Table I. $\{^1H\}$ NMR Parameters of $\{(\text{ACOHg})_n \text{CH}_{2n}[\text{PPh}, (\text{HgOAc})], \}^{2+a}$

δ ⁽³¹ P)	$\mathcal{L}^{(199} \text{Hg}_{\text{P}})$	$\delta(^{199}Hg_C)$			$1J(^{199}Hg, ^{31}P)$ $2J(^{199}Hg, ^{31}P)$ $3J(^{199}Hg, ^{31}P)$	T , K	
34.1	916 d^{b}	$854t^b$	8773	265	30	253	
43.3	889 d ^c	941 t ^c	8648	234	212	273	

Chemical shifts are in parts per million the low field of 85% H_3PO_4 or aqueous $HgClO_4)_2$ (2 mmol of HgO/cm^3 of 60% $HClO₄$; coupling constants are in Hz; solvent, MeOH. determined from a ¹H-coupled ¹⁹⁹Hg NMR spectrum. $^{2}J(^{199}Hg, ^{1}H) = 260, ^{3}J(^{199}Hg, ^{1}H) = 300$; coupling constants **The** t/d intensity ratio **of 2** is nearly (due to different NOE) doubled compared with that of 1.

methylene *carbon* is known only in a few cases. $8-12$ The complexes were generated from the deprotonated ligand and appropriate metal compounds or by deprotonation of the coordinated ligand. We report here further examples of C-substitution in various mercury complexes of dppm.

The reaction of dppm with $Hg(OAc)_2$ and [Hg- $(Me₂SO)₆ (O₃SCF₃)₂¹³$ according to eq 1 in methanol at The reaction of dppm with $Hg(OAc)_2$ and [Hg-
(Me₂SO)₆](O₃SCF₃)₂¹³ according to eq 1 in methanol at
 $Ph_2PCH_2PPh_2 + 2Hg(OAc)_2 + [Hg(Me_2SO)_6](O_3SCF_3)_2$ —

ambient temperature affords the C-metalated product 1 almost quantitatively within a few minutes.14 The compound was isolated and crystallized **as** an Me2S0 solvate.16 The structure is evidenced by 199 Hg and 31 P NMR spectroscopy.¹⁶ The ¹⁹⁹Hg^{{1}H} NMR spectrum (¹⁹⁹Hg, $I = 1/2$, abundance 16.8%) of **1** shows two different mercury sites: one doublet attributable to the mercury bound to phosphorus and a 1:2:1 triplet for the carbon-bound mercury being coupled to two equivalent phosphorus atoms via two bonds. This is confirmed by the ³¹P NMR spectrum. The NMR data are summarized in Table I.

1

The reaction of one further equivalent of $Hg(OAc)$. according to eq 2 leads under the same conditions almost The reaction of one further equivalent of $Hg(OAc)_2$
according to eq 2 leads under the same conditions almost
 $Ph_2PCH_2PPh_2 + 3Hg(OAc)_2 + [Hg(Me_2SO)_6](O_3SCF_3)_2$

quantitatively to the dimercurated product **2,** which was characterized similarly to 1 (Table I).^{14,17} Particulary

(6) AlJibori, S.; Shaw, B. L. J. *Chem. Soc., Chem. Commun.* **1982,286. (7)** Colquhoun, **I.** J.; McFarlane, H. C. E.; McFarlane, W. J. *Chem.*

SOC.. Chem. Commun.. **1982. 220.** (8) Camus, A.; Marsich, N.; Nardin, G.; Randaccio, L. *J. Organomet.* Chem. 1973, 60, C39.

(9) van der Velden, J. W. **A;** Bow, J. J.; Vollenbroek, F. **A;** Beurskens, P. T.; Smite, J. M. M. J. *Chem. SOC., Chem. Commun.* **1979,1162.** van der Velden, J. W. A.; Vollenbroek, F. A.; Bow, J. J.; Beurekens, P. T.; Smite, J. **M.** M.; Bosman, W. P. Reel. *Trau. Chim.* **Pays-Bas 1981,100, 148.**

(10) Dawkins, G. M.; Green, M.; Jefferey, J. C.; Stone, F. G. A. J. *Chem. SOC., Chem. Commun.* **1980,1120.**

(11) Issleib, K.; Abicht, H. P. J. Prakt. Chem. 1970, 312, 456.

(12) Isson, R.; Laguna, A.; Laguna, M.; Manzano, B. R.; Jones, P. G.;

Sheldrick, G. M. J. Chem. Soc., Dalton Trans. 1984, 839.

(13) Peringer, P. J. Inorg.

(14) The use of $[Hg(Me_2SO)_6](O_3SCF_3)_2$ alone in the reactions 1 and 2 leads to compounds corresponding to 1 and 2 besides other unidentified products; the use of $Hg(OAc)_2$ alone in the reactions 1 and 2 leads to

products corresponding to 1 and 2 that exhibit an increased kinetic 1-alkynes

lability of the Hg-P bonds and decompose even faster. The rakis (triph

(15) {(AcOHg)CH[PPh₂(HgOAc)₂}(O₃SCF₃)₂·3Me₂SO: mp 127-133

(16) NMR spectra were recorded on a multinuclear Bruker WP-80 spectrometer.

conclusive is the nearly doubled intensity of the ¹⁹⁹Hg satellite pattern due to $^{2}J(^{199}Hg, ^{31}P)$ in the ^{31}P NMR spectrum according to a statistical abundance of 19.37% for the isotopomer **2a** compared with that of **la** (11.56%).

The mercury-199 resonance of the C-bound mercury is at high frequency relative to that of **1** in keeping with the results for the series $\mathrm{CH}_{4-n}(\mathrm{HgX})_{n}.^{18}$

The occurrence of reactions 1 and 2 under mild conditions **is** quite interesting since the replacement of hydrogen by mercury (mercuration) in aliphatic compounds is limited to acidic hydrocarbons, i.e., hydrogens α to electronwithdrawing groups¹⁹ such as cyano, diazo, carbonyl, or phosphoryl²⁰ groups (e.g., eq 3). dppm is not acidic ac- $CH_2[P(O)(OEt)_2]_2 + 2Hg(OAc)_2 \rightarrow$

$$
(\text{AcOHg})_2\text{C}[\text{P}(\text{O})(\text{OEt})_2]_2 + 2\text{HOAc} \quad (3)
$$

cording to a pK_a of 29.9,²¹ and deprotonation only succeeds by using very strong bases. We propose that the methylene group of dppm is activated **as** a result of the coordination of mercury to the diphenylphosphino groups, Le., that [PPh2HgOAc]+ acts **as** an electron-withdrawing group.

Acknowledgment. Thanks are due to the Fonds zur Forderung der Wissenschaft, Vienna, for making available the NMR spectrometer.

(17) 2 could not be isolated and readily decomposes in solution with formation of crystalline (HgOAc)₂ and 1.

(18) Breitinger D. K.; Kress, W.; Sendelsbeck, R.; Ishiwada, K. J.

(20) Seyferth, **D.;** Marmor, R. S. J. *Organomet. Chem.* **1973,59,231. (21)** Bordwell, F. G.; Mattews, W. S.; Vanier, N. R. *J. Am. Chem. SOC.* **1975, 97, 442.**

New Tin Heterocycles: Adducts between Acetylenes or Allenes and "Dlstannacyclopropanes"

H. Kllllng and 1. N. Mitchell"

A bteilung Chemie, Universitat Dortmund 4600 Dortmund 50, FRG

Received August 24, 1984

Summary: **1,2,4,5-Tetrastannacyclohexanes** react with 1-alkynes and 1,1-dimethylallene in the presence of tetrakis(triphenylphosphine)palladium(0) to give 4-substituted 1,3-distannacyclopentenes and 4-methylene-1,3-distannacyclopentanes, respectively. These compounds are formally adducts between the acetylene or allene and distannacyclopropanes.

Organomet. Chem. 1983, 243, 245.
(19) Wardell, J. L. "Comprehensive Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds., Pergamon Press: Oxford,
1982. Bloodworth, A. J. "The Chemistry of Mercur Ed.; McMillan: London, **1977.**

Table I. Products, Reaction Conditions, Melting or Boiling Points, and Yields of Distannaheterocycles

compd	R	\mathbf{R}'	$\mathbf{R}^{\prime\prime}$	reactn condtns $(^{\circ}C/h)$	mp, °C, or bp $^{\circ}$ C (mmHg)	isolated yield $(\%$ and g)
1a	Н	Н	CMe, OH	85/15	53	73, 4.95
1b	Н	Me	CMe, OH	85/15	$\leq 110(10^{-3})$	88, 0.94
1 _c	Me	Me	CMe, OH	85/15	$60(10^{-3})$	a
1d	Me	Me	COn Me	60/15	$90(10^{-3})$	71,0.76
1e	н	н	CH, NMe,	85/15	$70(10^{-3})$	90, 0.41
2a	н	н		85/15		
2 _b	н	Me		85/3	≤ 150 (10 ⁻³)	c
2 _c	Me	Me		25/48	$70(10^{-3})$	59.0.64

^{*a*} Not determined: 100% = 0.31 g. *b* Product contaminated with ca. 30% unknown impurity. ^{*c*} Not determined:
100% = 0.36 g. Product mixture contained ca. 40% (¹¹⁹Sn NMR) **2b**. The Sn NMR parameters of the main pro 73.9 Hz $({}^{2}J)$ to Sn^{b,c} and coupling to Sn^a. Distillations were carried out by using a Kugelrohr apparatus.

Table II. Tin-119 NMR Data for Compounds of Type 1 and 2 (Chemical Shifts (in CDCl₃) in ppm vs. Me₄Sn and Coupling Constants in Hz)

$2+3J(119Sn-$ 119Sn)	
260.4 437.4 718.9 500.8 273.3 54.9 183.7 382.5	

 a High-Field signal corresponds to tin trans to R''. b High field signal corresponds to vinylic tin.</sup>

We have recently reported on the addition of hexamethylditin to 1-alkynes¹ and allenes.² Following the initial report by Gielen,³ we have also prepared a series of $1,2,4,5$ -tetrastannacyclohexanes⁴ and determined the crystal structure of one of them, $cis-1,1,2,2,3,4,4,5,5,6$ decamethyl-1,2,4,5-tetrastannacyclohexane.⁵ We felt it would be interesting to study the reaction of these tin heterocycles with acetylenes and allenes, since a double addition across the tin-tin bonds should lead to 10-membered rings containing four tin atoms. Tetrastannamacrocycles have been recently reported in the literature.⁶

We find, however, that five-membered rings are formed rather than the larger rings originally expected (eq 1). The

structural proof for the products $1a-e$ and $2a-c$ is based.

- (1) Mitchell, T. N.; Amamria, A.; Killing, H.; Rutschow, D. J. Organomet. Chem. 1983, 241, C45.

(2) Killing, H.; Mitchell, T. N. Organometallics 1984, 3, 1318.
-
- (3) Meunier-Piret, J.; van Meersche, M.; Gielen, M.; Jurkschat, K. J.
Organomet. Chem. 1983, 252, 289. (4) Fabisch, B. Dissertation, University of Dortmund, 1983; Wicken-
- kamp, R. Diplomarbeit, University of Dortmund, 1984.

(6) Newcomb, M.; Azuma, Y.; Courtney, A. R. Organometallics 1983, 2, 175.

first, on the cryoscopically determined molecular weight of 1a, the only solid, and, second, on NMR spectroscopic evidence: the tin chemical shifts $(-53 \text{ to } -79 \text{ ppm})$ of the tetrastannacyclohexanes are in the usual range for ditins but shifted in each case ca. 30 ppm to the low field of the corresponding hexaalkylditins (e.g., $Me₆Sn₂ - 109$ ppm). The product molecules 1 and 2 absorb in the range 0-75 ppm: the range of 45-75 ppm for la-e is completely atypical for stannylalkenes (shifts of -40 to -70 ppm being typical), while the vinylic tin nucleus of the adducts between hexamethylditin and allenes also absorbs to high field vs. $Me₄Sn²$. Furthermore, the signals exhibit only one tin-tin coupling constant, while the originally expected 10-membered rings (for example, 3 or 4) would contain

isotopomers showing $2J$ and $3J(\text{Sn-Sn})$ and the five-membered rings show a coupling that is (at least approximately) the algebraic sum of a two-bond and a three-bond coupling.⁷ Since the latter is almost certainly positive, while the former can change sign,⁸ the magnitude of the observed coupling can change greatly.

Table II shows the tin-119 NMR data for the compounds so far prepared. $^{2}J(\text{Sn-Sn})$ has the following values: in $Me₃SnCH₂SnMe₃ - 287$, in $Me₃SnCHMeSnMe₃ - 162$, and in Me₃SnCMe₂SnMe₃ + 19 Hz.⁸ In (Z)-Me₃SnCH=C-
(CMe₂OH)SnMe₃ ³J(Sn-Sn) is +446 Hz,⁹ while in $Me₃SnCH₂C(SnMe₃)$ = $CMe₂$ (in which the dihedral angle subtended by the Me₃Sn residues at the C-C single bond is probably ca. 90°) the value is +118 Hz.² The trend in $2J$ shown above for related open-chain compounds and the values of $2+3J$ in the distannaheterocycles indicate that both the carbon-carbon double bond in the distannacyclopentenes and the single bond in the methylenedistannacyclopentanes are twisted considerably from the ideal "eclipsed" structures. We hope to be able to obtain more exact information by means of X-ray crystallography.

The reactions studied so far are in general remarkably clean: however, product 2b was surprisingly formed in only

(9) Killing, H. Diplomarbeit, University of Dortmund, 1983.

⁽⁵⁾ Preut, H.; Bleckmann, P.; Mitchell, T. N.; Fabisch, B. Acta Crystallogr., Sect. C 1984, C40, 370.

⁽⁷⁾ Marshall, J. L.; Faehl, L. G.; Kattner, R. Org. Magn. Reson. 1979, 12, 163.

^{12, 100.} Mitchell, T. N.; Amamria, A.; Fabisch, B.; Kuivila, H. G.; Karol, T. J.; Swami, K. J. Organomet. Chem. 1983, 259, 157.

ca. 40% yield (^{119}Sn NMR), the main product being one in which one allene unit reacts with one tin-tin bond of the six-membered ring to give molecule **5.** This structure

follows from the tin-119 NMR data, which are given in a footnote to Table I: most important is the presence of a one-bond tin-tin coupling, though it is surprising that the two tin nuclei b and c are isochronous.

A typical experimental procedure was as follows: **1,1,2,2,4,4,5,5-octaethyl-1,2,4,5-tetrastannacyclohexane** (5.51 g, 8.9 mmol) and 3-methyl-1-butyn-3-01 (1.64 g, 19.5 mmol) in xylene (10 mL) were heated for 15 h at 85° C in the presence of 0.5 mol % **tetrakis(tripheny1phosphine)** palladium(O), after which time the proton NMR spectrum indicated complete consumption of the tetrastannacyclohexane. The xylene and any low-boiling materials were removed at the water pump, leaving an oil that underwent sublimation to give a colorless solid (4.95 g, 73%), mp 53 "C. In **all** other cases, the reaction products were obtained as oils that were purified by Kugelrohr distillation. The **methylenedistannacyclopentanes** are extremely air sensitive, the distannacyclopentenes much less so.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for supporting this work.

Registry No. la, 93061-62-2; **lb,** 93061-63-3; **IC,** 93061-64-4; 1d, 93061-65-5; 1e, 93061-66-6; 2a, 93061-67-7; 2b, 93061-68-8; 2c, 93061-69-9; 5, 93061-70-2; HOMe₂CC=CH, 115-19-5; MeOCOC=CH, 922-67-8; Me₂NCH₂C=CH, 7223-38-3; CH₂= C==CMe2, 598-25-4; **1,1,2,2,4,4,5,5-octamethyl-1,2,4,5-tetrastan**nacyclohexane, 89748-39-0; **1,1,2,2,3,4,4,5,5,6-decamethyl-1,2,4,5-tetrastannacyclohexane,** 93061-71-3; 1,1,2,2,3,3,4,4,5,5,- **6,6-dodecamethyl-l,2,4,5-tetrastannacyclohexane,** 93061-72-4; **tetrakis(triphenylphosphine)palladium(O),** 14221-01-3.

Supplementary Material Available: Tables of elemental analyses **and** 13C NMR data (4 pages). Ordering information is given on any current masthead page.

Hubert Le Bozec and Pierre H. Dlxneuf

Laboratorie de Chimie de Coordination Organique (ERA CNRS 477), Universit6 de Rennes Campus de Beaulieu 35042 Rennes Cedex, France

Richard D. Adame

Department of Chemistry, Yale University New Haven, Connecticut 065 1 1

Received August 30, 1984

Summary: The new mixed bimetallic carbene complex CI₂HgFe(CS₂C₂(CO₂Me)₂)(CO)₂(PMe₂Ph)₂ (5) has been obtained by addition of $HgCl₂$ to the reactive intermediate Fe(CS₂C₂(CO₂Me)₂)(CO)₂(PMe₂Ph)₂ (2a). The donor-acceptor adduct 5 has been characterized by single-crystal X-ray diffraction methods that establish the position of the HgCI₂ unit trans to the carbene ligand.

a. L=PMezPh:Z=C02R

Eighteen-valence-electron transition-metal complexes, when they are basic enough, are known to form donoracceptor adducts with Lewis acids such as $HgX₂^{1,2}$ or with 16-electron organometallic species.³ Although these donor-acceptor compounds are well documented, to our knowledge they have not been made for the purpose of trapping unstable, 18-electron intermediates. Here we report that the formation of a metal \rightarrow mercury(II) bond *can* be successfully used to stabilize an electron-rich, highly reactive metal-carbene complex.

We have already shown that the (1,3-dithiol-2-ylidene)iron intermediates **2** can be readily obtained by cycloaddition of activated alkynes to the η^2 -CS₂ ligand of complexes **l4** (Scheme I). However, these electron-rich iron(0) complexes are very air-sensitive and decompose to give (dithio1ene)iron derivatives **35** and tetrathiafulvalenes. 5,6 Alternatively, when the phosphorus group L is a basic phosphine $(L = PMe₂Ph, PMe₃)$, they rapidly isomerize into stable metallocyclic iron(I1) complexes **44** (Scheme I). Consequently, we were not able to characterize structurally an iron-carbene complex of type **2.** We now show that the intermediate $2a$ reacts with $HgCl₂$ to give a crystalline adduct and that the formation of the Fe \rightarrow -HgC1, bond, in the position trans to the carbene ligand, prevents the transformation of the adduct into complex **3a** or **4a** and allows the X-ray structure determination of the first carbene iron-mercury(I1) complex.

The yellow solution of 0.43 mmol (0.20 g) of $1a$ (L = PMe,Ph), in **40** mL of anhydrous ether, was stirred with 1 equiv of dimethyl acetylenedicarboxylate at room temperature under an inert atmosphere. After a few minutes, 1 equiv (0.45 mmol, 0.13 g) of $HgCl₂$ was added to the

Scheme **I**

⁽¹⁾ Shriver, D. F. Acc. Chem. Res. 1970, 3, 231.

(2) Burlitch, J. M. "Comprehensive Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 6, Chapter 42, p 983.

⁽⁴⁾ Le Bozec, **H.;** Gorgues, A.; Dixneuf, P. H. Inorg. *Chem.* 1981,20, **24.46.**

⁽⁵⁾ Carty, A. J.; Dixneuf, P. H.; Gorgues, A.; Le Bozec, H.; Taylor, N. J. *Inorg. Chem.* 1981,20, **3929.**

⁽⁶⁾ Le Bozec, **H.;** Dixneuf, P. H. *J. Chem.* **Soc.,** *Chem. Commun.* 1983, **1462.**