formed directly from 4 and 2 whereas the PMe₃ analogue to 5 was prepared by Stone et al. in a two-step process by reacting 4 with a source of $Pt(PMe_3)_2^0$ followed by protonation of the isolated μ -alkylidyne cluster with HBF₄. Et₂O.⁸

The results of eq 1 and 2 indicate that 2 (and possibly related complexes) might be generally useful reagents for preparing clusters from compounds containing unsaturated bonds at appropriate locations by either *formal* insertion or proton transfer reactions. These reactions complement the recent extensive cluster chemistry of Stone¹⁰ with the important difference that in this method the "addition" of the Pt-H bond to the reactant complex changes the identity of the eventual bridging ligand. A study of the reactions of 2 (and related species) with other alkylidyne complexes and other compounds containing unsaturated bonds is being pursued.

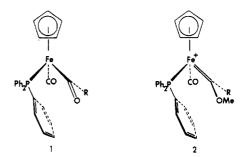
Acknowledgment. C.M.L. thanks the National Science Foundation (Grant No. CHE-8106140), the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the University Research Council of Vanderbilt University for support of this research.

Registry No. 2, 84623-75-6; 4, 60260-15-3; 5, 92145-08-9; Pt, 7440-06-4; W, 7440-33-7.

(10) (a) Stone, F. G. A. Angew. Chem., Int. Ed. Engl. 1984, 23, 89-99. (b) Stone, F. G. A. In "Organometallic Compounds"; Shapiro, B. L., Ed.; Texas A&M University Press: College Station, TX, 1983; pp 1–28. (c) Stone, F. G. A. In "Inorganic Chemistry: Toward the 21st Century"; Chisholm, M. H., Ed.; American Chemical Society: Washington, D.C., 1983; Acs Symp. Ser. No. 211, pp 383-397.

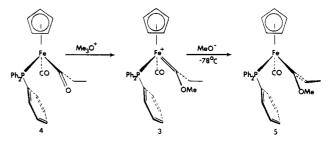
Stereoselective Additions to the Alkoxycarbene Cations $[(\eta^5-C_5H_5)Fe(CO)(PPh_3)(=CROMe)]^+$ $(\mathbf{R} = \mathbf{H}, \mathbf{Et})$

Gordon J. Baird, Stephen G. Davies,* and **Timothy R. Maberly**


The Dyson Perrins Laboratory Oxford, 0X1 3QY, England

Received June 26, 1984

Summary: Nucleophilic addition reactions to the cations $[(\eta^5-C_5H_5)Fe(CO)(PPh_3)(=CROMe)]^+$ (R = H, Et) are highly stereoselective. The product diastereoisomers $[(\eta^5-C_5H_5)Fe(CO)(PPh_3)(CHEtOMe)]$ undergo epimerization in methanol prior to formation of (E)-[$(\eta^5$ -C₅H₅)Fe(CO)-(PPh₃)(CH=CHMe)].


We have recently presented a series of guidelines concerning the reactivity of ligands bound to the $(\eta^5-C_5H_5)$ - $Fe(CO)(PPh_3)$ moiety.¹ In particular, it was predicted, by analogy with the acyl complexes 1, that the alkoxycarbene cations 2 should exist in the anti (O-O) conformation and that high stereoselectivities should be seen in their reactions with nucleophiles.

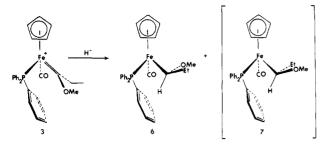
Several reports of the hydride reductions of cations 2 have appeared with little stereoselectivity apparently being observed.^{2,3} More surprising was the reported observation that borohydride in the presence of methoxide smoothly

reduced 3 without deprotonation to the corresponding methoxyvinyl complexes³ especially since we have recently found that this deprotonation is extremely facile.⁴ We report here a reexamination of the reduction of complex 3 together with a more extensive description of its reactivity and reduction products.

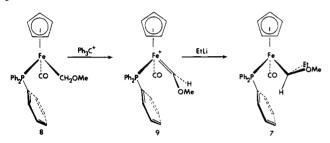
Treatment of the acyl complex 4 with trimethyloxonium tetrafluoroborate generated cation 3.5 An X-ray crystallographic analysis of 3^6 showed that as expected¹ the oxygens were anti and one face of the alkoxycarbene ligand was shielded by the proximate phenyl group of the triphenylphosphine ligand. Treatment of 3 with sodium methoxide quantitatively generated the methoxyvinyl complex 5 (E:Z = 1:100).

In our hands reduction of cation 3 with a variety of hydride reagents (e.g., LiAlH₄, NaBH₄) in tetrahydrofuran is very stereoselective with the two diastereoisomers 6 and 7 being produced in the ratio 15:1 (NaBH₄, -100 °C). The ratio of 6:7 dropped to 12:1 when this reduction was performed at -78 °C. The major diastereoisomer is assigned as 6 on the assumption that hydride adds to the unhindered face of the carbene 3 in the anti (O-O) conformation.¹ Diastereoisomer 6 could be isolated pure by crystallization.7 With use of the literature procedure³ of adding a dichloromethane solution of 3 to NaBH₄/NaOMe in methanol, a mixture of the reduced products 6 and 7 together with the deprotonated product 5 was obtained in the ratio 8.5:1:4.5, respectively (lit.³ 6:7 = 3:1). Hindered

Mitchard, L. C.; Swanick, M. G. J. Chem. Soc. A 1971, 794. (6) Jones, R. H.; Prout, K., unpublished results. (7) 300-MH2 ¹H NMR ($C_{6}D_{6}$): 5, 5 7.7-6.95 (15 H, m, aryl H), 5.30 (1 H, dq, $J_{PH} = 5.2$ Hz, $J_{HH} = 6.3$ Hz, vinylic H), 4.36 (5 H, d, $J_{PH} = 0.9$ Hz, $C_{5}H_{5}$), 2.94 (3 H, s, OCH₃), 2.24 (3 H, d, $J_{HH} = 6.4$ Hz, CH₃); 6, 7.6-7.0 (15 H, m, aryl H), 4.40 (5 H, d, $J_{PH} = 1.0$ Hz, $C_{5}H_{5}$), 4.02 (1 H, ddd, J = 10, 3, 1 Hz, FeCH), 3.46 (3 H, s, OCH₃), 2.3 and 2.0 (2 H, m, m, CH₂), 0.91 (3 H, t, J = 7.5 Hz, CH₃); 7, 7.7-7.0 (15 H, m, aryl H), 4.39 (5 H, d, $J_{PH} = 1.0$ Hz, $C_{5}H_{6}$), 3.90 (1 H, ddd, J = 4.6, 8.2, 10 Hz, FeCH), 2.92 (3 H, s, OCH₃), 2.35 and 1.92 (2 H, m, m, CH₂), 1.20 (3 H, t, J = 7.5 Hz, CH₃); 11, 7.6-7.0 (15 H, m, aryl H), 6.90 (1 H, ddq, J = 6.7, 15.2, 1.4 Hz), 5.74 (1 H ddq, J = 2.5, 152, 5.5 Hz), 4.19 (5 H, d, J = 1.0 Hz, C₄H), 2.02 5.74 (1 H, ddq, J = 2.5, 15.2, 5.9 Hz), 4.19 (5 H, d, J = 1.0 Hz, C₅H₅), 2.02 (3 H, ddd, J = 5.9, 1.4, 1.4 Hz, CH₃). 62.90-MHz ¹³C NMR (C_6D_6): 5, δ 222.7 (d, J_{PC} = 33.5 Hz, CO), 177.5 (d, J_{PC} = 24 Hz, Fe-C), 103.57 (-CH), 84.63 (C₅H₅), 55.05 (OCH₃), 17.13 (CH₃); 6, 223.9 (d, J_{PC} = 33.4 (=CH), 84.63 (C₅H₅), 55.05 (OCH₃), 17.13 (CH₃); 6, 223.9 (d, $\sigma_{PC} = 35.4$ Hz, CO), 89.7 (d, $J_{PC} = 16.6$ Hz, Fe–C), 85.6 (C₅H₅), 58.90 (OCH₃), 41.05 (CH₂), 15.64 (CH₃); 7, 222.7 (d, $J_{PC} = 33$ Hz, CO), 89.82 (d, $J_{PC} = 19$ Hz, Fe–C), 85.77 (C₆J₅), 59.34 (OCH₃), 36.47 (CH₂), 14.56 (CH₃); 11, 222.6 (d, $J_{PC} = 31.3$ Hz, CO), 138.3 (d, $J_{PC} = 29.9$ Hz, Fe–C), 137.8 (=C), 84.8 (C₅H₅), 55.4 (CH₃). Anal. Calcd for C₂₈H₂₉FeO₂P (6): C, 69.43; H, 6.04; P, 6.39. Found: C, 69.41; H, 6.06; P, 6.64.


Davies, S. G.; Seeman, J. I. Tetrahedron Lett. 1984, 1845.
 Bodnar, T.; Cutler, A. R. J. Organimet. Chem. 1981, 213, C31.

⁽³⁾ Brookhart, M.; Tucker, J. R.; Husk, G. R. J. Am. Chem. Soc. 1983, 105. 258


⁽⁴⁾ Baird, G. J.; Davies, S. G.; Jones, R. H.; Prout, K.; Warner, P. J. Chem. Soc., Chem. Commun. 1984, 745.

⁽⁵⁾ Reaction carried out by using the procedure of: Green, M. L. H.; Mitchard, L. C.; Swanick, M. G. J. Chem. Soc. A 1971, 794.

reducing agents such as K[s-Bu₃BH] gave only the deprotonated product $5.^7$

Hydride abstraction from the methoxymethyl complex 8 with the trityl cation generated the carbene cation 9.8 Treatment of 9 with ethyllithium in dichloromethane at -78 °C again generated the diastereoisomers 6 and 7. This time, as expected, 7 was by far the major product (7:6 > 30:1) consistent with attack onto the unhindered face of 9 in the anti (O-O) conformation. Recrystallization gave pure 7.⁷

Methanol-dichloromethane (1:2) solutions of 6 or 7 at 20 °C undergo epimerization, presumably via reversible loss of methoxide to give the carbene cation 10. In the presence of methanol- d_4 incorporation of CD₃O into 6 and 7 was observed (CD₂Cl₂/CD₃OD, 2:1; 20 °C; 90% incorporation after 24 h). In methanol solution 6 and 7 slowly undergo methanol loss to generate the stable (*E*)-vinyl complex 11.

Acknowledgment. We thank the SERC for studentships (G.J.B. and T.R.M.).

Registry No. 3, 92219-90-4; **4**, 32611-01-1; (*Z*)-**5**, 91594-50-2; **6**, 83802-10-2; **7**, 83860-17-7; **9**, 69621-15-4; 11, 92219-91-5.

Unprecedented Alkyl Migration in an Iron(II) Alkylidene¹

Robert S. Bly* and Gary S. Sliverman

Department of Chemistry, University of South Carolina Columbia, South Carolina 29208

Received September 5, 1984

Summary: Protonation of $(\eta^5-C_5H_5)(CO)_2FeCR(1-norbornyl)OC_2H_5$ (R = H or D) with HBF₄ provides $[(\eta^5-C_5H_5)(CO)_2Fe(exo-\eta^2-1-R-bicyclo[3.2.1]oct-2-ene)]^+BF_4^-$ (R = H or D) in nearly quantitative yield. No $[(\eta^5-C_5H_5)(CO)_2Fe(\eta^2-bicyclo[2.2.2]oct-2-ene)]^+BF_4^-$ is formed. This regioselective reaction is thought first to form an $[(\eta^5-C_5H_5)(CO)_2Fe(\eta^2-bicyclo(2-2-ene)]^+$, which undergoes an unprecedented ring enlargement to a $[(\eta^5-C_5H_5)(CO)_2Fe(\eta^2-bicyclooct-1-ene)]^+$ and then rearranges to the final product.

In an effort to form and trap an unstable² bridgehead olefin as a π -complex, we have generated and examined the reaction of [Fp(1-norbornylmethylidene)]⁺ [A, Fp = $(\eta^5-C_5H_5)(CO)_2Fe$] in acid solution.

Alkylation³ of the Fp-acyl, 1,⁴ with Et₃O⁺BF₄⁻ in CH₂Cl₂ at 25 °C gives the yellow ethoxycarbene salt 2⁵ in >90% yield. Reduction of 2 in CH₂Cl₂ at -78 °C with a 1 M solution of LiEt₃BH in THF⁶ produces the ethoxyalkyl complex 3⁷ as a yellow oil in 65% yield. Protonation of 3 in CH₂Cl₂ at 25 °C with a slight excess of HBF₄ in Ac₂O/HOAc/CH₂Cl₂,⁸ concentration, and dilution with Et₂O gives an essentially quantitative yield of a yellow, crystalline Fp(η^2 -bicyclooctene)⁺BF₄⁻ identical with that⁹

ciety: Washington, DC, 1984; Abstract INOR 79. (2) Maier, W. F.; Schleyer, P. von R. J. Am. Chem. Soc. 1981, 103, 1891-1900.

(3) Dry, oxygen-free solvents and Schlenk techniques were employed throughout.

(4) I: IR (CH₂Cl₂) 2005, 1955, 1640 cm⁻¹; ¹H NMR (CDCl₃) δ 4.80 (s, 5 H, Cp), 2.21 (b s, 1 H, >CH), 1.49 (m, 10 H, 5 >CH₂); ¹³Cl¹H} NMR (CDCl₃) δ 261.6 (>C= \odot), 215.0 (-C= \odot), 86.1 (Cp), 75.3 (C₁), 41.9 (C₄), 35.8 (C₇), 32.3 (C₂, C₆), 29.6 (C₃, C₅); mp 97–99 °C. Anal. Calcd for C₁₅H₁₆FeO₃: C, 60.03; H, 5.37. Found: C, 59.91; H, 5.41. We thank John Lever for the original preparation of this compound.

(5) 2: IR (CH₂Cl₂) 2057, 2010 cm⁻¹; ¹H NMR (CD₂Cl₂, -10 °C) δ 5.42 (s, 5 H, Cp), 5.30 (q, J = 7.5 Hz, 2 H, OCH₂CH₃), 2.40 (b s, 1 H, >CH), 1.90–1.32 (b m, 13 H, CH₃ + 5 >CH₂); ¹³C[¹H] NMR (CD₂Cl₂, -10 °C) δ 342.9 (C₈), 209.4 (-C=O), 88.2 (Cp), 83.9 (C₉), 78.7 (C₁), 44.7 (C₄), 37.3 (C₇), 35.4 (C₅, C₆), 30.0 (C₃, C₆), 14.7 (C₁₀).

342.9 (Cg), 209.4 (-C=0), 00.2 (Cp), 00.6 (Cg), 10.1 (Cp), 11.1 (Cq), 01.1 (Cq), 35.4 (Cg, Cg), 30.0 (Cg, Cg), 14.7 (Cq). (6) Bodnar, T.; Cutler, A. J. Organomet. Chem. 1981, 213 C31-C36. (7) 3: (a) IR (CH₂Cl₂) 1995, 1937 cm⁻¹; ¹H NMR (CDCl₃, -10 °C) δ 5.10 (s, 1 H, FpCH(OR)C<), 4.80 (s, 5 H, Cp), 3.57 (d of q, $J_{ac} \approx 6.6$ Hz, $J_{ab} \approx 2$ Hz, 1 H, >C*OCH^aH^bCH₃°), 3.26 (d of q, $J_{bc} \approx 6.6$ Hz, $J_{ba} \approx 2$ Hz, 1 H, >C*OCH^aH^bCH₃°), 2.11 (b s, 1 H, >CH), ~1.9-0.9 (b m, ~10 H, 5 >CH₂) superimposed upon a triplet at 1.07, $J_{cb} \approx J_{ca} = 6.6$ Hz, ~ 3 H, (CH₃); ¹³Cl¹H] NMR (CDCl₃, -20 °C)^{7b} δ 218.9, 216.8 (-C=0), 85.9 (Cp), 85.3 (Cg), 65.8 (Cg), 61.6 (C₁), 45.1 (C₇), 36.6, 35.1 (C₂, C₆), 32.2 (C₄), 31.1, 30.4(C₃, C₆), 15.4 (C₁₀); MS m/e 330 [M]⁺, 302 [M - CO]⁺, 274 [M - 2CO]⁺, 153 [M - Fp]⁺. (b) These ¹³C assignments were made by using the refocused "insensitive nucleus enhancement through polarization transfer" (INEPT) technique [Morris, G. A.; Freeman, R. J. Am. Chem. Soc. 1979, 101, 760-762].

(8) (a) Jolly, P. W.; Pettit, R. J. Am. Chem. Soc. 1966, 88, 5044-5045.
(b) Green, M. L. H.; Ishaq, M.; Whiteley, R. N. J. Chem. Soc. A 1967, 1508-1515.

1508-1515. (9) 4: IR (CH₂Cl₂) 2079, 2038 cm⁻¹; ¹H NMR (CD₂Cl₂) δ 5.50 [b s, ~5 H, Cp superimposed on an ~1 H multiplet at ~5.4-5.5 due to Fp⁺(η^2 - =C(3)HCH₂-], 5.30 [s, 1 H, Fp⁺(η^2 -C(2)H=), 2.73 (m, 1 H, >C(1)H), 2.48 (perturbed d, 1 H, =CHC(4)H(endo)HCH<, 2.05-2.25 (m, 3 H, >C(5)H superimposed upon -C(6)HH(exo)C(7)HH(exo)-), ~1.86 (m, 2 H, -C(6)H(endo)HC(7)(endo)H-), 1.45 (m, 1 H, =CHC(4)HH(exo)CH<), 1.39 (br, perturbed doublet, $J \approx$ '16 Hz, 1 H, >C(8)H(anti)H), 0.58 (d, J = 16 Hz, 1 H, >C(8)HH(syn); ¹³C[¹H] N 1 R (CD₂Cl₂, -10 °C)^{7b} δ 211.1, 210.8 (-C=O), 89.1 (Cp), 86.6 (C₂), 76.4 (C₃), 38.8 (C₁), 35.1 (C₂), 33.4 (C₄), 32.5 (C₅), 32.3, 30.5 (C₆, C₇); mp 92.5-93.5 °C dec. Anal. Calcd. for C₁₅H₁₇O₂FeBF₄: C, 48.44; H, 4.61. Found: 48.09, H, 4.66.

0276-7333/84/2303-1765\$01.50/0 © 1984 American Chemical Society

⁽⁸⁾ Cutler, A. R. J. Am. Chem. Soc. 1979, 101, 604.

⁽¹⁾ Presented before the 188th National Meeting of the American Chemical Society, Philadelphia, PA, Aug 1984; American Chemical Society: Washington, DC, 1984; Abstract INOR 79.