4]_2}{\mu}$ An example of a
carbene fragment
Buchner's prototy
($R = C_2H_5$, 2a; t-C
ether to yield the p
(7a,b) as well as t
(OR)= O (8a,b), therystallography: sp

(7a,b) as well as the mononuclear carbyne/carbene coupling products $(CO)_{4}MnC(CO_{2}R) = C(HgBr)C$

(OR)=O **(Sa,b),** the molecular structure of which latter compounds has been established by means of X-ray crystallography: space group C_{2h}^5 $(P2_1/c)$; $a = 1468.9$ (2) pm, $b = 686.2$ (5) pm, $c = 1759.4$ (3) pm, $\beta = 91.04^{\circ}$. Important bond parameters: $Hg-Br = 242.9$ (4) pm, $C=C = 138$ (4) pm, $Mn-O = 207.4$ (17) pm; $\angle Br,Hg$, $C = 176.5$ (8)^o. The characteristic structural element is a five-membered metallacyclic frame that arises from $[2 + 3]$ cycloaddition of the (bromomercurio)carbene $|C(HgBr)CO_2R$ upon the intermediate carbyne complex $(CO)_4Mn=CCO_2R$. This novel mode of cyclization implies the formation of a carbon-carbon double bond between carbene and carbyne carbon atoms [cf. C(5)-C(6)]. From a formalistic point of view, compounds **Sa** and **Sb** might also be described as to result from homolytic trans addition ("metallamercuration") of (CO)₅MnHgBr across the triple bond of preformed acetylenedicarboxylates, $RO₂CC=CCO₂R$, with subsequent decarbonylation and concomitant cyclization of the vinyl-type derivative **(CO),Mn-C(C02R)=C(HgBr)C02R.** This latter mechanistic alternative was, however, ruled out by negative parallel experiments using authentic $(CO)_{5}MnHgBr$ and the respective alkynes.

Introduction

Aliphatic diazoalkanes have been used in various branches of organic chemistry for many decades as convenient and exceedingly useful synthetic precursors for a plethora of otherwise not easily accessible compounds as well as for the generation of carbenes. 4.5 Their metalsubstituted congeners of types $L_xM-C(=N_2)R$ and $(L_x M)_2 C=N_2$, however, have hardly participated in the rapid development of diazoalkane chemistry which fact is even more surprising in view of Buchner's early discovery of the easy-to-make prototypal α -mercuriodiazoalkane
2a.^{6,7} During the past decade many novel metalated **2a.697** During the past decade many novel metalated

diazoalkanes became accessible through straightforward synthetic approaches mainly elaborated by the research groups of Regitz,^{8,9} Schöllkopf,¹⁰ and Lorberth.¹¹ Derivatives having metals such **as** lithium, silver, mercury, and tin directly attached to the diazo carbon center proved particularly useful **as** isolable intermediates for the purpose of diazoalkane homologation.

The most spectacular issue of heavy-metal-substituted diazoalkanes, however, came from the old Buchner compound **2a** when Skell and Strausz performed their pioneering short wavelength photolysis study which revealed the generation of both the heterocarbene 3 and the (ethoxycarbony1)carbyne **4** according to generalized eq 1.12-16 The occurrence of carbyne species \bar{R}' -C:,¹⁷ following nitrogen elimination and mercury-carbon bond cleavage, was

inferred by trapping experiments using cyclohexene, cis-2-butene, and trans-2-butene. These results promised to

(1) Part 40 Herrmann, W. A,; Weichmann, J., Ziegler, M. L.; Pfis-terer, H. *Angew.* Chem. 1982,94,545; *Angew. Chem. Int. Ed. Engl.* 1982, 21, 551; *Angew. Chem. Suppl.* 1982, 1223-1245.

(2) (a) Universitit Frankfurt. (b) Universitit Heidelberg. (3) Karl Winnacker Fellow; to whom all correspondence should be addressed.

(4) See, for example: (a) Eistert, B.; Regitz, M.; Heck, G.; Schwall, H. "Methoden der organischen Chemie (Houben-Weyl-Müller)", 4th ed.; Thieme Verlag: Stuttgart, 1968; vol. $X/4$, p 482 ff. (b) W. Kirmse, Varhen Chemist

Wiley: New York, 1978; Vols. I and **11.** (6) Buchner, E. Ber. *Deutsch.* Chem. Ges. 1895,28,215. For a slightly modified preparation of 221, see: Regitz, M. *Synthesis* 1972, 351. modified preparation of 2a, see: Regitz, M. Synthesis 1972, 351.

(7) X-ray structure of compound 2a: Smith, R. A.; Torres, M.; Strausz,

0. P. *Can. J. Chem.* 1977,55,3527.

(8) Review: Regitz, M. *Synthesis* 1972, 351.

(9) For a recent monograph covering the syntheses of diazoalkanes, **see:** Regitz, M. "Diazoalkane - Synthesen und Eigenschaften"; Thieme

Verlag: Stuttgart, 1977.

(10) Cf.: Schöllkopf, U.; Bánhidai, B.; Frasnelli, H.; Meyer, R.;
Beckhaus, H. *Liebigs Ann. Chem.* 1974, 1767. Schöllkopf U.; Rieber, N.
Chem. Ber. 1969, *102*, 488. Schöllkopf, U.; Bánhidai, B (10) Cf.:

Liebigs Ann. Chem. 1972, 761, 137.

(11) Cf.: Lorberth, J. J. Organomet. Chem. 1971, 27, 303. Lorberth, J.

J.; Schmock, F.; Lange, G. Ibid. 1973, 54, 23. Grüning, R.; Lorberth, J.

Ibid. 1974, 69, 213; 1974, 78, 221. Gloz

^{&#}x27;Dedicated to Professor Ulrich Wannagat on the occasion of his 60th birthday.

open a new and ostensibly rich field of chemistry and, hence, initiated early attempts to utilize Buchner's compound in organometallic chemistry as well.¹⁸ Clean addition of the bis(carbene)mercury fragment $Hg(-\tilde{C} CO₂C₂H₅)₂$ upon a metal-to-metal double bond occurred when $2a$ was reacted with the rhodium complex $[(\eta^5 (C_5Me_5)Rh(\mu\text{-}CO)\vert_2$ under quite mild conditions.¹⁹ On the other hand, treatment of the α -mercuriodiazoalkane with bromopentacarbonylmanganese (1) yielded, among other products, the dinuclear μ -carbyne complex of composition $[(\mu$ -CCO₂C₂H₅)Mn(CO)₄]₂ (7a) in which latter compound the carbyne group derived from **2a** is stabilized by acting as a bridging three-electron ligand.²⁰ The second carbyne-derived product **8s** of **this** reaction was shown to obey the stoichiometry $(CO)_{4}Mn(HgBr)(CCO_{2}C_{2}H_{5})_{2}$, and all spectroscopic data proved fully consistent with a rather trivial-looking alkyne complex **of** proposed structure **A**

having the two independent ligands HgBr and $C_2H_5O_2C$ - $C=CCO₂C₂H₅$ in cis positions to each other.²¹ In order to convey an unambiguous structural assignment, we have now subjected this compound to an X-ray diffraction study that not only established the surprising geometry of structure B resulting from an heretofore unknown carbyne/heterocarbene coupling process but also shed some light on the initial products of this reaction.

Experimental Section

The manganese compound **8a** was synthesized according to the procedure published elsewhere.²¹ The spectroscopic data (IR, 1 H **NMR,** mass spectra) were in agreement with the characterization given in the original account, 21 except that the infrared absorptions occurring in the 1500-1700 cm^{-1} range (KBr) can now correctly be assigned to the coordinated carbonyl ester group **[C(7)-0(5),** 1576 cm^{-1} (m)] and the free carbonyl ester group, respectively $[C(10)-O(7), 1672 cm^{-1} (m)]^{22}$ Anal. Calcd for C₁₂H₁₀BrHgMnO₈ (617.65): C, 23.34; H, 1.64; **Mn,** 8.90; Hg, 32.47; Br, 12.93. Found C, 23.40; H, 1.71; Mn, 9.00; Hg, 32.55; Br, 13.03. Large quadrangular-shaped single crystals of compound **8a** were grown from

(12) DoMinh, T.; Gunning, H. E.; Strausz, O. P. J. Am. Chem. Soc. **1967,89,6785.**

(13) Strausz, O. P.; DoMinh, T.; Font, J. J. Am. Chem. Soc. 1968, 90, **1930.**

(14) Skell, P. S.; Valenty, S. J. J. Am. Chem. Soc. 1973, 95, 5042.

(15) Valenty, S. J.; Skell, P. S. J. Org. Chem. 1973, 38, 3937.

(16) Strausz, O. P.; Kennepohl, G. J. A.; Garneau, F. X.; DoMinh, T.; Kim, B.; Valenty,

(17) A theoretical treatment (ab initio electronic structure theory) of the related species carbohydroxycarbyne, HOC(=O)C, ha^ recently been reported Kim, K. *S.;* So, S. P.; Schaefer, H. F., **I11** *J. Am. Chem.* SOC. **1982, 104, 1457.**

(18) Reviews: (a) Herrmann, W. A. *Angew. Chem.* **1978, 90, 855;** *Angew. Chem. Int. Ed. Engl.* **1978,17,800.** (b) Herrmann, W. A. *Adu. Organomet. Chem.* **1982,20, 159.**

(19) Herrmann, W. A.; Huggins, J. M. *Chem.* Ber. **1982, 115, 396. (20)** Herrmann, W. A. *Angew. Chem.* **1974,86,895;** *Angew. Chem., Int. Ed. Engl.* **1974, 13, 812.**

(21) Herrmann, W. A. *J. Organomet. Chem.* **1976,** *97,* **1.**

(22) The same assignment logically applies for the *tert*-butyl derivative 8b $[1567 \text{ (m)}$ and $1696 \text{ cm}^{-1} \text{ (m, s)}$, respectively]²¹ which has a cyclic structure **(B)** analogous to that found for **88** and is thus formulated **as**

single-crystal X-ray diffraction study. Rotation and Weissenberg

photographs (Cu Ka radiation) showed the crystal of **8a** to be monoclinic and provided rough lattice constants. Exact lattice parameters were calculated by least squares^{23a} from diffractometrically determined θ values of 60 selected reflections. Intensity measurements^{23b} were performed on a computer-controlled single-crystal diffractometer (AED-Siemens, Mo K α , θ -2 θ scans, five value method). Reflections with $I < 2.56\sigma(I)$ were not considered. **A** total of **2550** independent intensities remained for calculation. These were corrected for Lorentz and polarization fgctors. Absorption corrections were omitted. The crystal data are listed in Table I.

a *n*-pentane/diethyl ether solution $(1/2)$ at $+25$ to -30 °C and had to be cut down to a convenient size for the purpose of **a**

The positions of the heavy atoms (Hg and Br) were found by means of a three-dimensional Patterson synthesis while the remaining non-hydrogen atoms came from three-dimensional Fourier and difference Fourier methods. The hydrogen atoms were put into fixed positions by means of the "H-FIX" program.^{24a} The isotropic refinement process of the hydrogen atoms was carried out in a way that the *U* value of each atom $(U = B/8\pi^2)$ corresponded to the value of the carbon atoms attached to it. The methyl groups were considered to be rigid groups $(C-H = 96 \text{ pm})$. The standard deviations of the hydrogen positions are identical with those of the corresponding carbon positions. The refinement of the structure was carried out by least-squares methods. All calculations were performed on a Data General Nova 3 computer with the SHELXTL program;^{24a} scattering factors were those of Hanson, Herman, Lea, and Skillman.^{24b} The atom numbering scheme corresponds to the one used in Figure 1. Isotropic refinement converged to $R = 0.16$ while anisotropic refinement gave $R = 0.088$. The goodness of fit value amounts to 8.327 ($\left\{ \sum w(\left| F_{o} \right| \right\}$ $-[F_c]^2]/(n-p)^{1/2}$; $n = 2481$, $p = 211$). Bonding distances and angles are summarized in Table 111, and data for least-squares planes in Table IV. The fractional atomic coordinates are listed in Table II. Table V lists the U_{ij} and U (equiv) data.

Molecular Structure of the Carbene/Carbyne Coupling Product 8a

The structure of the mononuclear manganese compound **8a** is depicted in Figure 1 which shows that the molecule exhibits a slightly distorted octahedral overall geometry. The four carbonyl ligands are cis-oriented with respect to **C(1)** and C(3), with the interligand angles being close to what one might expect for an ideal polyhedron of this type

 $\overline{\text{ccis-CO}}_k\text{Mn}[\text{CO}_2\text{-}t\text{-}C_4\text{H}_9)\text{=C}(\text{HgBr})\text{C(O-}t\text{-}C_4\text{H}_9)\text{=O}]$ rather than cis- $(\text{CO})_k\text{Mn}(\text{HgBr})(t\text{-}C_4\text{H}_9\text{O}_2\text{C}\text{=CCO}_2\text{-}t\text{-}C_4\text{H}_9).$

Table **I.** Crystallographic Data **of** the Vinyl Ketone Complex 8a

^{(23) (}a) Berdesinski W.; Nuber, B. *Neues Jahrb. Mineral., Abh.* **1966, 104, 113.** (b) Weiss, J. 'Data Collection Program Odysseus"; Anorgan- isch-chemisches Institut, Universitiit Heidelberg: West Germany, **1980. (24)** (a) Sheldrick, G. M. 'SHELXTL Version"; Anorganisch-chem- isches Institut, Universitiit Gottingen; West Germany, **1980.** (b) Hanson, H.; Herman, F.; Lea, J. D.; Skillman, *S.* Acta *Crystallogr.* **1964,17,1040.**

Table 11. Fractional Atomic Coordinates **of** the Manganese Complex 8a^a

atom	x/a	y/b	z/c
Hg	$-0.0814(1)$	0.2308(2)	0.5254(1)
Br	0.0493(3)	0.2768(5)	0.4446(2)
Mn	$-0.3682(3)$	0.0559(6)	0.6459(2)
C(1)	$-0.4466(21)$	0.0731 (44)	0.7262(16)
C(2)	$-0.4085(20)$	0.2842(39)	0.6036(14)
C(3)	$-0.4546(20)$	$-0.0770(43)$	0.5933 (14)
C(4)	$-0.3184(22)$	–0.1848 (44)	0.6718(15)
C(5)	$-0.1875(20)$	0.1810(39)	0.5857 (15)
C(6)	$-0.2658(20)$	0.0778(35)	0.5687(12)
C(7)	$-0.2007(17)$	0.2399(38)	0.6706 (13)
C(8)	$-0.1324(23)$	0.4070(45)	0.7764(14)
C(9)	$-0.0598(31)$	0.5505(55)	0.7870 (17)
C(10)	$-0.2660(21)$	–0.0188 (42)	0.4880(14)
C(11)	$-0.3257(38)$	–0.2726 (53)	0.4074 (19)
C(12)	$-0.2697(54)$	-0.4258 (61)	0.4069 (25)
O(1)	–0.4973 (22)	0.0778(42)	0.7747(13)
O(2)	$-0.4304(17)$	0.4271(32)	0.5730(11)
O(3)	$-0.5118(17)$	$-0.1583(32)$	0.5614(11)
O(4)	$-0.2833(18)$	–0.3239 (35)	0.6848(14)
O(5)	$-0.2679(12)$	0.2043(26)	0.7070(8)
O(6)	$-0.1303(18)$	0.3419(28)	0.6970 (9)
O(7)	$-0.2242(19)$	0.0598(40)	0.4369 (10)
O(8)	$-0.3157(18)$	$-0.1790(34)$	0.4834 (11)
H(8A)	$-0.1224(24)$	0.2982 (45)	0.8098(13)
H(8B)	$-0.1903(24)$	0.4652(45)	0.7867(13)
H(9A)	$-0.0392(31)$	0.5601(55)	0.8390(17)
H(9B)	$-0.0945(31)$	0.6644(55)	0.7737 (17)
H(9C)	$-0.0082(31)$	0.5408 (55)	0.7545 (17)
H(11A)	–0.3089 (38)	–0.1827 (53)	0.3683(19)
H(11B)	–0.3876 (38)	$-0.3136(53)$	0.3900 (19)
H(12A)	–0.2299 (54)	$-0.4826(85)$	0.3703(25)
H(12B)	–0.3036 (54)	$-0.5269(85)$	0.4313 (25)
H(12C)	–0.2342 (54)	$-0.3562(85)$	0.4444(25)

^a The standard deviations given in parentheses correspond to the least significant digits.

(Table 111). The two remaining coordination sites are occupied by the chelating C,O ligand resulting from the diazo precursor **2a** and the HgBr moiety. The original (ethoxycarbonyl)carbyne fragment $|C(6)-CO_2Et$ is attached to the metal center through a manganese-carbon single bond $(205.1 \ (26) \text{ pm})$.²⁵⁻³⁰ At the same time, this unit forms a conventional carbon-carbon double bond to the (bromomercurio)carbene moiety $(d(C(5)-C(6)) = 137.9$ pm; Table III), the keto group $C(7)-O(5)$ of which latter species
in turn being coordinated to the metal atom $(d(O(5)-Mn))$ $= 207.4$ (17) pm). The five-membered metallacycle thus formed hardly deviates from planarity (plane **A;** Table IV). This plane also includes the atoms $C(10)$, Hg, and $O(6)$ directly attached to the ring carbon atoms since the latter ones are essentially sp2 hybridized. The ethoxy and ethoxycarbonyl groups associated with the metallacyclic backbone do not show any unusual intramolecular pa-

(25) As expected, the carbon(sp^2)-manganese distance found in this compound is shorter than those reported for heterocycles belonging to the same structural type but having metal-bound sp3-hybridized carbon atoms instead, cf.: $(CO)_{4}\text{Mn-P}(C_{6}H_{5})_{2}OCH_{2}CH_{2}CH_{2}$, 221.0 (3) pm;²⁶ (CO)₄Mn-P(C₆H₅)₂CH₂CH₂CH₂CH₂, 222.2 (10) pm;²⁷ (CO)₄Mn-P(C₆-*7*

(30) Wells, A. F. "Structural Inorganic Chemistry", 4th ed.; Clarendon Press: Oxford, 1975; p 918.

rameters nor does the bromomercurio ligand represent an exception of the commonly observed geometry of typical divalent organomercurials $(Br,Hg,C(5) = 176.5$ (8)^o; *d*- $(Hg-Br) = 242.9$ (4) pm).^{30,31}

The bonding pattern derived from the aforementioned structural details suggests the classification of compounds **8a** and **8b** as vinyl ketone complexes. Such compounds, albeit not bearing heavy-metal substituents, have previously been synthesized by the reactions of methyl- and **acetylpentacarbonylmanganese** with dialkyl acetylenedi carboxylates. $31,32$ However, no structural description of these derivatives is available.

Acetylene Insertion vs. Carbene/Carbyne Coupling

The final structural elucidation of compounds 8 presented the intruiging question as to how these molecules can form from the diazomercury precursors **2.** Let us approach this problem from both the known chemistry of Buchner's compound **2a** and the structural features of our manganese complex **8a.** The chelating ligand of **8a** represents the connectivity pattern of diethyl acetylenedicarboxylate which, from a formalistic point of view, has been inserted into a Mn-HgBr bond. Both substrates required for such a reaction could possibly be generated from $(CO)_{5}MnBr$ (1) and $Hg[C(=\dot{N}_{2})CO_{2}Et]_{2}$ (2a) under the conditions employed for the synthesis of **8a.21** The

 $a: R = C_2H_5$; **b**: $R = {}^tC_4H_5$

diazo precursor could decompose under elimination of nitrogen to give the symmetrical carbyne/carbyne coupling product $EtO_2C=CCO_2Et$, 33,34 whereas the extruded metal then very likely will insert into the manganese-bromine bond of 1 yielding the well-documented bromomercury derivative of composition $(CO)_{6}MnHgBr.^{21,35}$ Since the latter compound in fact appears **as** an isolated side product in 21% yield,²¹ its subsequent addition across the carbon-carbon triple bond of the preformed diethyl acetylenedicarboxylate had to be taken into serious considera-

 H_5)₂CH₂CH₂CHCH₃, 223.7 (9) pm;²⁷ (CO)₅MnCH₃, 218.5 (11) pm.²⁸ (26) Lindner, E.; Eberle, H.-J. *J. Organomet. Chem.* 1980, 191, 143.
(27) Lindner, E.; Funk, G.; Hoehne, S. *Chem. Ber.* 1981, 114, 3855.
(

⁽²⁹⁾ Bromomethylmercury, Br-Hg-CH?, having a bromine-mercury distance of 241 pm may be quoted **as** typical example. The observed shortening of the Hg-C(5) bond of 8a (192.2 (29) pm) compared with the corresponding distance in Br-Hg-CH₃ (207 pm) is due to the different carbon hybridization in these compounds (8a, sp²; Br-Hg-CH₃, sp³).³⁰ Consistently, the Hg-C(sp²) distance of the diazo precursor 2a amounts to 201 (1)

[~]____ ~ (31) Booth, B. L.; Hargreaves, R. G. *J.* Chern. **SOC.** A 1970, 308.

⁽³²⁾ Booth, B. L.; Lewis, E. J. R. *J.* Chem. SOC., Dalton Trans. 1982, 417.

⁽³³⁾ For a brief discussion of metal-mediated linkage of carbenes and carbynes, **see:** Hoffmann, R.; Wilker, Ch. N.; Eisenstein, 0. *J.* Am. Chem. SOC. 1982, *104,* 632.

⁽³⁴⁾ A unique coupling of two carbynes to an acetylene unit within the coordination core of **a** metal has been described: Fischer, E. *0.;* Ruhs, **A,;** Friedrich, P.; Huttner, G. *Angew.* Chem., *Znt. Ed.* Engl. 1977,16,465.

⁽³⁵⁾ Bower, L. M.; Stiddard, M. H. B. *J.* Chem. SOC. A 1968,706. The same compound was originally synthesized by Hieber et al. (Chem. Ber. 1960, 93, 455) but erroneously formulated as the dimeric species **'Hg-** $[Mn(CO)_{5}]_{2}$.HgBr₂".

Table III. Intramolecular Parameters of the Manganese Compound 8a⁰

(A) Bond Lengths (pm)								
$Hg-Br$ $Hg-C(5)$ $Mn-C(1)$ $Mn-C(2)$ $Mn-C(3)$ $Mn-C(4)$	242.9(4) 193.2 (29) 184.2 (29) 182.8 (27) 180.5 (28) 186.0 (30)	$Mn-C(6)$ $Mn-O(5)$ $O(5)-C(7)$ $C(7)-C(5)$ $C(5)-C(6)$	205.1(26) 207.4 (17) 121.2(30) 156.2 (35) 137.9 (39)	$C(6)-C(10)$ $C(10)-O(8)$ $C(10)-O(7)$ $O(8)$ -C(11) $C(11) - C(12)$	156.6 (34) 132.1 (38) 122.3 (36) 148.9 (40) 133.5 (31)			
$C(1)-O(1)$ $C(2)-O(2)$ $C(3)-O(3)$	114.2 (40) 116.2(35) 114.7 (36)	$C(4)-O(4)$ $C(7)-O(6)$	110.7 (40) 132.7 (32)	$O(6) - C(8)$ $C(8)-C(9)$	146.6 (30) 146.2 (53)			
(B) Bond Angles (deg)								
$Mn-C(6)-C(5)$ $C(6)-C(5)-C(7)$ $C(5)-C(7)-O(5)$ C(7)-O(5)-Mn $O(5)$ -Mn- $C(6)$ $C(6)-C(5)-Hg$ $C(5)-Hg-Br$ $C(5)-C(6)-C(10)$ Mn-C(6)-C(10) $C(6)-C(10)-O(7)$ $C(6)-C(10)-O(8)$	120.8(17) 102.9 (22) 124.7 (22) 113.7 (15) 77.6(8) 130.4 (20) 176.5(8) 113.8 (23) 125.4 (19) 119.1 (26) 113.6 (22)	$C(10)-O(8)-C(11)$ $O(7)$ -C(10)-O(8) $O(8)-C(11)-C(12)$ $C(7)-O(6)-C(8)$ $O(6)-C(8)-C(9)$ $O(5)-C(7)-O(6)$ $C(5)-C(7)-O(6)$ $C(7) - C(5) - Hg$ $Mn-C(1)-O(1)$ $Mn-C(2)-O(2)$ $Mn-C(3)-O(3)$	117.4(25) 127.3(25) 107.0(36) 117.7(21) 107.4 (24) 124.0 (21) 111.2 (21) 126.5(19) 177.2 (21) 175.7 (25) 177.4 (28)	$Mn-C(4)-O(4)$ $C(1)$ -Mn- $C(2)$ $C(1)$ -Mn- $C(3)$ $C(1)$ -Mn- $C(4)$ $C(2)-Mn-C(4)$ $C(1)$ -Mn- $C(6)$ $C(3)-Mn-O(5)$ $C(3)-Mn-C(6)$ $C(4)-Mn-C(6)$ $C(2)-Mn-C(6)$	175.1 (28) 93.2(13) 89.0 (12) 96.8(13) 169.6 (12) 168.4(11) 179.0 (10) 102.3(11) 86.4 (12) 84.5 (11)			

 a The standard deviations (pm) given in parentheses correspond to the least significant digit(s).

Figure 1.

tion. However, a parallel experiment employing authentic materials $(EtO_2CC=CCO_2Et$ and $(CO)_5MnHgBr)$ failed to afford the vinyl ketone complex **8a** described above. Hence, these substrates are clearly not responsible for the formation of 8a from $Hg[C(FN_2)CO_2Et]_2$ (2a) and bromopentacarbonylmanganese **(1).**

The second mechanistic alternative considers the fact that the carbyne fragment $|C-CO₂Et$ of 2a shows up in the dinuclear compound $[(\mu$ -CCO₂Et)Mn(CO)₄]₂ (7a) as outlined in eq **2.** This molecule was suggested to arise from dimerization of the mononuclear species $(CO)_{4}Mn=$ CC02Et **(5a),%** a possibility that appears **all** the more likely now that the modified carbyne unit has been found once more as a structural moiety in compound **8a.** The mononuclear carbyne complex **5** was originally expected as the final product but has so far escaped isolation due to rapid subsequent reactions which take place at the reactive metal-carbon triple bond. Apart from the obvious **[2** +

Table IV. Definitions **of** Best Planes and Dihedral Angles

 a Standard deviations (a) are given in brackets while the distances of the atoms from the corresponding planes (pm) appear in parentheses.

21 cyclization pathway affording the stable carbyne-bridged derivative 7a,^{20,21,37} the bromomercury diazo species 6 generated through nucleophilic cleavage of one of the mercury-carbon bonds of the precursor **2a** is available for carbene addition to the five-coordinate $Mn=CCO₂Et$ moiety of **5a** (eq **2).** This type of reaction is reminiscent of the well-explored carbene transfer from diazoalkanes to metal-metal triple bonds yielding dinuclear addition products.³⁸⁻⁴³

⁽³⁶⁾ Herrmann, W. A. "Habilitationsschrift"; Universität Regensburg: West Germany, 1977; p 115. This interpretation receives support from the lack of stable carbyne complexes of type $(CO)_4Mn^{\text{max}}CR'$ of which **there is still** not **a single example known in the literature.**

⁽³⁷⁾ Dimerization of the mononuclear carbyne species 5a appears formally analogous to **the first step** of **alkyne addition reactions to M= CR units, cf.; Wengrovius,** J. **H.; Sancho,** J.; **Schrock, R. R.** *J. Am. Chem. SOC.* **1981,103, 3932.**

⁽³⁸⁾ Messerle L.; Curtis, M. D. *J. Am. Chem. SOC.* **1980,** *102,* **7789. (39) Herrmann, W. A.; Kriechbaum, G.; Bauer, Ch.; Guggolz, E.; Ziegler,** M. **L.** *Angew.* Chem., *Znt. Ed. Engl.* **1981,20, 815.**

⁽⁴⁰⁾ Reviews: (a) Curtis, M. D.; Messerle, L.; Fotinos, N. A,; Gerlach, R. F. *ACS Symp. Ser.* **1981,** *No. 155,* **221. (b) Herrmann, W. A.** *Adu. Organomet. Chem.* **1982,20, 159. (c) Herrmann, W. A.** *J. Organomet. Chem.,* **in press.**

Table V. Thermal Parameters **of Compound** 8aa

^aData are multiplied by the factor **lo4.** The standard deviations are listed in the second **rows.**

It is not yet known, however, as to whether the final carbyne/carbene coupling process takes place before or after the keto group has attacked the metal center nor can we conclusively prove the existence of one of the plausible intermediates C-E. Further related work concerning this

latter problem is aimed at reactivity studies of isolable, coordinatively unsaturated metal carbynes with diazoalkanes.

Acknowledgment. This work was generously supported by the Deutsche Forschungsgemeinschaft (Grant He 954/6), the Fonds der Chemischen Industrie, and the Degussa Hanau. Miss Barbara Reiter is greatly acknowledged for experimental assistance.

Registry No. 1, 14516-54-2; 2a, 20363-85-3; 2b, 22085-17-2; **7a,** 53352-70-8; **7b,** 57219-96-2; 8a, 85506-87-2; **ab,** 85506-88-3.

Supplementary Material Available: A listing of observed and calculated structure factors (15 **pages).** Ordering information is given on any current masthead page.

⁽⁴¹⁾ Reductive coupling of cationic mononuclear carbyne complexes to yield α,α' -dicarbene-bridged derivatives is somewhat related to the mechanism proposed for the formation of the vinyl ketone complexes 8a
and 8b, cf.; Fischer, E. O.; Wittmann, D.; Himmelreich, D.; Neugebauer,
D. *Angew. Chem., Int. Ed. Engl.* 1982, 21 444; *Angew. Chem. Suppl.* 1982, 1036-1049.

⁽⁴²⁾ Reaction of diazoalkanes, N_2 =CHR (e.g., $R = H$) with the triosmium complex of composition $O_{S_3}(CO)_9(NCMe)$ (μ -CO) $(\mu$ -CH₂) results in the formation of the corresponding alkenyl derivatives $HO_{S_3}(CO)_{10^-}$ in the formation of the corresponding alkenyl derivatives $HOS₃(CO)₁₀$.
(μ -CH=CHR) in which compounds an overall carbon-carbon bond formation was reaction has also occurred. However, carbon-carbon bond formatio shown to *precede* scission of the carbon-hydrogen bond. Therefore, thie reaction is to be classified as a carbene/carbene coupling process, cf.:
Shapley, J. R.; Sievert, A. C.; Churchill, M. R.; Wasserman, H. J. J. Am.
Chem. Soc. 1981, 103, 6975.
(43) Two reviewers have pointed out the possibi

compounds **8** might arise from attack of **6** upon the dinuclear derivatives rather than upon **5.** Since authentic **6** is not available, we have used closely related diazo compounds such as CH_2N_2 , $N_2= C(H)CO_2C_2H_5$, $N_2= C(CO_2CH_3)$ ₂ neither of which reacted with compound **7a.** Therefore, the above-mentioned mechanism seems unlikely.