ca. 40% yield (^{119}Sn NMR), the main product being one in which one allene unit reacts with one tin-tin bond of the six-membered ring to give molecule **5.** This structure

follows from the tin-119 NMR data, which are given in a footnote to Table I: most important is the presence of a one-bond tin-tin coupling, though it is surprising that the two tin nuclei b and c are isochronous.

A typical experimental procedure was as follows: **1,1,2,2,4,4,5,5-octaethyl-1,2,4,5-tetrastannacyclohexane** (5.51 g, 8.9 mmol) and 3-methyl-1-butyn-3-01 (1.64 g, 19.5 mmol) in xylene (10 mL) were heated for 15 h at 85° C in the presence of 0.5 mol % **tetrakis(tripheny1phosphine)** palladium(O), after which time the proton NMR spectrum indicated complete consumption of the tetrastannacyclohexane. The xylene and any low-boiling materials were removed at the water pump, leaving an oil that underwent sublimation to give a colorless solid (4.95 g, 73%), mp 53 "C. In **all** other cases, the reaction products were obtained as oils that were purified by Kugelrohr distillation. The **methylenedistannacyclopentanes** are extremely air sensitive, the distannacyclopentenes much less so.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for supporting this work.

Registry No. la, 93061-62-2; **lb,** 93061-63-3; **IC,** 93061-64-4; 1d, 93061-65-5; 1e, 93061-66-6; 2a, 93061-67-7; 2b, 93061-68-8; 2c, 93061-69-9; 5, 93061-70-2; HOMe₂CC=CH, 115-19-5; MeOCOC=CH, 922-67-8; Me₂NCH₂C=CH, 7223-38-3; CH₂= C==CMe2, 598-25-4; **1,1,2,2,4,4,5,5-octamethyl-1,2,4,5-tetrastan**nacyclohexane, 89748-39-0; **1,1,2,2,3,4,4,5,5,6-decamethyl-1,2,4,5-tetrastannacyclohexane,** 93061-71-3; 1,1,2,2,3,3,4,4,5,5,- **6,6-dodecamethyl-l,2,4,5-tetrastannacyclohexane,** 93061-72-4; **tetrakis(triphenylphosphine)palladium(O),** 14221-01-3.

Supplementary Material Available: Tables of elemental analyses **and** 13C NMR data (4 pages). Ordering information is given on any current masthead page.

Hubert Le Bozec and Pierre H. Dlxneuf

Laboratorie de Chimie de Coordination Organique (ERA CNRS 477), Universit6 de Rennes Campus de Beaulieu 35042 Rennes Cedex, France

Richard D. Adame

Department of Chemistry, Yale University New Haven, Connecticut 065 1 1

Received August 30, 1984

Summary: The new mixed bimetallic carbene complex CI₂HgFe(CS₂C₂(CO₂Me)₂)(CO)₂(PMe₂Ph)₂ (5) has been obtained by addition of $HgCl₂$ to the reactive intermediate Fe(CS₂C₂(CO₂Me)₂)(CO)₂(PMe₂Ph)₂ (2a). The donor-acceptor adduct 5 has been characterized by single-crystal X-ray diffraction methods that establish the position of the HgCI₂ unit trans to the carbene ligand.

a. L=PMezPh:Z=C02R

Eighteen-valence-electron transition-metal complexes, when they are basic enough, are known to form donoracceptor adducts with Lewis acids such as $HgX₂^{1,2}$ or with 16-electron organometallic species.³ Although these donor-acceptor compounds are well documented, to our knowledge they have not been made for the purpose of trapping unstable, 18-electron intermediates. Here we report that the formation of a metal \rightarrow mercury(II) bond *can* be successfully used to stabilize an electron-rich, highly reactive metal-carbene complex.

We have already shown that the (1,3-dithiol-2-ylidene)iron intermediates **2** can be readily obtained by cycloaddition of activated alkynes to the η^2 -CS₂ ligand of complexes **l4** (Scheme I). However, these electron-rich iron(0) complexes are very air-sensitive and decompose to give (dithio1ene)iron derivatives **35** and tetrathiafulvalenes. 5,6 Alternatively, when the phosphorus group L is a basic phosphine $(L = PMe₂Ph, PMe₃)$, they rapidly isomerize into stable metallocyclic iron(I1) complexes **44** (Scheme I). Consequently, we were not able to characterize structurally an iron-carbene complex of type **2.** We now show that the intermediate $2a$ reacts with $HgCl₂$ to give a crystalline adduct and that the formation of the Fe \rightarrow -HgC1, bond, in the position trans to the carbene ligand, prevents the transformation of the adduct into complex **3a** or **4a** and allows the X-ray structure determination of the first carbene iron-mercury(I1) complex.

The yellow solution of 0.43 mmol (0.20 g) of $1a$ (L = PMe,Ph), in **40** mL of anhydrous ether, was stirred with 1 equiv of dimethyl acetylenedicarboxylate at room temperature under an inert atmosphere. After a few minutes, 1 equiv (0.45 mmol, 0.13 g) of $HgCl₂$ was added to the

Scheme **I**

⁽¹⁾ Shriver, D. F. Acc. Chem. Res. 1970, 3, 231.

(2) Burlitch, J. M. "Comprehensive Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 6, Chapter 42, p 983.

⁽⁴⁾ Le Bozec, **H.;** Gorgues, A.; Dixneuf, P. H. Inorg. *Chem.* 1981,20, **24.46.**

⁽⁵⁾ Carty, A. J.; Dixneuf, P. H.; Gorgues, A.; Le Bozec, H.; Taylor, N. J. *Inorg. Chem.* 1981,20, **3929.**

⁽⁶⁾ Le Bozec, **H.;** Dixneuf, P. H. *J. Chem.* **Soc.,** *Chem. Commun.* 1983, **1462.**

Figure 1. View of $Cl_2HgFe(CO)_2(PMe_2Ph)_2(CS_2C_2(CO_2Me)_2)$ (5). Important bond lengths (A): $Hg-Fe = 2.546$ (1), $Hg-Cl(1) = 2.486$ **(2), Hg-CI(2)** = **2.514 (2), Fe-P(l)** = **2.282 (2), Fe-P(2)** = **2.260 (2), Fe-C(l)** = **1.761 (8), Fe-C(2)** = **1.744 (8), Fe-C(9)** = **1.912** (7) , C(9)-S(1) = 1.688 (7), C(9)-S(2) = 1.704 (7), S(1)-C(3) = 1.743 **(7), S(2)-C(4)** = **1.739 (7),** and **C(3)-C(4)** = **1.324 (9).** Important bond **angles (deg): P(l)-Fe-P(2)** = **175.60 (8), C(l)-Fe-C(2)** = **162.8 (3), Hg-Fe-C(9)** = **176.5 (2), Hg-Fe-P(l)** = **85.73 (6), C1-** (4) , Fe-C(9)-S(1) = **123.6 (4)**, Fe-C(9)-S(2) = **124.0** (4), and $S(1) - C(9) - S(2) = 112.2$ (4).

resulting brown solution of complex 2a $\left[\text{IR } (C_6H_6)\right]\nu$ (CO) 1890, 1845 cm^{-1} ⁴ to afford a bright yellow precipitate, slightly soluble in ether. The precipitate was obtained in 82% yield, crystallized in methanol-ether, and identified to be the heterobimetallic carbene complex **57** (Scheme **II).** The remaining solution did not contain any tetrathiafulvalene or heterometallocycle **4.** The infrared spectrum showed only one strong carbonyl absorption band at 1940 *cm-',* consistent with trans carbonyl ligands. The 'H **NMR** spectrum⁷ showed equivalent $CO₂$ Me groups (3.92 ppm), indicating the retention of the symmetrical carbene moiety. The methyl groups and phosphorus nuclei of the PMe_2Ph ligands were **also** equivalent ['H NMR7 2.10 ppm (d, PMe, $^{2}J_{\text{PH}}$ = 8 Hz); ³¹P **NMR**⁷ 21.87 ppm $(^{2}J_{^{31}\text{P}}$ -190_{Hg} = 742 Hz)]. These data are compatible with a plane and a C_{2v} axis of symmetry in the molecule. The value $^{2}J(^{31}P-^{199}Hg)$ appears to be a unique example of a coupling constant between ${}^{31}P$ and ${}^{199}Hg$ nuclei in the cis position.²

The stability of **5** in the solid state, in contrast to that of 2a, allowed the determination of its structure **by** an X-ray diffraction study.^{8,9} An ORTEP diagram of the

molecule is shown in Figure 1. Complex **5** consists of a combination of the two $HgCl₂$ and $\overline{Fe(CO)₂(PMe₂Ph)₂}$ $[CS_2C_2(CO_2Me)_2]$ moieties, with the Lewis acid ligand $HgCl₂$ in the position trans to the electron-releasing carbene ligand $[Hg-Fe-C(9) = 176.5 (2)°]$. Both the carbonyl and the phcsphine ligands are trans to each other.

The Hg-Fe bond length (2.546 (1) **A)** is similar to that in known Hg-Fe complexes containing different HgX_2 moieties such as in $Fe(CO)_{4} (HgClpy)_{2}^{10}$ (2.553 (8) Å), **[Fe(C0)4(HgC1)(HgC12)]-(AsPh4)+11** [2.560 (3) and 2.516 (4) A], or $Hg[Fe(CO)₂(NO)PEt₃]₂¹²$ (2.534 (2) A). The Hg atom is 0.157 \AA out of the plane $\text{[Cl}(1),\text{Cl}(2),\text{Fe}\text{]}$ and the $[Cl(1)Cl(2)Hg][FeC(1)C(2)C(9)]$ dihedral angle is 18.2°. The two Hg-Cl bond lengths are **similar,** but the C1-Hg-Fe angles are significantly different.

The (carbene)C-Fe distance (1.912 (7) **A)** is markedly shorter than in other monodentate carbene iron complexes:13 2.007 **(5) A** in **(OC),Fe=CN(Me)CH2CHzNMe'4** and 1.979 (3) Å in $[Fe(C_7H_6)(CO)_2(C_5H_5)]PF_6^{15}$ Of special interest is the cyclic carbene ligand itself which is roughly planar and has a $C(3) = C(4)$ double bond $(1.324 (9)$ Å). The carbon-sulfur bond distances $(C(9)-S(1) = 1.688(7))$ Å and $C(9)$ -S(2) = 1.704 (7) Å] are significantly shorter than (i) the expected $C(sp^2)$ –S single-bond length 1.79 Å), (ii) the corresponding C-S distances in the same carbene group bonded to manganese in $Mn(CS_2C_2(CO_2Me)_2)$ - $(CO)(P(OMe)_3)(C_5H_5)^{16}$ (av 1.74 Å), and (iii) the (olefinic)C-S bond lengths in **5** [C(3)-S(1) = 1.743 (7) **A;** C- (4) -S(2) = 1.739 (7) Å]. This suggests that the coordination of $HgCl₂$ to the iron atom decreases the Fe-carbene back-donation and induces an important electron transfer from the sulfur atoms **of** the cyclic carbene group toward the metal atom. Alternatively, if we consider the possible canonical forms $A \leftrightarrow B \leftrightarrow C$ for a Fischer-type metal carbene complex (Scheme 111), the formation of the Fe-Hg(II) bond in **5** strongly favors an average of the canonical forms C and C'.

(IO) Baker, R. W.; Pauling, P. *J. Chem. Soc., Chem. Conmun.* **1970, 573.**

(11) Botherton, P. D.; Kepert, D. L.; White, **A. H.; Wild, S. B.** *J. Chem. SOC., Dalton Tram.* **1976,1870.**

(12) Stephens, F. S. J. Chem. Soc., Dalton Trans. 1972, 2257.

(13) Schubert, U. "Transition Metal Carbene Complexes"; dedicated

to E. O. Fischer; Verlag Chemie: Weinheim, 1983; p 73.

(14) Huttner, G.; Gartzke, W. Chem.

Chem. **1982,21, 1321.**

(16) Le Marouille, J. Y.; Lelay, C.; Benoit, A.; Grandjean, D.; Touch-ard, D.; Le Bozec, **H.; Dixneuf, P. H.** *J. Organomet. Chem.* **1980,191,133.**

⁽⁷⁾ 5: IR (Nujol) v(C0) 1940 (a), v(C=O) 1740 (s), v(C=C) 1560 (w) cm⁻¹; ¹H NMR (60 MHz, 300 K, CD₂Cl₂) *δ* 7.40 (m, C₆H₆), 3.92 (s, OMe),
2.10 (s, PMe, ²J_{PH} = 8 Hz); ³¹P NMR (32.38 MHz, 309 K, CD₂Cl₂) signal at 21.87 ppm constituted of a singlet and of a symmetrical doublet $(^{2}J_{31p_139p_4}$ = 742 Hz) in the ratio $s/d = 84/16$. Anal. Calcd for $C_{25}H_{28}C_{2}O_6P_2S_2HgFe^{1}/4Et_2O$: C, 34.82; H, 3.41; Cl, 7.90; P, 6.92; S, 7 Found **C, 34.96; H, 3.45; C1, 7.32; P, 6.09; S, 6.62.** $= 742$ Hz) in the ratio $s/d = 84/16$.

⁽⁸⁾ Single crystals of 5 ($HgFeCl₂S₂P₂O₆C₂₅H₂₉$) were grown by diffusion of ether into a methanol solution of the complex. They belong to the space group $C2/c$, No. 15: $M_r = 877.9$, $a = 35.059$ (5) Å, $b = 11.706$ (1) Å, $c = 17.600$ (2) Å, $\alpha = 90.00^{\circ}$, $\beta = 101.96$ (1)[°], $\gamma = 90.00^{\circ}$, (3) \AA^3 , $D_{\text{calod}} = 1.65$ g·cm⁻³, $Z = 8$, λ (Mo K α) = 0.71069 Å, μ (Mo K α) = 12.3 cm⁻¹. The structure was solved by a combination of direct methods and difference Fourier techniques.⁹ The final *R* fac **observed reflections was 0.044.**

⁽⁹⁾ Diffraction data were collected on an Enraf-Nonius CAD-4 automatic diffractometer. All **calculations were done on a Digital Equipment Corp. PDP 11/45 Computer using the Enraf-Nonius SDP program library.**

The simple formation of the donor-acceptor Fe-Hg adducts, such as **5,** may open a new method for the stabilization of other electron-rich, 18-electron metal complexes.

Supplementary Material Available: Tables of crystallographic data, interatomic distances and angles, final positional and thermal parameters, and structure factor amplitudes (19 pages). Ordering information is given on any current masthead page.

Cobalt Complexes of Hexafluorodehydrocyclooctatetraene: Synthesis and Crystal and Molecular Structures of $[Co(CO)_3]_2(C_8F_6)$ and $[Co(CO)₂(PPh₃)]₂(C₈F₆)$

Stephen J. Dolg,¹ Russell P. Hughes, *^{1,2} Raymond E. Davis,^{*3} Steven M. Gadol,³ and **Katherine D. Holland3**

Chemistry Departments, Dartmouth College Hanover, New Hampshire 03755 and University of Texas at Austin *Austin, Texas 78712*

Received September 14, 1984

Summary: **While octafluorocyclooctatetraene (OFCOT)** reacts with $[Co(CO)₄]$ ⁻ to afford low yields of a dinuclear **complex 1, shown by X-ray diffraction studies to contain a severely puckered hexafluorodehydrocyclooctatetraene** ring, reaction with $[Co(CO)₃(PPh₃]⁻$ yields a dinuclear **analogue 2, shown by X-ray diffraction to contain an al**most planar C₈F₈ ring sandwiched between phenyl rings **of adjacent triphenylphosphine ligands and a mononuclear** complex 3. Dinuclear 2 is shown not to arise by fluoride **displacement from mononuclear 3, but OFCOT reacts** with $[Fe(C₅H₅)(CO)₂]$ ⁻ by a consecutive displacement **mechanism to afford initially the mononuclear complex 4 and subsequently the dinuclear complex 5, which con**tains a 1,5-disubstituted cyclooctatetraene ring.

The nonplanar ground-state structure **of** cyclooctatetraene and its derivatives is well established.⁴ and the molecular structure of octafluorocyclooctatetraene (OFCOT) has been shown to resemble closely that of its hydrocarbon analogue.⁵ There has been considerable interest in whether the corresponding dehydro[8]annulenes (cyclooctatrienynes) are planar or puckered; 6 low-temperature X-ray diffraction studies of the highly reactive **5,6-didehydrodibenzo[a,e]cyclooctene** show it to have a planar eight-membered ring.' In a previous communication⁸ we reported the serendipitous synthesis of a compound $[Co(CO)_3]_2(C_8F_6)$, 1, whose spectroscopic properties suggested the presence of a metal-stabilized hexafluorodehydrocyclooctatetraene ring. Here we report details of

(1) Dartmouth College.

Acta Crystallogr., Sect. *B* **1977,** *B33,* **447-456.** (8) Doig, S. J.; Hughes, R. P.; Patt, S. L.; Samkoff, D. E.; Smith, W. L. *J.* Organomet. Chem. *1983,250,* Cl-C4.

Figure 1. ORTEP drawing of the structure of **1,** showing 30 % equiprobability ellipsoids.

Figure 2. ORTEP drawing of the structure of **2,** showing 30% are numbered C101-C106, C201-C206, and C301-C306. The phenyl rings that sandwich the C_8F_6 ring are shown; for the other phenyl rings, only the C atoms bonded to **P** are shown.

an X-ray crystallographic study of **1** which shows that the C_8F_6 ring is severely puckered, and the synthesis and X-ray diffraction study of a bis(tripheny1phosphine) derivative, 2, in which the C_8F_6 ring is almost planar.

Compound 1 was prepared in low yield by the reaction of OFCOT with $[Co(CO)_4]$ ⁻ as described previously.⁸ The bis(tripheny1phosphine) derivative **29** was prepared in higher yield by the reaction of OFCOT with the [Co- $(CO)₃(PPh₃)$ ⁻ anion in THF at 20 °C; a second product of this reaction was the mononuclear complex **3.l"** Compound **2** was also obtained by direct reaction of OFCOT with dinuclear $[Co(CO)₃(PPh₃)]₂$ in refluxing benzene; no **3** was detected in this reaction and no reaction occurred between these substrates at room temperature. Notably, reaction of pure 3 with a further equivalent of $[Co(CO)₃$ -(PPh,)]- yielded no trace of **2.** In contrast, treatment of the mononuclear iron complex 4^8 with excess $[Fe(C_5-$

⁽²⁾ Alfred P. Sloan Research Fellow **1980-1984.**

⁽³⁾ University of Texas.

(4) Fray, G. I.; Saxton, R. G. "The Chemistry of Cyclooctatetraene

and Its Derivatives"; Cambridge University Press: Cambridge, 1978.

(5) Laird, B. B.; Davis, R. E. Acta Crystallogr., Sect. B 19 **678-680.**

⁽⁶⁾ Huang, N. Z.; Sondheimer, F. Acc. Chem. Res. 1982, 15, 96-102.
(7) de Graaf, R. A. G.; Gorter, S.; Romers, C.; Wong, H. N. C.; Son-
dheimer, F. J. Chem. Soc., Perkin Trans. 2 1981, 478-480. See also: Destro, R.; Pilati, T.; Simonetta, M. J. Am. Chem. Soc. 1975, 97, 658-659;

⁽⁹⁾ Compound **2:** 25% mp $182-185$ °C; IR (CH₂Cl₂) ν_{CO} 2046 (s), 2002 (m), 1995 (m) *cm*⁻¹; mass spectrum, m/e 964 (P⁺); ¹⁶F NMR (CDCl₃, shifts in ppm upfield from internal CFCl₃) **104.0** (m, 2 F), **138.3** (m, 2 F), **142.7** (m, **2** F). Satisfactory microanalysis results have been obtained for all compounds reported here.

⁽¹⁰⁾ Compound 3: 14%; mp 119-122 °C dec; IR (hexanes) v_{CO} 2062 (m), 1990 (vs) cm⁻¹; ¹⁹F NMR (CDCl₃, shifts in ppm upfield from internal CFCl₃) 73.4, 94.5, 120.2, 125.0, 128.7, 130.9, 142.2 (all multiplets, each having relative intensity = 1 F). See ref 8 for NMR data for analogues of 3.