following Zweifel's procedure.¹⁵ The product pentylidinecyclohexane was purified by distillation: 1.28 g (60% yield); bp 94-96 °C (12 mmHg).

Application of Lithium Dicyclohexylborohydride. The Zweifel Cis Olefin Synthesis. Dicyclohexylborane was generated from a THF solution of lithium dicyclohexylborohydride (10 mmol) at 0 °C by using methyl iodide (15 mmol). Hydroboration of 1-hexyne (12 mmol) with this reagent produced the vinylborane. The product was treated with iodine following Zweifel's procedure.¹⁶ There was produced *cis*-1-cyclohexyl-1hexene, purified by distillation: 1.13 g (68% yield); bp 93-95 °C (12 mmHg).

Acknowledgment. We thank the National Science Foundation for support by Grant CHE 79-18881.

Registry No. LDEA, 19582-13-9; LMEA, 26522-31-6; LiR₂BH₂ (R = n-butyl), 84280-32-0; LiR_2BH_2 (R = n-hexyl), 91389-03-6; $LiR_{2}BH_{2}$ (R = 2-methyl-1-propyl), 91389-04-7; $LiR_{2}BH_{2}$ (R = 3-methyl-2-butyl), 67813-43-8; LiR_2BH_2 (R = cyclohexyl), 67813-27-8; LiR₂BH₂ (R = tetramethylene), 34571-55-6; LiR₂BH₂ (R = pentamethylene), 91389-05-8; R_2BOMe (R = n-butyl), 2344-21-0; R_2BOMe (R = *n*-hexyl), 2344-22-1; R_2BOMe (R = 2-methyl-1-propyl), 17832-17-6; R_2BOMe (R = 3-methyl-2-butyl), 43209-69-4; R₂BOMe (R = cyclohexyl), 32705-46-7; R₂BOMe (R = tetramethylene), 6166-10-5; R_2BOMe (R = pentamethylene), 38050-70-3; 4-vinylcyclohexene, 100-40-3; disiamylborane, 1069-54-1; borinane, 289-53-2; 1-iodo-1-hexyne, 1119-67-1; dicyclohexylborane, 1568-65-6; 1-hexyne, 693-02-7; 2-(4-cyclohexenyl)ethanol, 18240-10-3; pentylidinecyclohexane, 39546-79-7; cis-1cyclohexyl-1-hexene, 17301-35-8.

Synthesis from Diamines of Mono- and Dinuclear Cyclopentadienyliron Dicarbonyl Carbamoyl Compounds. **Crystal and Molecular Structure of** $(\mu$ -CONH(CH₂)₂NHCO)[CpFe(CO)₂]₂

Alan J. Lindsay, Sangsoo Kim, Robert A. Jacobson, and Robert J. Angelici*

Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011

Received January 31, 1984

The cationic complex $[CpFe(CO)_3]PF_6$ exhibits three types of reactivity toward diamines. It reacts with the unsymmetrical primary diamine $H_2NCH_2CMe_2NH_2$ to give the mononuclear cationic carbamoyl complex $[CpFe(CO)_2(CONHCH_2CMe_2NH_3)]PF_6$ (1); spectroscopic studies indicate relatively strong intermolecular hydrogen bonding between the carbamoyl oxygen and an NH_3^+ group. Complex 1 is readily deprotonated to yield its neutral analogue $CpFe(CO)_2(CONHCH_2CMe_2NH_2)$ (2) that can be further deprotonated in the presence of [CpFe(CO)₃]PF₆ to form the first reported dinuclear "dicarbamoyl-bridged" complex the presence of $[CpFe(CO)_3]PF_6$ to form the first reported dinuclear "dicarbamoyl-bridged" complex $(\mu$ -CONHCH₂CMe₂NHCO)[CpFe(CO)₂]₂ (3). In addition, $[CpFe(CO)_3]PF_6$ reacts with the unsymmetrical primary/tertiary diamine H₂N(CH₂)₂NMe₂ and with H₂N(CH₂)₂OH to form exclusively CpFe(CO)₂-(CONH(CH₂)₂NMe₂) (4) and CpFe(CO)₂(CONH(CH₂)₂OH) (5), respectively. Finally, $[CpFe(CO)_3]PF_6$ reacts with symmetrical primary and secondary diamines such as RHN(CH₂)₂NHR (R = H, x = 2, 3; R = Me, x = 2) and the cyclic diamine piperazine HN(CH₂CH₂)₂NH to yield exclusively the dinuclear dicarbamoyl-bridged complexes (μ -CONR(CH₂)₂NRCO)[CpFe(CO)₂]₂ (R = H, x = 2 (6); R = H, x = 3 (7); R = Me, x = 2 (8)) and (μ -CON(CH₂CH₂)₂NCO)[CpFe(CO)₂]₂ (9). The molecular structure of complex 6 was determined by X-ray diffraction. The crystals are triclinic of space group PI with two crystalloc graphically independent molecules per unit cell each baying en inversion center and with cell constants. graphically independent molecules per unit cell, each having an inversion center, and with cell constants of a = 9.504 (7) Å, b = 8.435 (5) Å, c = 12.989 (9) Å, $\alpha = 101.20$ (5)°, $\beta = 104.80$ (5)°, and $\gamma = 100.49$ (5)°. The structure was refined to R = 0.043 and $R_w = 0.047$ for 1485 independent observed reflections having $I \ge 3.0\sigma(I)$. The dimensions of the two crystallographically independent molecules do not differ significantly; the average Fe–C(carbamoyl) distance of 1.99 Å is significantly longer than the average Fe–C(CO) distance of 1.76 Å. The overall geometry of the structure shows the metal centers to be in a transoid orientation about the bridging ligand as dictated by the inversion center, and the central part of the structure adopts a gauche-trans-gauche conformation. Each molecule is connected through weak hydrogen bonds to two others.

Introduction

Many cationic, and to a lesser extent neutral, metal carbonyl complexes are known to react directly with nucleophiles such as ammonia and primary and secondary amines to yield carbamoyl complexes¹⁻³ (eq 1).

$$[L_{n}MC \equiv 0]^{+} + 2HNRR' \implies L_{n}M - C - NRR' + H_{2}NRR'^{+} (1)$$

R, R' = H and/or alkyl

Although an extensive range of amines has been studied in this reaction, no reports involving the analogous reactions with diamines have been noted. In this paper, we report the reaction of [CpFe(CO)₃]PF₆⁴ with 2-aminoethanol and a range of diamines to yield both neutral and cationic monomeric carbamoyl complexes, as well as neutral dinuclear dicarbamoyl-bridged compounds. Some of the neutral monomeric complexes have "dangling" NH_2

- (3) Behrens, H. Adv. Organomet. Chem. 1980, 18, 1.
 (4) Busetto, L.; Angelici, R. J. Inorg. Chim. Acta 1968, 2, 391.

⁽²⁾ Angelici, R. J.; Blacik, L. J. Inorg. Chem. 1972, 11, 1754.

or OH functionalities and thus have the potential for forming homo- or heterobimetallic dicarbamoyl-bridged or mixed alkoxycarbonyl/carbamoyl-bridged compounds.

The present study also constitutes the first structural characterization of a dinuclear carbamoyl complex in which the two metal centers are linked via a dicarbamoyl bridge, i.e., the (CONH(CH₂)₂NHCO) moiety in (μ -CONH-(CH₂)₂NHCO)[CpFe(CO)₂]₂ (6). An understanding of the conformational and stereochemical characteristics of such compounds may prove valuable in explaining their reactivities, especially since, as several authors^{5,6} have recently noted, interactions between two metal reaction sites in close proximity may profoundly affect the chemical properties of their coordinated organic moieties.

Results and Discussion

Synthesis and Characterization of $[CpFe(CO)_2 (CONHCH_2CMe_2NH_3)]PF_6$ (1), $CpFe(CO)_2 (CONHCH_2CMe_2NH_2)$ (2), and (μ -CONHCH_2CMe_2NHCO)[CpFe(CO)_2]_2 (3). The reaction of an excess of the unsymmetrical primary diamine $H_2NCH_2CMe_2NH_2$ with a suspension of $[CpFe(CO)_3]PF_6$ in diethyl ether leads to the formation of the insoluble yellow complex 1 in nearly quantitative yield (eq 2). The

 $\label{eq:copfe} \texttt{[CpFe(CO)_3]PF}_6 \ + \ \texttt{H}_2\texttt{NCH}_2\texttt{CMe}_2\texttt{NH}_2 \ ---$

formulation of this complex is clearly established by mass spectrometry (parent ion, M^+ , m/e 293), elemental analysis, and its conductivity [Λ (1 × 10⁻³ M) = 150 Ω^{-1} cm² mol⁻¹ in acetone]. An ¹H NMR spectrum in CD₃CN (Table I) unambiguously demonstrates the presence of only one isomer, complex 1, in solution since only one Cp ring resonance at δ 5.03 is observed, and the methylene group of the diamine is observed as a doublet at δ 3.15 (³J_{HH} = 5.9 Hz) due to spin-spin coupling from the carbamoyl NH proton. It is presumed that steric requirements of the CMe₂ group dictate the formation of only isomer 1. A more detailed spectroscopic discussion of complex 1 is deferred until later.

Complex 1 is readily deprotonated by an excess of K_2CO_3 in CH_3CN to give the bright yellow highly soluble compound $CpFe(CO)_2(CONHCH_2CMe_2NH_2)$ (2). This is a sharp-melting, nonconducting compound that displays a mass spectrum which contains no parent ion, M^+ , but does show m/e 264 (M⁺ – CO), 236 (M⁺ – 2CO), 208 (M⁺ - 3CO). As expected, an ¹H NMR spectrum of complex 2 in CD_3CN (Table I) shows Cp ring, CH_2 , and Me resonances at slightly higher field than those of its precursor, complex 1. Neither the NH resonance at δ 6.00 nor the NH_2 resonance at δ 1.30 is markedly concentration dependent; i.e., they both shift by less than 0.05 ppm over a range of 0.30-0.03 M. The NH resonance of complex 1 shows a very similar trend, i.e. a shift of less than 0.03 ppm on decreasing the concentration from 0.15 to 0.03 M. However, over the same concentration range, the NH₃⁺ resonance shifts by 1.00 ppm, decreasing from δ 5.87 to 4.87, thus suggesting that the NH_3^+ group is participating in at least moderately strong intermolecular hydrogen bonding.^{7,8}

	Tabl	e I. ¹ H NMR S	pectra ^{<i>a, b</i>} of Comple	exes 1-9		
complexes	solv	HN	Cp	CONCH1	Me	others
[CpFe(CO) ₂ (CONHCH ₂ CMe ₂ NH ₃)]PF ₆ (1) CpFe(CO) ₂ (CONHCH ₂ CMe ₂ NH ₂) (2)	CD,CN CD,CN	6.73 6.00	5.03 4.99	$\begin{array}{l} 3.15 \ (\mathrm{d}, \ {}^{3}J_{\mathrm{HH}} = 5.9) \\ 2.98 \ (\mathrm{d}, \ {}^{3}J_{\mathrm{HH}} = 6.1) \\ 2.98 \ (\mathrm{d}, \ {}^{3}J_{\mathrm{HH}} = 6.1) \end{array}$	1.29 0.98	5.87 (NH ₃ ⁺) 1.30 (NH ₂)
(u-CONHCH, CMe, NHCO) [CbFe(CO),], ^c (3)	CDCN	$0.74 \\ 6.66, 6.46$	$\frac{4.92}{5.01.4.97}$	$3.00 (d, ^{3}HH = 3.9)$ $3.01 (d, ^{3}J_{HH} = 6.4)$	1.21	L.20 (INH2)
$CpFe(CO)_2(CONHCH_2CH_2NMe_2)$ (4)	CDCI,	5.83	4.93	$3.31 (q, {}^{3}J_{HH} = 6.4)$	2.22	2.34 (t, ${}^{3}J_{\rm HH} = 6.4$, CH ₂)
CpFe(CO), (CONHCH, CH, OH) ^d (5)	CD	6.19	4.98	$3.17 (q, {}^{3}J_{HH} = 5.4)$		$3.45 (t, {}^{3}J_{HH} = 5.4, CH_{2})$
$(\mu$ -CONH($\dot{\mathrm{CH}}_1)_2$ NHCO)[$\dot{\mathrm{CPFe}}(\mathrm{CO})_2]_2^{-6}$ (6)	$CD_{1}CI_{2}$	60.9	4.96	$3.22 \text{ (t, }^{3}J_{\text{HH}} = 5.0,$		
$(\mu-\text{CONH}(\text{CH}_{1}),\text{NHCO})[\text{CpFe}(\text{CO})_{1}]_{3} (7)$ $(\mu-\text{CONMe}(\text{CH}_{2}),\text{NMeCO})[\text{CpFe}(\text{CO})_{1}]_{2} (8)$ $(\mu-\text{CON}(\text{CH}_{2}\text{CH}_{2}),\text{NCO})[\text{CpFe}(\text{CO})_{1}]_{2} (9)$	ເວີຍີ ເວີຍີ ເດີຍີ ເດີຍີ	5.94	4.97 4.93 4.90	$3.27 (q, {}^{3}J_{\rm HH} = 6.1)$ 3.49 3.57	3.08	l.51 (q', ³ J _{HH} = 6.1, CH ₂)
^a Chemical shift in δ and coupling constants in Hz. field NH resonance collapses the CH ₂ doublet to a sing 1.1.1 virtually coupled triblet at δ 3.22 collapses to a s	b d = doublet, t glet. d No OH i singlet upon spii	t = triplet, q = q resonance is obs n-tickling the NI	uartet, q′ = quintet. erved though integra H protons.	All undesignated resona ation suggests it may be hi	aces are singlet dden under th	s. ^c Spin-tickling the highest s 8 3.45 resonance. ^e The

| |

⁽⁵⁾ Day, V. W.; Thompson, M. R.; Nelson, G. O.; Wright, M. E. Organometallics 1983, 2, 494.

⁽⁶⁾ Koa, S. C.; Thiel, C. H.; Pettit, R. Organometallics 1983, 2, 914.

Table II. ${}^{13}C{}^{1}H$ NMR Spectra ^a of Complexes 1-7							
complexes	solv	CO	CONH	Ср	CONCH ₂	Me	CMe ₂
1 ^b	CD,CN	214.76	207.68	86.56	50.86	23.89	58.08
2 ^b	CD ₃ CN	216.18	193.90	86.94	53.31	28.69	51.05
	CDČl,	213.93	194.02	85.41	52.12	28.11	49.78
3 ^{b,c}	CD ₃ CN	216.26, 215.92	198.32, 194.08	86.96	52.35	24.88	58.60
4^{d}	CDČl,	214.36	194.90	85.81	39.10, 58.60	45.25	
5^{d}	CD,CN	216.09	197.46	87.11	$45.25, \overline{63.10}$		
6	CD ₂ Cl,	214.84	195.77	86.13	42.97		
7 ^d	CDCl ₃	214.27	195.63	85.73	<u>30.94,</u> 37.62		

^a Chemical shifts in δ_c . ^{b 13}C NMR resonances for CH₂ and CMe₂ are assigned on the basis of proton coupled spectra. ^c Uncertain ¹³C{¹H} NMR assignment of CONH resonances due to low signal to noise ratio. ^d Underlined resonances are assigned to other CH₂ groups in the complexes.

Table III. Selected Solution^a and Solid^b Infrared Stretching Frequencies for Complexes 1-9^c

$\operatorname{complex}$	$\nu_{\rm NH},{\rm cm}^{-1}$	$\nu_{C\equiv O}, cm^{-1}$	$\nu_{C=0}, cm^{-1}$	$\nu_{\rm OH},{\rm cm}^{-1}$
1 ^{<i>d</i>}		2030 (s), 1973 (vs)		
	[3461 (m) (CONH), 3266 (w, br) (NH ₃ ⁺)]	[2028 (s), 1976 (vs)]	[1513 (m)]	
2	3458 (w), 3335 (w, br) (CONH + NH ₂)	2020 (s), 1961 (vs)	1592 (m, br)	
	[3350 (w, sh), 3290 (m, br) (CONH + NH,)]	[2018 (s), 2007 (s), 1962 (vs), 1930 (w)]	[1567 (m)]	
3	3459 (w), 3340 (w, br)	2019 (s), 1963 (vs)	1602 (m), 1596 (m)	
	[3380 (m), 3305 (w)]	[2018 (s), 2003 (m), 1970 (s), 1948 (vs)]	[1593 (m), 1561 (m)]	
4	3430 (m, br)	2018 (s), 1963 (vs)	1590 (m)	
	[3317 (m)]	[2018 (s), 2008 (s), 1963 (vs)]	[1575(s)]	
5	3460 (m)	2022 (s), 1965 (vs)	1590 (m)	3605 (w)
	[3345 (m)]	[2016 (s), 1956 (vs)]	[1540 (m)]	[3224 (m, br)]
6	3364 (w)	2021 (s), 1963 (vs)	1584 (m, br)	
	[3368 (w), 3320 (w)]	[2023 (s), 1974 (vs), 1956 (s)]	[1566(s)]	
7 ^e , f		2019 (s), 1960 (vs)	1581 (m, br)	
8 ^{<i>g</i>}		2022 (s), 1962 (vs)	1538 (m, br)	
		[2016 (s), 1962 (s), 1955 (s), 1944 (s)]	[1538 (s)]	
9 ^g		2024 (s), 1965 (vs)	1545 (m)	
		[2019 (s), 1949 (vs)]	[1546(s)]	

^a CH₂Cl₂ solutions except for complex 1 (CH₃CN). ^b Nujol mull in brackets. ^c w = weak, m = medium, s = strong, vs = very strong, sh = shoulder, br = broad. ^d $\nu_{\rm NH}$ (CONH and NH₃⁺) and $\nu_{\rm C=0}$ are masked by CH₃CN solvent bands. ^e $\nu_{\rm NH}$ not observed in CH₂Cl₂ solution. ^f Not isolated as a solid. ^g Complexes do not contain N-H bonds, and consequently no $\nu_{\rm NH}$ bands are observed.

Comparing the ¹³C¹H NMR spectra of complexes 1 and 2 in CD₃CN (Table II), it is obvious that all the resonances associated with the carbamoyl ligand are different in the two complexes. The "crossover" of the CMe_2 and CH_2 resonance positions from complex 1 to complex 2 is readily understandable in terms of the loss of deshielding from the $CMe_2NH_3^+$ resonance upon deprotonation of the NH_3^+ group. Whereas the CONH resonance of complex 2 occurs at δ_c 193.90 [δ_c 194.02 in CDCl₃], well within the range delimited by the "normal values" (δ_c 193.0–195.2 in CDCl₃)⁹ for complexes of this type and roughly comparable to those of the other neutral complexes in Table II, the CONH resonance of complex 1 occurs at the considerably lower field of δ_c 207.68. This shift to lower field may be attributed to deshielding of the carbamoyl carbon due to its being more positively charged through intermolecular hydrogen bonding¹⁰ of the carbamoyl oxygen with the protons from an NH_3^+ group on a neighboring molecule.

Further evidence for hydrogen bonding is obtained from IR data (Table III). Solution spectra in the $\nu_{\rm NH}$ (CONH), $\nu_{\rm NH}$ (NH₃⁺), and $\nu_{\rm C=0}$ (CONH) regions could not be ob-

tained for complex 1 (due to insolubility in a suitable solvent); however, a Nujol mull spectrum shows a very low $\nu_{C=0}$ of 1513 cm⁻¹ (cf. 1540-1590 cm⁻¹ for other Nujol mull $\nu_{C=0}$ values in Table III) that clearly attests to the strength of the -N-H···O=C- hydrogen-bonding interaction. The high $\nu_{\rm NH}$ (CONH) of 3461 cm⁻¹ in the solid phase (cf. 3300-3380 cm⁻¹ for other $\nu_{\rm NH}$ (CONH) values in the solid phase in Table III) suggests that it has little or no participation in hydrogen bonding. The relatively modest increase in $\nu_{C=0}$ on changing from the solid state to solution in complex 2 is consistent with weak hydrogen bonding.¹¹

The compound $CpFe(CO)_2(CONHCH_2CMe_2NH_2)$ (2) is readily deprotonated (eq 3) by a fivefold excess of K_2CO_3 $CpFe(CO)_2(CONHCH_2CMe_2NH_2) + CpFe(CO)_3^+ +$

$$K_{2}CO_{3} \rightarrow (\mu\text{-CONHCH}_{2}CMe_{2}NHCO)[CpFe(CO)_{2}]_{2} + 3$$

$$KHCO_{3} + K^{+} (3)$$

in the presence of 1 equiv of $[CpFe(CO)_3]PF_6$ in CH₃CN to give a 66% yield of the first reported dinuclear dicarbamoyl-bridged complex (μ -CONHCH₂CMe₂NHC-O)[CpFe(CO)₂]₂ (3). The other organometallic product formed in this reaction is $[CpFe(CO)_2]_2$ that is produced

⁽⁷⁾ Abraham, R. J.; Loftus, P. "Proton and Carbon-13 NMR Spectroscopy—An Integrated Approach"; Hayden and Son Ltd: London, England, 1978.

⁽⁸⁾ Patai, S., Ed. "The Chemistry of Functional Groups—The Chemistry of the Amino Group"; Interscience: London, England, 1968.

 ⁽⁹⁾ Angelici, R. J.; Formanek, T. Inorg. Chim. Acta 1983, 76, L9.
 (10) Breitmaier, E.; Voelter, W. Monogr. Mod. Chem. 1978, 5.

⁽¹¹⁾ Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. "Spectrometric Identification of Organic Compounds"; Wiley: New York, 1981.

through a competitive reduction of $[CpFe(CO)_3]PF_6$ by K_2CO_3 .

Complex 3 has been fully characterized by elemental analysis, mass spectrometry $[m/e 468 (M^+ - CO), 440 (M^+)]$ -2CO, 412 (M⁺ -3CO), and 384 (M⁺ -4CO)] and NMR and IR spectroscopies. An ¹H NMR spectrum in CD₃CN shows positional characteristics very similar to complexes 1 and 2; however, now two NH and Cp ring resonances are observed (Table I). A ¹³C{¹H} NMR spectrum in the same solvent shows only one Cp ring resonance but two CO resonances at δ_c 216.26 and 215.92. Low signal to noise ratio, due to insolubility, makes an assignment of the CONH resonances difficult. The remaining CH_2 , CMe_2 , and Me resonances are at positions that are close to those of complexes 1 and 2 (Table II). Infrared spectra in solution and in the solid state show two $\nu_{C=0}$ bands (Table III). The moderate increase in $v_{\rm NH}$ and $v_{\rm C=0}$ on changing from the solid state to solution is, as in complex 2, compatible with the presence of weak intermolecular hydrogen bonding.11

Synthesis and Characterization of $CpFe(CO)_2$ -(CONH(CH₂)₂NMe₂) (4) and $CpFe(CO)_2$ (CONH-(CH₂)₂OH) (5). Reacting a diethyl ether suspension of [CpFe(CO)₃]PF₆ with an excess of the unsymmetrical primary/tertiary diamine H₂N(CH₂)₂NMe₂ produces the bright yellow neutral complexes CpFe(CO)₂(CONH-(CH₂)₂NMe₂) (4) in 86% yield (eq 4). This sharp-melting

$$CpFe(CO)_{3}^{+} + 2H_{2}N(CH_{2})_{2}E \rightarrow CpFe(CO)_{2}(CONH(CH_{2})_{2}E) + H_{3}^{+}N(CH_{2})_{2}E \quad (4)$$
$$E = NMe_{2} \quad (4) \text{ or } OH \quad (5)$$

complex displays mass spectral evidence in agreement with its formulation, i.e., m/e 264 (M⁺ – CO), 236 (M⁺ – 2CO), and 208 (M⁺ – 3CO). Unambiguous assignments of ¹H NMR resonances of complex 4 in CDCl₃ are shown in Table I. A ¹³C{¹H} NMR spectrum of this compound in the same solvent shows CO and CONH resonances at the normal values⁹ of δ_c 214.36 and 194.40, respectively; the Me and CH₂ resonances are also at normal positions. Infrared data (Table III) are again indicative of weak intermolecular hydrogen bonding¹¹ since both $\nu_{\rm NH}$ and $\nu_{\rm C==0}$ are subject to a moderate increase in frequency upon changing from the solid phase to solution.

The formation of the neutral complex 4 rather than a cationic complex of type 1 may be due to the strict constraints imposed by the two methyl groups on nitrogen that prevent the formation of a hydrogen bond stabilized ammonium complex. The instability of the ammonium complex [CpFe(CO)₂(CONH(CH₂)₂NHMe₂)]SO₃CF₃ (δ 5.03 (Cp ring) and 2.81 (Me) in CD₃CN; cf. complex 4 δ 4.97 (Cp ring) and 2.16 (Me) in the same solvent), generated in situ in an NMR tube by addition of an equimolar amount of HSO₃CF₃ to a CD₃CN solution of complex 4, is shown by its rapid decomposition to give [CpFe(CO)₂]₂ and unknown organic products.

The reaction of an excess of 2-aminoethanol with an acetonitrile solution of $[CpFe(CO)_3]PF_6$ generates a deep yellow solution from which yellow crystals of CpFe- $(CO)_2(CONH(CH_2)_2OH)$ (5) are isolated in 63% yield. Although 2-aminoethanol has the potential to form a complex with a carbamoyl, an alkoxycarbonyl, or both groups, even a cursory evaluation of the NMR and IR data, presented in Tables I–III, leaves no doubt that under these reaction conditions only the carbamoyl complex 5 is formed. The increases in $\nu_{\rm NH}$, $\nu_{\rm C=0}$, and particularly $\nu_{\rm OH}$ on changing from the solid phase to solution (Table III) again imply intermolecular hydrogen bonding.¹¹

Synthesis and Characterization of (µ-CONR-

 $(CH_2)_x NRCO)[CpFe(CO)_2]_2$ (R = H, x = 2 (6); R = H, x = 3 (7); R = Me, x = 2 (8)) and (μ -CON- $(CH_2CH_2)_2NCO)[CpFe(CO)_2]_2$ (9). Stirring a diethyl ether suspension of $[CpFe(CO)_3]PF_6$ with an excess of the symmetric primary diamines $H_2N(CH_2)_2NH_2$ or $H_2N(C-H_2)_3NH_2$ leads to the exclusive formation of the dinuclear dicar bamoyl-bridged complexes (μ -CONH- $(CH_2)_xNHCO)[CpFe(CO)_2]_2$ (x = 2, 6, and x = 3, 7, respectively) (eq 5). Similarly, the treatment of an CH₃CN

 $2CpFe(CO)_{3}^{+} + 3HRN(CH_{2})_{x}NHR \rightarrow (\mu-CONR(CH_{2})_{x}NRCO)[CpFe(CO)_{2}]_{2} + 2H_{2}RN^{+}(CH_{2})_{x}NHR (5)$

R = H, x = 2 (6); R = H, x = 3 (7); R = Me, x = 2 (8)

solution of $[CpFe(CO)_3]PF_6$ with an excess of the symmetric secondary diamine MeHN(CH₂)₂NHMe or the cyclic symmetric diamine piperazine HN(CH₂CH₂)₂NH leads to the immediate precipitation of the highly insoluble dinuclear dicarbamoyl-bridged complexes (μ -CONMe-(CH₂)₂NMeCO)[CpFe(CO)₂]₂ (8) and (μ -CON-(CH₂CH₂)₂NCO)[CpFe(CO)₂]₂ (9), respectively.

Although complex 7 has not been isolated as a solid, its solution characteristics (Tables I–III) clearly demonstrate its dinuclear nature. Complexes 6, 8, and 9 are yellow nonconducting compounds that have been characterized by elemental analysis and mass spectrometry as well as NMR and IR spectroscopies. These three complexes exhibit ¹H NMR spectra (Table I) that are entirely compatible with the above formulations. Complex 6 displays a ¹³C{¹H} NMR spectrum (Table II) that is again fully consistent with a symmetric dinuclear structure. Both complexes 8 and 9 are too insoluble to obtain ¹³C{¹H} NMR spectra.

A solid-state IR spectrum of complex 6 shows two $\nu_{\rm NH}$ bonds at 3320 and 3368 cm⁻¹ and a $\nu_{\rm C=0}$ bond at 1566 cm⁻¹ that become single bands at 3464 and 1584 cm⁻¹, respectively, in CH₂Cl₂ solution (Table III). These observations are interpreted in terms of weak intermolecular hydrogen bonding in the solid,¹¹ an interpretation which is established by an X-ray structure determination (vide infra) which shows that in the solid-state complex 6 exists as an extended sheet composed of molecules that are connected by two different types of intermolecular hydrogen bonding. The $\nu_{\rm C=0}$ stretching frequencies of tertiary carbamoyl compounds such as 8 and 9 are both expected, and observed, to be independent of the physical state since hydrogen bonding is no longer possible.

The formation of the dinuclear complexes 6-9 presumably occurs in an analogous manner to that of dinuclear species 3, i.e., coupling of $[CpFe(CO)_3]PF_6$ and a neutral complex of the general type $CpFe(CO)_2$ -(CONRCR'2CR"2NHR) in the presence of base. Since each of these reactions is carried out in the presence of excess diamine, the requirement of the presence of base is always fulfilled. Thus, the formation of a protonated species like complex 1 vs. the formation of dinuclear complexes such as 3 and 6-9 represents a competition between the reactions of the NHR group of CpFe(CO)₂-(CONRCR'₂CR"₂NHR) with H⁺ or [CpFe(CO)₃]PF₆. An appraisal of the basicity of the various coordinated diamines is virtually impossible, since as has been previously noted^{8,12} amine base strength is generally more dependent upon solvation phenomena than steric or electronic factors. Thus, little of value can be definitively stated concerning the individual influences that promote or retard the re-

⁽¹²⁾ Hancock, R. D.; Nakani, B. S.; Marsicano, F. Inorg. Chem. 1983, 22, 2531.

Table IV. Crystallographi (µ-CONH(CH ₂) ₂ NHCO)[C	c Parameters for pFe(CO) ₂] ₂ (6)
space group	$P\overline{1}$
cell parameters	
a, Å	9.504 (7)
b, A	8.435 (5)
c, Å	12.989 (9)
α , deg	101.20 (5)
β , deg	104.80 (5)
γ , deg	100.49 (5)
cell vol., Å ³	957 (1)
density	
$exptl,^{a}g/cm^{3}$	1.64
calcd $(Z = 2)$, g/cm ³	1.62
linear abs coeff μ , cm ⁻¹	15.93

2	Measured	bv	flotation	in	CCL.	/CH.I.
---	----------	----	-----------	----	------	--------

Mo K α radiatn wavelength

λ. Å

Table V. Atomic Coordinates and Isotropic Thermal Parameters for $(\mu$ -CONH(CH₂)₂NHCO)[CpFe(CO)₂]₂ (6)^a

0.71069

atom ^{b,c}	x	У	x	$B,^d$ A^2
FeA	0.5077 (1)	0.2696 (1)	0.3084 (1)	3.5 (1)
FeB	0.8209(1)	-0.2284(2)	0.1299(1)	3.6(1)
C1A	0.5396 (9)	0.2598 (12)	0.1798 (8)	5.1 (3)
C1B	0.6371(11)	-0.2861(10)	0.1410 (6)	3.9 (3)
C2A	0.4160(11)	0.4324(12)	0.3024 (8)	49(3)
C2B	0.7825(11)	-0.0708(14)	0.0688 (8)	54(4)
01 A	0.5597 (8)	0.2541(10)	0.0071(6)	77(3)
01B	0.5197(7)	-0.3246(9)	0.0071(0) 0.1464(5)	64(3)
0^{1}	0.3503 (8)	0.5353 (9)	0.1404 (0)	7 3 (3)
02A	0.0000(0)	0.0000(0)	0.0053 (6)	77(3)
C2A	0.7072(3)	0.0339(10)	0.0203(0)	20(2)
CaB	0.7007 (0)	0.4313(10)	0.0741(0)	0.0(0)
037	0.0000(0)	-0.0020(10)	0.2702(0)	4.0 (0)
020	0.7101(0)	0.0021(1)	0.4094(0)	4.2(2)
NA NA	0.9422(0)	0.0644(7)	0.2000 (4)	4.1(2)
ND	0.0304(7)	0.3700(0)	0.3013 (3)	3.3(4)
	0.0004(7)	-0.1207(0)	0.3022(3)	3.1(4)
C4A C4D	0.9020(0)	0.4820(11)	0.4380(6)	3.3(3)
C11 A	0.9107(0)	-0.0132(11)	0.4737(0)	3.1(2)
CIIA	0.3043(10)	0.1643(12)	0.4435 (8)	4.2(3)
	1.0221(10)	-0.2385(13)	0.0955 (9)	5.2(4)
CI2A	0.5529(10)	0.0518(11)	0.3466 (8)	4.4(3)
	0.9000(13)	-0.3460 (16)	0.0056 (8)	0.1(4)
CIOR	0.4067(10)	0.0122(11)	0.2748(9)	4.7 (3)
	0.8242(11)	-0.4659 (14)	0.0428 (8)	5.5(4)
014A	0.3248(10)	0.1078(12)	0.3262 (9)	5.0(4)
	0.8963(11)	-0.4396 (11)	0.1551 (8)	4.6 (4)
C15A	0.4210(11)	0.2000(12)	0.4318(9)	4.9(4)
	1.0211(10)	-0.3027(12)	0.1864(8)	4.0 (3)
	0.000 (9)	0.271(11)	0.352(7)	3.2(0)
	0.034(9)	-0.224(10)	0.305(7)	3.2(0)
	1.041(9)	0.421(10)	0.406 (6)	3.2(0)
	0.907 (9)	0.106(11)	0.475(7)	3.2(0)
HOD HOD	0.992 (9)	0.085(11)	0.417(6)	3.2(0)
	0.867(9)	~0.081 (10)	0.521(7)	3.2(0)
IIIIA	0.649(10)	0.222(10)	0.503 (7)	3.2(0)
HIIB	1.087(10)	-0.172(11)	0.090 (8)	3.2(0)
HIZA	0.618 (10)	0.004(10)	0.331(7)	3.2(0)
HIZB	0.880 (10)	-0.309 (10)	-0.054 (7)	3.2(0)
HIJA	0.378 (9)	-0.058 (11)	0.200(7)	3.2(0)
HI3B	0.741(10)	-0.545(10)	0.012(7)	3.2(0)
HI4A	0.230 (10)	0.118(10)	0.296(7)	3.2(0)
H14B	0.862(10)	-0.512(11)	0.195(7)	3.2(0)
H15A	0.389 (9)	0.273(10)	0.484(7)	3.2(0)
H15B	1.077 (9)	-0.257(10)	0.254(7)	3.2(0)

^a The numbers in parentheses are the estimated standard deviations in the last significant digits. ^b Atoms are labeled in agreement with Figure 1. ^c A refers to molecule A and B to molecule B. ^d B is the isotropic average of the anisotropic temperature factors.

actions of $CpFe(CO)_2(CONRCR'_2CR''_2NHR)$ with H⁺ or $[CpFe(CO)_3]^+$ and thus the formation of a protonated complex of type 1 or dinuclear complexes of type 3 and 6-9.

Crystal and Molecular Structure of $(\mu$ -CONH- $(CH_2)_2NHCO)[CpFe(CO)_2]_2$ (6). The dinuclear di-

Table VI. Selected Bond Distances (A) and Bond Angles (deg) of $(\mu$ -CONH(CH₂)₂NHCO)[CpFe(CG)₂]₂ (6) and Comparison with N, N'-Ethylenedibenzamide,²¹ $PhC(O)NH(CH_2)_2NHC(O)Ph [C]^{a,b}$

	molecule A	molecule B	[C]		
	(a) Dista	nces			
Fe-C1	1.762 (8)	1.777(7)			
Fe-C2	1.759 (8)	1.723(8)			
Fe-C3	1.990 (6)	1.991 (6)			
Fe-C11	2.110 (8)	2.084(8)			
Fe-C12	2.083 (8)	2.104 (9)			
Fe-C13	2.118(8)	2.110(8)			
Fe-C14	2.098 (8)	2.089 (8)			
Fe-C15	2.107 (8)	2.110 (8)			
C1-O1	1.131(10)	1.128(9)			
C2-O2	1.159(10)	1.165 (11)			
C3-O3	1.239 (7)	1.216(7)	1.235(6)		
C3-N	1.335 (8)	1.358 (8)	1.343 (6)		
N-C4	1.472(8)	1.460 (8)	1.445 (6)		
C4-C'4 ^c	1.516 (9)	1.529 (9)	1.522 (6)		
N-H1	0.897 (68)	0.877 (67)	0.89 (3)		
C4-H2	0.949 (65)	1.025 (68)	1.02(3)		
C4-H3	0.949 (65)	1.055 (66)	0.98 (3)		
(b) Angles					
C1-Fe-C2	94.75 (35)	93,50 (36)			
C1-Fe-C3	87.15 (30)	90.65 (28)			
C2-Fe-C3	91.14 (31)	88.23 (33)			
Fe-C1-O1	180.00 (69)	178.47 (62)			
Fe-C2-O2	176.23 (69)	178.93 (76)			
M-C3-O3 ^d	121.70 (45)	123.36 (45)	121.5(4)		
M-C3-N ^d	118.71(44)	116.73 (42)	117.7(4)		
N-C3-O3	119.58 (56)	119.88 (54)	120.8 (4)		
C3-N-C4	122.90 (5 1)	122.03 (50)	122.4(4)		
N-C4-C'4 ^c	111.56 (̀51)́	110.98 (̀50)́	112.0 (4)		
	(c) Torsiona	l Angles			
C3-N-C4-C'4 ^c	75.5	-79.4	88.8		
N-C4-C'4-N'	-180	-180	180		
M-C3-N-C4 ^c	-174.1	177.4	179.2		
O3-C3-N-C4	6.1	-2.8	-0.7		
(d) In	ntermolecular Hy	drogen Bondin	g		

 $D-H \cdot \cdot \cdot A^{b}$ $\mathbf{D} \cdot \cdot \cdot \mathbf{A}$ $H \cdot \cdot \cdot A$ D-H angle

 $\frac{\text{NA-H1A} \cdots \text{O3B}^{e}}{\text{NB-H1B} \cdots \text{O3A}^{f}}$ 153 (6) 3.012(7) 2.18(7)0.90(7) 158 (6) 2.894 (7) 2.06 (7) 0.88 (7)

 a The numbers in parentheses are the estimated standard deviations in the last significant digits. b Atoms are labeled in agreement with Figure 1. ^c For molecule A, the symmetry code relating primed and nonprimed atoms is 2-x, 1-y, 1-z; for molecule B, it is 2-x, -y, 1-z. ^d M is iron in molecules A and B and carbon in [C]. ^e Symmetry code: x, y, z. ^f Symmetry code x, -1 + y, z.

carbamoyl-bridged complex 6 crystallizes in centrosymmetric space group $P\overline{1}$. The unit cell comprises two crystallographically centrosymmetric independent molecules (Tables IV-VI). The dimensions and conformations of the two independent half-molecules do not differ significantly from each other, and, in the discussion that follows, appropriate mean values are quoted.

Bond Distances and Angles. (a) Around the Fe Atoms. Figure 1 shows that each Fe atom is coordinated to a planar Cp ring, two CO ligands, and a planar carbamoyl moiety. Like other carbamoyl complexes of this type, e.g., $CpRu(CO)_2(CONH_2)^{13}$ and CpMn(CO)(NO)- $(CONH_2)$,¹⁴ the bond angles between the monodentate ligands at the metal atom are close to the octahedral value of 90° (Table VI).

The mean Fe-C(Cp ring) distance of ca. 2.10 Å (Fe-C-

⁽¹³⁾ Wagner, H.; Jungbauer, A.; Thiele, G.; Behrens, H. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1979, 34B, 1487.
(14) Messer, O.; Landgraf, G.; Behrens, H. J. Organomet. Chem. 1979, 1497.

^{172. 349.}

Figure 1. ORTEP drawing of the coordination about each Fe atom in $(\mu$ -CONH(CH₂)₂NHCO)[CpFe(CO)₂]₂ (6). The thermal ellipsoid boundaries are at the 30% probability level except for those of the H atoms that are represented by spheres of a fixed arbitrary radius.

(Cp ring) [center of gravity] = 1.73 Å) and the average C-C ring distance of 1.403 Å are within the limits described by $[CpFe(CO)_2]_2^{15}$ (Fe-C(Cp) = ca. 2.11 Å and C-C = ca. 1.37 Å) and Cp₂Fe¹⁶ (Fe-C(Cp) = ca. 2.05 Å and C-C = ca. 1.43 Å). The Cp rings are planar, deviating by less than 0.02 Å from the best plane.

The Fe-C(CO) and C-O distances and the Fe-C-O angles (Table VI) are comparable to those of other dinuclear compounds such as $(\mu - (PhO)_2P(CH_2)_2P(OPh)_2)[CpFe (CO)I_{2,5}^{5}$ (μ -(PhO)₂P(CH₂)₂P(OPh)₂)Me₂Si[η ⁵-C₅H₄Fe- $(CO)I]_{2,5}^{2,5}$ and $(\mu \cdot S_x)[CpFe(CO)_2]_2$ $(x = 3, 4).^{17}$

(b) Around the Dicarbamoyl Bridge Moiety. In common with other carbamoyl complexes such as CpRu- $(CO)_2(CONH_2)$ ¹³ $CpW(CO)_2(NH_2Me)(CONHMe)$ ¹⁸ $CpMn(CO)(NO)(CONH_2)$ ¹⁴ and $Mn(CO)_4(NH_2Me)$ -(CONHMe)¹⁹ as well as organic amides²⁰ and diamides,²¹ the carbamoyl carbon atoms of complex 6 are sp^2 hybridized; i.e., all the bond angles around the carbon atom of the Fe—C(=O)N moiety are nearly 120° (Table VI) and the sum of the angles at carbon is 359.99°.

The C-N and C-O bond distances of complex 6 are the same, i.e., within the 3σ criterion, as those compounds mentioned above. The Fe-C (carbamoyl) distance in complex 6 is considerably longer (ca. 0.24 Å) than the terminal Fe-C(CO) distances. However, the 1.991 (6) Å length of the Fe-C(carbamoyl) distance is in excellent

Figure 2. A perspective view of the unit cell of $(\mu$ -CONH- $(CH_2)_2NHCO)[CpFe(CO)_2]_2$ (6) showing intermolecular hydrogen bonding as broken lines (---).

agreement with other Fe-C(sp² hybridized) bond distances, i.e., 1.99-2.03 Å.²²⁻²⁶ The apparent slight contraction of the metal-carbamoyl bond noted in an early review¹ of carbamoyl chemistry is not clearly manifested in the present complex. The remaining atoms of the bridging unit of the iron dicarbamoyl bridged complex adopt very similar bond angles and distances to those of its organic analogue, N,N'-ethylenedibenzamide, PhC(O)NH- $(CH_2)_2 NHC(O)Ph^{21}$ (Table VI).

Dihedral and Torsion Angles. (a) Dihedral Angles. The plane formed by the Cp ring is tilted at an average angle of 36.9° away from the amide plane. The angle between the Cp ring plane and the normal vector ON of the amide moiety is, on average, 16.8° (the Cp ring plane is closer to the carbamoyl N atom than the O atom). The dihedral angle between the amide plane and that formed by the NHCH₂CH₂NH moiety is, on average, 100.1° which is close to the 91.5° observed for N,N'-ethylenedibenzamide.²¹

(b) Torsion Angles. Palmer and Brisse²¹ have shown through a conformational analysis of N,N'-ethylenedibenzamide that this compound adapts a gauche-transgauche conformation of the central C3-N-C4-C4'-N'-C3' group. Table VI shows that the torsion angles of this central group in both N,N-ethylene dibenzamide and complex 6 are very similar; hence, the latter too adopts a gauche-trans-gauche conformation. Palmer and Brisse²¹ found that the conformation adopted by their molecule to be less energetically favorable than several other conformations. However, they argued that the adoption of the gauche-trans-gauche conformation is probably due to the stabilizing influence of intermolecular hydrogenbonding.

Hydrogen Bonding. Weak intermolecular hydrogen bonding is a common feature in X-ray structure determinations of both carbamoyl complexes^{13,14,19} and organic

⁽¹⁵⁾ Bryan, R. F.; Green, P. T. J. Chem. Soc. A 1970, 3064. Bryan, R. F.; Green, P. T.; Newlands, N. J.; Field, D. S. Ibid. 1970, 3068.

⁽¹⁶⁾ Seiler, P.; Dunitz, J. D. Acta Crystallogr., Sect. B 1979, B35, 1068. (17) El-Hinnawi, M. A.; Aruffo, A. A.; Santarsiero, B. D.; McAlister, R. D.; Schomaker, V. Inorg. Chem. 1983, 22, 1585.

⁽¹⁸⁾ Adams, R. D.; Chodosh, D. F.; Golembeski, N. M. Inorg. Chem 1978, 17, 266.

⁽¹⁹⁾ Chipman, D. M.; Jacobson, R. A. Inorg. Chim. Acta 1967, 1, 393. Breneman, S. L.; Chipman, D. M.; Galles, C. J.; Jacobson, R. A. Inorg. Chim. Acta 1969, 3, 447.

⁽²⁰⁾ Cohen-Addad, P. C.; Grand, A. Acta Crystallogr., Sec. B 1974, B30, 1342.

⁽²¹⁾ Palmer, A.; Brisse, F. Acta Crystallogr., Sect. B 1980, B36, 1447.

⁽²²⁾ Churchill, M. R.; Wormald, J. Inorg. Chem. 1969, 8, 1936.
(23) Dahl, L. F.; Doedens, R. J.; Hubel, W.; Neilsen, J. J. Am. Chem.

Soc. 1966, 88, 446. (24) Boland-Lussier, B. E.; Churchill, M. R.; Hughes, R. P.; Rheingold, A. L. Organometallics 1982, J. 628.
 (25) Reger, D. L.; Belmore, K. A.; Atwood, J. L.; Hunter, W. E. J. Am.

Chem. Soc. 1983, 105, 5711.

⁽²⁶⁾ Reger, D. L.; McElligott, P. J.; Charles, N. G.; Griffith, E. A.; Amma, E. L., Organometallics 1982, 1, 443.

amides²⁰ and diamides.²¹ Unlike the helical chain formed from a two-dimensional hydrogen bond network in CpRu(CO)₂(CONH₂),¹³ the hydrogen-bonding network employed in complex 6 (Figure 2 and Table VI) involves an extended sheet along the *b* axis, formed by each molecule interacting with its two nearest neighbors via two types of donor-acceptor linkages. A similar situation prevails in *N*,*N'*-ethylenedibenzamide; however, in this case each molecule is weakly hydrogen bonded to its four nearest neighbors since "space-saving" stacking of the phenyl rings is possible. The N-H…O angle of 167 (3)° and the N-H and H…O distances of 0.89 (3) and 1.98 (3) Å, respectively, which characterize the hydrogen bonding in *N*,*N'*-ethylenedibenzamide²¹ are the same, within the 3σ criterion, as those of complex 6 (Table VI).

Experimental Section

General Procedures. All synthetic operations were carried out at room temperature under a nitrogen atmosphere using standard Schlenk techniques. Reaction products were then worked up in air. All reagents were obtained commercially and used without further purification. Methylene chloride was dried over CaH₂ and distilled under N₂. Both diethyl ether and tetrahydrofuran were distilled under N₂ in the presence of sodium benzophenone ketyl. Acetonitrile was predried with CaH₂ and twice distilled, first from P₂O₅ and then from CaH₂, under N₂. Benzene, *n*-hexane, and *n*-pentane were reagent grade and were not further purified.

Infrared spectra were recorded on a Perkin-Elmer Model 281 spectrophotometer. The ν_{CO} frequencies were calibrated against the 1601 cm⁻¹ band of polystyrene. ¹H NMR spectra were obtained on Varian EM360, JEOL FX-90Q and Nicolet NT-300 spectrometers at 60, 89.6, and 300 MHz, respectively, using deuterated solvents as internal locks. Proton-decoupled ¹³C NMR spectra were recorded at 22.5 and 75 MHz, respectively, on JEOL FX-90Q and Nicolet NT-300 spectrometers using an internal deuterium lock. To reduce ¹³C NMR data collection times Cr- $(acac)_3$ was added to the solutions. All NMR spectra were referenced to internal Me₄Si. Electron ionization mass spectra (EIMS) were obtained on a Finnigan 4000 spectrometer. Elemental microanalyses were performed by Galbraith Laboratories Inc., Knoxville, TN. Melting or decomposition points (uncorrected) were determined in air using a Thomas hot-stage microscope. Prepared from [CpFe(CO)₂]₂ as previously described⁴ was $[CpFe(CO)_3]PF_6$. All diamines and 2-aminoethanol were purchased from Aldrich Chemical Co. and used as received.

[CpFe(CO)₂(CONHCH₂CMe₂NH₃)]PF₆ (1). A suspension of [CpFe(CO)₃]PF₆ (0.50 g, 1.4 mmol) in N₂-saturated diethyl ether (50 mL) was stirred vigorously for 1 h with an excess of 1,2-diamino-2-methylpropane (0.35 mL, 3.4 mmol). The yellow powder formed was filtered, washed with diethyl ether, and recrystallized by dissolving in CH₃CN and precipitating with Et₂O at 0 °C as large yellow crystals (0.58 g, 93%): mp 90–92 °C dec; Λ (1 × 10⁻³ M) = 150 Ω^{-1} cm² mol⁻¹ in acetone; EIMS, *m/e* 293 (M⁺), 205 (CpFe(CO)₃⁺). Anal. Calcd for C₁₂H₁₇F₆FeN₂O₃P: C, 32.90; H, 3.91; N, 6.39. Found: C, 33.02; H, 4.03; N, 6.42.

CpFe(CO)₂(**CONHCH**₂**CMe**₂**NH**₂) (2). The complex [CpFe(CO)₂(CONHCH₂CMe₂NH₃)]PF₆ (1) (0.20 g, 0.5 mmol) was added to a stirred suspension of an excess of K₂CO₃ (0.10 g, 7.3 mmol) in N₂-saturated CH₃CN (20 mL). The yellow solution was allowed to stir for a further 10 min and filtered through Celite and the solvent evaporated to dryness. The yellow residue was then recrystallized by dissolving in Et₂O and precipitating with *n*-hexane at -20 °C as large yellow crystals (0.11 g, 83%): mp 47-48 °C; EIMS, m/e 264 (M⁺ - CO), 236 (M⁺ - 2CO), 208 (M⁺ - 3CO). Anal. Calcd for C₁₂H₁₆FeN₂O₃: C, 49.34; H, 5.52; N, 9.59. Found: C, 48.08; H, 5.84; N, 9.29.

(μ -CONHCH₂CMe₂NHCO)[CpFe(CO)₂]₂ (3). An N₂-saturated solution of [CpFe(CO)₃]PF₆ (0.24 g, 0.7 mmol) in CH₃CN (10 mL) was added to a stirred N₂-saturated solution of CpFe-(CO)₂(CONHCH₂CMe₂NH₂) (2) (0.20 g, 0.7 mmol) in CH₃CN (20 mL) containing an excess of K₂CO₃ (0.47 g, 3.4 mmol). The two yellow solutions gave rise to a red/orange solution owing to the formation of [CpFe(CO)₂]₂ as a side product (due to the com-

petitive reduction of $[CpFe(CO)_3]PF_6$ by K_2CO_3). The red/orange solution was allowed to stir for 5 min and filtered through Celite and the solvent removed under reduced pressure. The red and yellow residue was treated with diethyl ether that preferentially extracted the red component $[CpFe(CO)_2]_2$, leaving compound 3 as a bright yellow powder. This powder was dissolved in CH_2Cl_2 and filtered through Celite again in order to remove any residual inorganic salts. The bright yellow filtrate was evaporated to dryness, and the residue was recrystallized as yellow needles by dissolving in hot CH_3CN , adding Et_2O , and allowing the solution to cool to room temperature (0.23 g, 66%): mp 100 °C darkens dec; EIMS, m/e 468 (M⁺ - CO), 440 (M⁺ - 2CO), 412 (M⁺ - 3CO), 384 (M⁺ - 4CO). Anal. Calcd for $C_{20}H_{20}Fe_2N_2O_6$: C, 48.42; H, 4.06; N, 5.65. Found: C, 48.77; N, 4.12; H, 5.66.

CpFe(CO)₂(**CONH(CH**₂)₂**NMe**₂) (4). A suspension of [CpFe(CO)₃]PF₆ (0.50 g, 1.4 mmol) in N₂-saturated diethyl ether (50 mL) was treated with an excess of *N*,*N*-dimethyl-1,2-diaminoethane (0.60 mL, 5.5 mmol) and allowed to stir for 1 h. This led to the formation of a bright yellow solution and a white solid (Me₂HN(CH₂)₂NH₂⁺PF₆⁻). The solid was removed upon filtration through Celite, and the filtrate was reduced in volume to 10 mL under reduced pressure at which point precipitation of a yellow solid occurred. The solid was filtered, dried, and recrystallized by dissolving in Et₂O and precipitating with *n*-pentane at -20 °C as large yellow crystals (0.36 g, 86%): mp 74-75 °C; EIMS, *m/e* 264 (M⁺ - CO), 236 (M⁺ - 2CO), 208 (M⁺ - 3CO). Anal. Calcd for C₁₂H₁₆FeN₂O₃: C, 49.34; H, 5.52; N, 9.59. Found: C, 49.29; H, 5.78; N, 9.68.

CpFe(CO)₂(**CONH(CH**₂)₂**OH**) (5). An N₂-saturated CH₃CN solution (20 mL) containing 2-aminoethanol (0.40 mL, 6.6 mmol) was treated with [CpFe(CO)₃]PF₆ (0.50 g, 1.4 mmol) and stirred for 30 min. The yellow solution formed was reduced to dryness. The residue was dissolved in CH₂Cl₂ to give a yellow solution that was filtered through Celite and then reduced in volume to near dryness to give a yellow powder that was washed with diethyl ether. This product was recrystallized from CH₃CN-diethyl ether at -20 °C as large bright yellow crystals (0.24 g, 63%): mp 81-83 °C; EIMS, m/e 237 (M⁺ - CO), 209 (M⁺ - 2CO), 181 (M⁺ - 3CO). Anal. Calcd for C₁₀H₁₁FeNO₄: C, 45.32; H, 4.18; N, 5.29. Found: C, 45.06; H, 4.27; N, 5.23.

(μ -CONH(CH₂)₂NHCO)[CpFe(CO)₂]₂ (6). A suspension of [CpFe(CO)₃]PF₆ (0.50 g, 1.4 mmol) in N₂-saturated diethyl ether (50 mL) was treated with an excess of 1,2-diaminoethane (0.50 mL, 7.5 mmol) and allowed to stir for 5 min. The suspension rapidly formed a yellow solution and an orange oil. The solvent was then removed under reduced pressure, and the residue was treated with CH₂Cl₂ (25 mL) and vigorously stirred. The yellow solution formed was filtered through Celite to remove a white precipitate (H₃N(CH₂)₂NH₂+PF₆⁻). Evaporation of the solvent under reduced pressure resulted in a yellow powder that was recrystallized by dissolving in hot CH₃CN, adding Et₂O, and allowing the solution to cool to room temperature to give yellow needle crystals (0.22 g, 66%): mp 106–108 °C dec; EIMS, m/e 440 (M⁺ - CO), 412 (M⁺ - 2CO), 384 (M⁺ - 3CO), 356 (M⁺ - 4CO), 328 (M⁺ - 6CO). Anal. Calcd for C₁₈H₁₆Fe₂N₂O₆: C, 46.19; H, 3.45; N, 5.99. Found: C, 46.39; H, 3.67; N, 5.95.

 $(\mu$ -CONH(CH₂)₃NHCO)[CpFe(CO)₂]₂ (7). Repetition of the procedure used for the preparation of 6, but substituting 1,3-diaminopropane for 1,2-diaminoethane, ultimately gave a yellow oil that was spectroscopically characterized in solution (Tables I-III).

(μ -CONMe(CH₂)₂NMeCO)[CpFe(CO)₂]₂ (8). The addition of N,N'-dimethyl-1,2-diaminoethane (0.40 mL, 3.8 mmol) to an N₂-saturated solution of [CpFe(CO)₃]PF₆ (0.50 g, 1.4 mmol) in acetonitrile (30 mL) gave an immediate bright yellow precipitate. The highly insoluble yellow solid was filtered, washed with diethyl ether, and recrystallized from hot tetrahydrofuran as microcrystalline yellow needles (0.26 g, 73%): mp 88 °C darkens dec; EIMS, m/e 440 (M⁺ - 2CO), 412 (M⁺ - 3CO). Anal. Calcd for C₂₀H₂₀Fe₂N₂C₆: C, 48.42; H, 4.06; N, 5.65. Found: C, 47.44; H, 3.94; N, 5.49.

 $(\mu$ -CON(CH₂CH₂)₂NCO)[CpFe(CO)₂]₂ (9). Repeating the procedure in the previous synthesis, but with the saturated cyclic diamine piperazine instead of N,N-dimethyl-1,2-diaminoethane, gave microcrystalline yellow needles upon recrystallization from hot tetrahydrofuran (0.24 g, 68%): mp 110 °C darkens dec; EIMS,

m/e 438 (M⁺ – 2CO). Anal. Calcd for C₂₀H₁₈Fe₂N₂O₆: C, 48.62; H, 3.67; N, 5.67. Found: C, 48.68; H, 3.73; N, 5.77.

Summary Crystallographic for (µ-CONH- $(CH_2)_2NHCO)[CpFe(CO)_2]_2$ (6). A yellow needle crystal with approximate dimensions of $0.05 \times 0.2 \times 0.4$ mm (see Table IV for other pertinent crystal parameters) was mounted on a glass fiber and subsequently placed on a goniometer head. Fifteen reflections (20° < 2θ < 35°) were centered on a Syntex P2₁ automated diffractometer and indexed by an indexing program (BLIND).27

With use of an ω step-scan technique, 2796 independent reflections were collected within a 2θ sphere of 45° and corrected for both Lorentz-polarization and absorption effects (0.846 \leq transmission ≤ 0.999) (an empirical absorption correction was made by using the method described by Karcher²⁸); 1485 reflections with $I \geq 3\sigma(I)$ were retained for use in subsequent calculations. The estimated variance in each intensity was calculated by $\sigma(I)^2 = C_T + C_B + (0.03C_T)^2 + (0.03C_B)^2 + (0.03I)^2$ where C_T and C_B represent the total and background counts, respectively, and the factor 0.03 is an estimate of nonstatistical errors.

The positions of the iron atoms were obtained from an analysis of a sharpened Patterson map. All the remaining atoms including all the hydrogen atoms were found from successive structure factor and electron density map calculations. The positional and anisotropic thermal parameters for the non-hydrogen atoms were refined by a combination of block-matrix/full-matrix least-squares calculations.²⁹ The positional parameters for the hydrogen atoms were refined with fixed isotropic temperature factors (B = 3.2)Å²). The final conventional residual index $(R = \sum ||F_0| -$ $k|F_{\rm c}||/\sum |F_{\rm o}|$) was 0.043 with a corresponding weighted index ($R_{\rm w}$ = $\left[\sum_{w} w (|F_o| - |F_c|)^2 / \sum_{w} w F_o^2\right]^{1/2}$ of 0.047, and the function minimized in the least-squares refinement was $\sum w(|F_o| - |F_c|)^2$, where w is $1/\sigma(F)^2$. The atomic scattering factors were those from the ref³⁰, modified for the real and imaginary parts of anomalous dispersion. The final atomic parameters are listed in Table V.

Acknowledgment. This material is based upon work supported by the National Science Foundation under Grant CHE-8100419 (R.J.A.). X-ray diffraction studies were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division, under Contract W-7405-ENG-82.

Registry No. 1, 91178-28-8; 2, 91178-27-7; 3, 91178-29-9; 4, 91178-30-2; 5, 91178-31-3; 6, 91190-33-9; 7, 91178-32-4; 8, 91178-33-5; 9, 91178-34-6; [CpFe(CO)₂(CONH(CH₂)₂NHMe₂)]-SO₃CF₃, 91178-35-7; [CpFe(CO)₃]PF₆, 38834-26-3; H2NCH2CMe2NH2, 811-93-8; H2N(CH2)2NMe2, 108-00-9; H2N-(CH₂)₂OH, 141-43-5; H₂N(CH₂)₂NH₂, 107-15-3; H₂N(CH₂)₃NH₂, 109-76-2; MeHN(CH₂)₂NHMe, 110-70-3; HN(CH₂CH₂)₂NH, 110-85-0.

Supplementary Material Available: Tables of anisotropic temperature factors for non-hydrogen atoms (Tables I), complete bond distances (Table S2), complete bond angles (Table S3), and observed and calculated structure factors (8 pages). Ordering information is given on any current masthead page.

⁽²⁷⁾ Jacobson, R. A. J. Appl. Cryst. 1976, 9, 115.
(28) Karcher, B. A. Ph.D. Dissertation, Iowa State University, 1981.
(29) Lapp, R. L.; Jacobson, R. A. "ALLS, A Generalized Crystallo-mathematical and the state of the state graphic Least-Squares Program", USDOE Report; Iowa State University: Ames. IA, 1979.

⁽³⁰⁾ Cromer, D. T.; Weber, J. T. "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A, pp 71–79. Templeton, D. H. "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1962; Vol. III, (31) Johnson, C. K. ORTEP, Report ORNL-3794; Oak Ridge National

Laboratory: Oak Ridge: TN, 1965.