Some Reactions of Tungsten Methylidyne Complexes and the Crystal Structure of $[W_2(\text{CPMe}_3)_2(\text{PMe}_3)_4\text{Cl}_4][\text{AICI}_4]_2^{-1}$

Steven J. Holmes,^{2a} Richard R. Schrock,^{*2a} Melvyn Rowen Churchill,^{*2b} and Harvey J. Wasserman^{2b}

Departments of Chemistty, Massachusetts Institute of Technology, Cambrkige. Massachusetts 02 139, and State University of New York at Buffalo, Buffalo, New York 14214

Received July 5, 1983

 $W(CH)(PMe_3)_4Cl$ reacts with Me_3SiX ($X = I$ or CF_3SO_3) to give $W(CH)(PMe_3)_4X$. $W(CH)(PMe_3)_4(H_4)$ can then be prepared from $W(CH)(PMe₃)₄(CF₃SO₃)$ and $NABH₄$. Both $W(\overline{CH})(PMe₃)₄I$ and $W(CH)$ - $(PMe_3)_4(CF_3SO_3)$ can be protonated by triflic acid to give "methylene" or, more accurately, face-protonated methylidyne complexes. W(CH)(PMe₃)₄Cl reacts with AlMe₂R (R = Cl or Me) to give W(CH)(PMe₃)₃- $(CI)(AIME₂R)$ complexes. In the presence of ethylene the methylidyne proton is lost and a "dialuminated" methylidyne complex, $W(CAl_2M_{e_4}Cl)(PMe_3)_2(\dot{C}H_3)(C_2H_4)$, is formed. In the presence of CO the reaction between $W(CH)(PMe₃)₄Cl$ and AlCl₃ yields a complex in which the methylidyne ligand has been coupled to CO, W(HCCOAlCl₃)(CO)(PMe₃)₃Cl. In contrast, W(CH)(H)(PMe₃)₃Cl₂ reacts with CO to yield W- ${\rm (CH_2PMe_3) (PMe_3)_2(CO)_2Cl_2.}$ A similar species can be prepared by reacting ${\rm [W(CH_2) (PMe_3)_4Cl][CF_3SO_3]}$ with CO. Attempts to oxidize $W(CH)(PMe_3)_4$ Cl to $W(CH)(PMe_3)_3$ Cl₃ yielded a "phosphinomethylidyne" complex, $[W_2(CPM_{e3})_2(PMe_3)_4Cl_4][AlCl_4]_2$. This complex forms monoclinic crystals $(P2_1/c$ [No. 14]) in which $a = 9.773$ (4) $\mathbf{A}, \mathbf{b} = 24.797$ (14) $\mathbf{A}, \mathbf{c} = 12.633$ (7) $\mathbf{A}, \beta = 92.85$ (4)°, and $Z = 2$. The molecule contains a planar P₂W(µ-Cl)₂WP₂ framework with mutually transoid CPMe₃ ligands. The tungsten-carbon bond distance of 1.83 (3) Å is comparable to other tungsten-carbon "triple" bonds, and the W-C-P bond angle is large $(174.0 (19)°)$.

Introduction

Two years ago we discovered that $W(PMe₃)₄Cl₂$ reacts with AlMe₃ to produce trans-W(CH)(PMe₃)₄Cl, the only example of a complex containing a terminally bound methylidyne ligand. 3 So far we have shown that W(CH)- $(PMe₃)₄Cl$ reacts with $AlMe_xCl_{3-x}$ reagents to form adducts of the type $W(CH)(AIMe_xCl_{3-x})(PMe₃)₃Cl₃³ that it can be$ protonated readily to give highly distorted or T-shaped "methylene" complexes,⁴ and that the methylidyne ligand couples with carbon monoxide in the presence of $AICl₃$ ⁵ In this paper we provide previously unreported details of some of these, and related, reactions, along with several new and unexpected reactions in which the methylidyne proton is replaced by an aluminum or a phosphorus substituent.

Results and Discussion

Simple Derivatives of W(CH)(PMe₃)₄Cl. We were surprised to find that $W(CH)(PMe₃)₄Cl$ is relatively inert toward nucleophilic substitution of the chloride ligand. For example, it does not react at 25 "C in 1 day with LiMe in ether, $LiCH₂CMe₃$ in toluene, $LiBEt₃H$ in THF, or $LiOCMe₃$ in toluene. Starting material is recovered in high yield in each case. We also know that $PMe₃$ is displaced only relatively slowly by dmpe.^{4b} Therefore, although $W(CH)(PMe₃)₄Cl$ is a crowded molecule,⁶ it must not readily lose PMe₃ to form a five-coordinate 16-electron intermediate; formation of a seven-coordinate intermediate in an associative reaction is relatively unlikely for electronic (20 e) as well as steric reasons.

Table I. ¹H and ¹³C NMR Data for the Methylidyne Ligand in Complexes **of** Tungsten

	'H NMR		$13C NMR^a$	
compound	chem shift, ppm	$^{2}J_{\rm HW}$ Hz	chem shift. ppm	$J_{\rm CH}$ Hz
W(CH)(PMe ₃) ₄ Cl	6.75	80.1	250	134
W(CH)(PMe,) _a I	6.45	83.5	248.7	136
$W(CH)(PMe_{2}(CF, SO_{3})$	6.54	84.2	264.9	150
$W(CH)(PMe_3)_4(BH_4)$	7.39	79.6	259.5	138.7
$W(CHAIME_{3})(PMe_{3}), Cl$	6.55	83.5	229.6	129.4
$W(CHAIME, Cl)(PMe,)$, Cl	6.64	81.6	229.9	144.0

 a Compare these data with the characteristic chemical shift for the methylene carbon atom (219 ppm) and J_{CH} (121 Hz) in $[W(CH_2)(PMe_3)_4] [CF_3SO_3].$

In contrast, the chloride ligand in $W(CH)(PMe₃)₄Cl$ can be replaced smoothly by using $Me₃SiX$ (X = I or OTf). A third, more unusual derivative can then be prepared from the triflate complex (eq 1). The ¹H and ¹³C NMR spectra $W(CH)(PMe_3)_4(OTf) + NaBH_4 \rightarrow$

 $NaOTf + W(CH)(PMe₃)(BH₄)$ (1)

of the three (Table I and Experimental Section) suggest that they are all analogous to $W(CH)(PMe₃)₄Cl$. The IR spectrum of $W(CH)(\bar{PM}e_3)_4(BH_4)$ shows two B-H modes at 2320 and 2050 cm-', and the 'H NMR spectrum shows a 1:l:l:l quartet, consistent with a bidentate mode of coordination and rapid exchange of the terminal and bridging BH protons.⁷ We see no evidence that the $BH₄$ protons exchange with the methylidyne proton at a rate rapid enough to be observable by NMR. We note that a BD_3CN derivative has also been prepared in which no exchange of deuterium with the methylidyne proton was observed on the chemical time scale.4b We suspect that the structure of $W(CH)(PMe₃)₄(BH₄)$ is similar to that of *trans-Mo-* $(H)(BH₄)(PMe₃)₄⁸$ in which the BH₄⁻ ligand adopts a bi-

⁽¹⁾ Multiple Metal-Carbon Bonds **33.** For part **32** see: Edwards, D. S.; Biondi, L. V.; Ziller, Z. W.; Churchill, M. R.; Schrock, R. R. Organo- metallics **1983, 2, 1505.**

⁽²⁾ (a) Massachusetts Institute of Technology. (b) State University of New York at Buffalo.

⁽³⁾ Sharp, P. R.; Holmes, S. J.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. J. Am. Chem. SOC. **1981,103,965.**

⁽⁴⁾ (a) Holmes, S. J.; Schrock, R. R. *J.* Am. Chem. *SOC.* **1981,103,4599.** (b) Holmes, S. J.; Clark, D. N.; Tumer, H. W.; Schrock, R. R. Ibid. **1982, 104,6322.**

⁽⁵⁾ Churchill, M. R.; Wasserman, H. J.; Holmes, S. J.; Schrock, R. R. Organometallics **1982, 1, 766. (6)** Churchill, M. R.; Rheingold, A. L.; Wasserman, H. J. Inorg. Chem.

^{1981,20, 3392.}

^{(7) (}a) Marks, T. J.; Kolb, J. R. Chem. *Rev.* **1977, 77,263.** (b) Marks, T. J.; Kennelly, W. J.; Kolb, J. R.; Shimp, L. A. Inorg. Chem. **1972, 11, 2540.**

⁽⁸⁾ Carmona-Guzman, E.; Wilkmson, G.; Atwood, J. L.; Hunter, W. E. *J.* Chem. SOC., Dalton Trans. **1980, 467.**

dentate mode of coordination to Mo.

Protonation of $W(CH)(PMe_3)_4I$ and $W(CH)$ - $(PMe₃)₄(**OTT**).$ We have discussed the protonation of $W(CH)(PMe₃)₄Cl$ by triflic acid elsewhere.^{4b} On the basis of extensive 'H and 13C NMR studies we concluded that the "methylene" complex $[W(CH_2)(PMe_3)_4Cl][OTT]$ was actually best described **as** a face-protonated methylidyne complex, viz.

$$
\left[\begin{array}{c} \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} \mathbf{1} \\ \sum\limits_{i=1}^{n} \mathbf{1} \\ \sum\limits_{i=1}^{n} \mathbf{1} \end{array}\right]^{+}
$$

At ambient temperatures the proton on the $WCP₂$ face exchanges rapidly with the methylidyne-like proton, a process that results in an average signal of area two at \sim -0.16 ppm with $J_{HW} \approx 50$ Hz in the ¹H NMR spectrum and a triplet at ~ 220 ppm with $J_{\text{CH}} \approx 120$ Hz in the ¹³C *NMR* spectrum. Addition of triflic acid to W(CH)(PMe₃)₄I appears to yield an analogous species. In "[W(CH₂)- $(\overline{PMe}_3)_4I$][OTf]" the "methylene" protons can be observed at -0.80 ppm as a quintet $(^3J_{HP} = 0.9$ Hz can be resolved) with $^{2}J_{\text{HW}}$ = 53 Hz. In the ¹³C NMR spectrum a triplet signal for the carbon atom is observed at 219 ppm with $J_{\text{CH}} = 121$ Hz. When a sample of $[\text{W(CH}_2)(\text{PMe}_3)_4] [\text{OTf}]$ is cooled, the signal at -0.80 ppm in the ${}^{1}H$ NMR spectrum broadens and disappears into the base line at 180 K. At 153 **K** a broad peak observed at -9.0 ppm *can* be assigned to the proton on the $WCP₂$ face. The signal for the methylidyne-like proton is probably obscured by the solvent, as in the case of $[W(CH_2)(PMe_3)_4Cl][OTf].$ ^{4b}

One of the reasons for preparing other derivatives of $[W(CH₂)(PMe₃)₄Cl][OTT]$ was to obtain ordered crystals (cf. $W(\tilde{C}H)(PMe_3)_4\tilde{C}I^6$) large enough for neutron diffraction studies. $[W(CH_2)(PMe_3)_4][OTT]$ does form large cubic crystals, but only satisfactory X-ray data could be obtained.9 The molecule has a trans octahedral structure. The tungsten-carbon bond length is 1.83 (2) **A,** similar **to** that (1.86 Å) in $W(CHCMe₃)(PMe₃)₂(CO)Cl₂,^{10,11}$ another d2 complex containing a high distorted neopentylidene ligand in which the W==C---H angle is 72° and the W== $C_{\alpha}C_{\beta}$ angle is 169°. In fact, 1.83 Å is (within experimental error) a typical value for a tungsten-carbon *triple* bond, e.g., 1.81 Å in W(CHAlMe₂Cl)(PMe₃)₃Cl⁶ (see later). Therefore, we feel confident that our original proposal^{4b} concerning the structure of the distorted methylene complex $[W(CH_2)(PMe_3)_4Cl][OTf]$ is correct. It should be noted that the reason why the molecule is not an authentic alkylidyne hydride complex analogous to $[W(CH)(H) (dmpe)_2Cl$ ^{+4b} or $Ta(CCMe_3)(H)(dmpe)_2(CIAIME_3)^{12}$ is primarily steric; the four PMe₃ ligands cannot lie in a pentagonal plane (along with the hydride ligand) in hypothetical pentagonal-bipyramidal [W(CH)(H)- $(PMe₃)₄Cl$ [OTf]. Even *four* $PMe₃$ ligands in W(CH)- $(PMe_3)_4Cl_6^6$ $[W(CH_2)(PMe_3)_4I][OTH_3^9$ and $W(CMe)$ - $(PMe₃)₄(Me)¹³$ must pucker in and out of the WP₄ plane in order to avoid adverse steric interactions.

The addition of triflic acid to $W(CH)(PMe_3)_4(OTf)$ produces orange, crystalline $[W(CH_2)(PMe_3)_4(OTf)]$ [OTf] in high yield. In dichloromethane at 280 K (where it de-

- H. J. J. Am. Chem. Soc. 1982, 104, 1739.
(11) Churchill, M. R.; Wasserman, H. J. Inorg. Chem. 1983, 22, 1574.
_ (12) Churchill, M. R.; Wasserman, H. J.; Turner, H. W.; Schrock, R.
- R. J. Am. Chem. Soc. 1982, 104, 1710.
(13) Chiu, K. W.; Jones, R. H.; Wilkinson, G.; Galas, A. M. R.;
Hursthouse, M. B.; Malik, K. M. A. J. Chem. Soc., Dalton Trans. 1981, **1204.**

composes only slowly; see below) a quintet is observed in the ^IH NMR spectrum at 0.06 ppm with ${}^{3}J_{\text{HP}} = 2$ Hz and $^{2}J_{\text{HW}}$ = 57 Hz. At 160 K a peak at -8.47 ppm can be ascribed to the proton capping the $WCP₂$ face in a distorted methylene complex. These data, along with the absence of any peak attributable to a metal-hydride mode in the IR spectrum, suggest that this molecule is analogous to the better characterized $[\text{W(CH}_2)(\text{PMe}_3)_4\text{X}]^+$ species $(X = Cl, I)$. However, it is worth noting that $[W(CH_2)-]$ $(PMe₃)₄(OTf)⁺$ appears to be more easily deprotonated. For example, it rapidly decomposes in dichloromethane at 25 °C to give a 1:1 mixture of $[Me_3PH]^+$ and an unidentified phosphorus-containing species (by ³¹P NMR); the $[W(CH_2)(PMe_3)_4X]^+$ species $(X = Cl, I)$ do not. It also reacts with NaBH₄ to give W(CH)(PMe₃)₄(OTf) while $[W(CH₂)(PMe₃)₄Cl]^+$ reacts with NaBH₄ (4 equiv) in THF to give $WH_4(PMe_3)_4$ (identified by IR and NMR¹³) in ca. **40%** yield. Finally, it alone reacts with ethylene to give $[Me₃PH][OTT]$ and, in low yield (\sim 15%), a complex that we propose is $W(CH)(C_2H_4)(PMe_3)_3(OTf)$ on the basis of a comparison of its NMR spectra with those of W- $(CAl₂Me₄Cl)(C₂H₄)(PMe₃)₂(CH₃)$ (see next section). Unfortunately, $W(CH)(C_2H_4)(PMe_3)_3$ (OTf) could not be obtained free of minor impurities and so could not be fully characterized. We suspect that the triflate ion is only loosely, if at all, associated with the cation, on the basis of the complex's low solubility in hydrocarbons.

Complexes Formed **in** the Presence of Aluminum Reagents. We have already noted in preliminary communication³ that aluminum reagents (2 equiv of AlMe_3 or AlMe₂Cl) react with W(CH)(PMe₃)₄Cl to yield adducts (eq 2). W(CH)(PMe₃)₄Cl is formed again upon adding excess

$$
W(CH)(PMe3)4Cl \xrightarrow{-AIMe2R-PMe3 \atop -AIMe2R-PMe3} W(CH)(PMe3)3(Cl)(AlMe2R) (2)
$$

$$
R = Cl or Me
$$

PMe₃ (or one PMe₃ plus TMEDA) to $W(CH)(PMe_3)_3$ - (Cl) (AlMe₂R). The surprising features of the structure⁶ of $W(CH)(PMe_3)_3(Cl)(A1Me_2Cl)$ are, first, that AlMe₂Cl is coordinated to the methylidyne ligand rather than the chloride ligand and, second, that the methylidyne ligand appears to be affected so little as a result; i.e., the $W=$ C bond length is still relatively short (1.81 Å) and the W C-H angle large $(164 (4)°)$. ¹H and ¹³C NMR data (Table I) suggest also that the methylidyne ligand has changed little. Only the chemical shift of the methylidyne carbon atom $({\sim}230$ ppm) is significantly different from that of related complexes (\sim 250-260 ppm). A full discussion of the structure can be found elsewhere.6

As far as the mechanism of forming $W(CH)(PMe₃)₃$ - $(Cl)(AlMe₂R)$ is concerned, it is reasonable to expect the aluminum reagent to attack the methylidyne ligand directly (e.g., eq 3). Only when L (PMe₃) is removed by a second equivalent of AlMe₃ is the reaction displaced all the way to the right.

W

$$
H_{C}AIMes H_{C}AIMes H_{C}AIMes
$$

In the presence of ethylene $W(CH)(PMe_3)_4Cl$ reacts with AlMe₃ (3 equiv) to give a radically different product; the methylidyne proton is lost (presumably to form methane) and a "dialuminated" methylidyne complex is formed (eq **4).** We knew from the **13C** NMR spectrum that the methylidyne ligand had been deprotonated (a singlet for C_{α} at 308 ppm), but there were obviously many possible configurations of the remaining ligands, none of them with

⁽⁹⁾ Schultz, A. J.; Williams, J. M.; Schrock, R. R.; Holmes, S. J. *Acta Crystallogr.,* **in press.**

⁽IO) Wengrovius, J. H.; Schrock, R. R.; Churchill, M. R.; Wasserman,

$$
W(CH)L_{4}Cl \xrightarrow{\text{3} \text{AlMe}_{2}} M_{\text{e}_{2}N_{\text{e}}N_{\text{e}_{2}N_{\text{e}_{2}
$$

much, if any, precedent. An X-ray structural study¹⁴ elucidated the structure shown in eq 4. A detailed discussion of the structure will not be repeated here. We note only that the "W=C" bond length $(1.813(5)$ Å) is within the range of known tungsten-carbon triple bonds and the molecule therefore may be regarded as an AlMe₂Cl adduct of the hypothetical "aluminomethylidyne" complex W- $(CAIME₂)(PMe₃)₂(CH₃)(C₂H₄).$

We can be fairly certain that coordination of ethylene to tungsten is not the last in the series of steps leading to $W(CAl₂Me₄Cl)(PMe₃)₂(CH₃)(C₂H₄)$. We speculate that $W(CH)(PMe₃)₃(Cl)(AlMe₃)$ (eq 3) is formed first and that ethylene then replaces one of the three $PMe₃$ ligands, possibly with the aid of the additional equivalent of AlMe, to remove it as $Me₃Al·PMe₃$ (eq 5). One can believe that

$$
W(CH)L_3(Cl)(AIMe_3) \xrightarrow{-Mte_3 + C_2H_4} W(CH)L_2(C_2H_4)(Cl)(AIMe_3)
$$
 (5)

substituting PMe₃, a good base, with ethylene, a better π acid, would enhance the acidity of the original methylidyne proton enough for it to react with a methyl group to yield methane. Where this methyl group comes from at that point (W or Al) is unclear. It is perhaps relevant that ethylene (or carbon monoxide) will react with W- ${\rm (CHCMe_3)}{\rm (H)}{\rm (PMe_3)_2Cl_3}$ to give ${\rm W}{\rm (CHCMe_3)}{\rm (PMe_3)_2Cl_2L}$ $(L = C₂H₄$ or CO) and HCl.¹⁰ Formation of multiple metal-carbon bonds by deprotonation or dehydrohalogenation of alkyl or alkylidene complexes is now a common feature of the chemistry of high oxidation state alkylidene or alkylidyne complexes.¹⁵ Therefore, invoking deprotonation here is reasonable, even though details are lacking.

One aspect of coordination of ethylene to a d^2 tungsten center that may be relatively important, in light of the above discussion, is the extent to which ethylene is reduced, **as** evidenced by the fairly long bond length (1.409 (11) Å) (cf. a C-C bond of 1.477 (4) Å in Ta $(\eta^5$ -C₅Me₅)- $(CHCMe₃)(C₂H₄)(PMe₃)¹⁶$. Tungsten is in effect oxidized from IV to VI upon displacement of PMe_3 by C_2H_4 . The fact that the ethylene ligand does not lie in the same plane **as** the W=C bond is expected, **as** in this manner the two ligands employ orthogonal π orbitals on the metal for forming metal-ligand π bonds. Similar orthogonal bonding patterns have been noted in many other systems.¹⁷⁻²⁰

In the presence of CO the reaction between W(CH)- $(PMe₃)₄Cl$ and AlCl₃ takes a significantly different course (eq 6). In this case CO couples with the methylidyne Example the **Francisco CC** of CO the reaction

ICI₃ takes a significant

case CO couples with

wich)L₄Cl - CO₂

$$
W(CH)L_4Cl \xrightarrow{\text{AICI}_3} C_J \xrightarrow{\text{C}J_4/C} C_{\text{C}J_1/C} H
$$
\n
$$
W(CH)L_4Cl \xrightarrow{\text{AICI}_3} C_{\text{C}J_1/C} H
$$
\n
$$
(6)
$$

ligand to produce what one could call an alkyne **or** metallacyclopropene complex, as revealed by an X-ray

structural study (C-C bond length = 1.316 Å).²¹ The ¹³C NMR spectrum shows a peak at 194 ppm with $J_{\text{CH}} = 202$ Hz and J_{CP} = 22 Hz which we ascribe to what was previously the methylidyne carbon atom. Signals for the carbon atoms belonging to the 2 equiv of added CO are found at 226 and 215 ppm. Only one of them (at 215 ppm) is coupled significantly to phosphorus $(J_{CP} \approx 35 \text{ Hz})$; we ascribe this signal to the carbon atom in the CO trans to one of the three phosphine ligands. In the absence of AlCl₃, CO reacts with $\rm \ddot{W}(\rm CH)(\rm PMe_3)_4Cl$ slowly, and only mixtures of unidentifiable products are formed.

In considering a mechanism of forming W- $(HCCOAlCl₃)(CO)(PMe₃)₃Cl$ we must consider the possibility that the $AICl₃$ activates either the methylidyne ligand or the CO ligand toward the coupling reaction (eq 7). However, there is precedent in the literature for

$$
X_{2}A_{1}C_{1}H
$$
\n
$$
X_{2}A_{1}C_{1}H
$$
\n
$$
X_{3}A_{1}C_{2}H
$$
\n
$$
X_{4}A_{1}C_{1}H
$$
\n
$$
X_{5}A_{1}C_{1}H
$$
\n
$$
X_{6}A_{1}C_{1}H
$$
\n
$$
X_{7}A_{1}C_{1}H
$$
\n
$$
X_{8}A_{1}C_{1}H
$$
\n
$$
X_{9}A_{1}C_{1}H
$$
\n
$$
X_{1}A_{1}C_{1}H
$$
\n
$$
X_{2}A_{1}C_{1}H
$$
\n
$$
X_{3}A_{1}C_{1}H
$$
\n
$$
X_{4}A_{1}C_{1}H
$$
\n
$$
X_{5}A_{1}C_{1}H
$$
\n
$$
X_{6}A_{1}C_{1}H
$$
\n
$$
X_{7}A_{1}C_{1}H
$$
\n
$$
X_{8}A_{1}C_{1}H
$$
\n
$$
X_{9}A_{1}C_{1}H
$$
\n
$$
X_{1}A_{1}C_{1}H
$$
\n

coupling of a carbyne ligand with CO in the absence of aluminum reagents (eq 8; L = PMe₃).²² Therefore, AlCl₃ need not be involved directly in the coupling reaction. Its primary role may simply be to labilize one of the PMe₃ ligands in $W(CH)(PMe_3)_4Cl$ or to stabilize the product of the coupling reaction.

 $W(CH)(PMe₃)₄Cl$ reacts with AlMe₃ in the presence of carbon monoxide to give a product analogous to that described above, i.e., W(CHCOAlMe₃)(PMe₃)₃(CO)Cl, according to elemental analysis and NMR studies. There is no NMR evidence that a methyl group has replaced the chloride on tungsten. A product labeled with 13C0 was prepared also. Its 13C NMR spectrum was entirely consistent with the proposed structure.

Formation of Methylenephosphorane Complexes. An interesting question one can ask about alkylidyne hydride complexes^{4b} is under what circumstances will the outcome of a reaction be more easily rationalized **as** arising from the tautomeric alkylidene form of the complex? For example, we discovered that $W(CCMe₃)(H)(PMe₃)₃Cl₂$ reacts with CO to give $W(CHCMe₃)(PMe₃)₂(CO)Cl₂.¹⁰$ Therefore, we were interested in whether the analogous methylidyne hydride complex $W(CH)(H)(PMe₃)₃Cl₂^{4b}$ would react similarly or whether the methylidyne ligand couples with CO as above. The answer is neither (eq 9).

W(CH)(H)(PMe₃)₃Cl₂ + 30 psi CO
$$
\frac{PhCl}{0 \text{ °C}}
$$

W(CH₂PMe₃)(PMe₃)₂(CO)₂Cl₂ (9)
~50%

Unfortunately, this methylenephosphorane complex is unstable in the solid state; it could be characterized only by NMR comparison with its relative below. In the 13C NMR spectrum two CO signals are found at 273.5 and 237.5 ppm and the signal for the ylide carbon atom (a triplet of triplets) is found at 3.5 ppm $(J_{CP} = 29 \text{ Hz}, J_{CH}$ \approx 125 Hz). Since this complex does not conduct in dichloromethane to any significant extent, we assume it is a seven-coordinate molecule with a structure related to that

⁽¹⁴⁾ Churchill, M. R.; Waaserman, H. J. Inorg. Chem. **1981,20,4119.**

⁽¹⁵⁾ *See* previous papers in the Multiple Metal-Carbon Bonds series.' **(16)** Schultz, A. **J.;** Brown, R. K.; Williams, J. M.; Schrock, R. R. *J.*

Am. Chem. SOC. **1981,103, 169. (17)** See part **32** in this series.'

⁽¹⁸⁾ Rocklage, S. M.; Schrock, R. R.; Churchill, M. R.; Waaserman, H.

J. Organometallics 1982, 1, 1332.

(19) Churchill, M. R.; Rheingold, A. R. *Inorg. Chem.* 1982, 21, 1357.

(20) Churchill, M. R.; Missert, J. R.; Youngs, W. J. *Inorg. Chem.* 1981, **20, 3388.** *G. Angew. Chem.* **1976,10, 632.**

⁽²¹⁾ Churchill, M. R.; Wasserman, H. J. *Inorg. Chem.* 1983, 22, 41. (22) (a) Kreissl, F. R.; Eberl, K.; Uedelhoven, W. Chem. Ber. 1977, 110, 3782. (b) Kreissl, F. R.; Frank, A.; Schubert, U.; Lindner, T. L.; Huttner,

Reactions of Tungsten Methylidyne Complexes

of $[W(CH_2PMe_3)(PMe_3)_3(CO)_2Cl$ [[][OTf] below. We propose that CO first attacks the methylene complex that is in equilibrium^{4b} with W(CH)(H)(PMe₃)₃Cl₂ to give W- $(CH_2)(PMe_3)_3(CO)Cl_2$. The Me₃PCH₂ ligand could be formed intramolecularly at this stage or possibly intermolecularly after displacement of another PMe₃ ligand by co. in equilibrium⁴⁰ with W(CH)(H)(PMe₃)₃Cl₂ to give W-
 $(CH_2)(PMe_3)_3(CO)Cl_2$. The Me₃PCH₂ ligand could be

formed intramolecularly at this stage or possibly inter-

molecularly after displacement of another PMe₃

A relatively straightforward example of formation of a $Me₃PCH₂$ complex is shown in eq 10. This product is

 $\rm CH_2Cl_2$

similar to $W(CH_2PMe_3)(PMe_3)_2(CO)_2Cl_2$ spectroscopically (see Experimental Section). An X-ray structural showed $[W(CH_2PMe_3)(PMe_3)_3(CO)_2Cl][OTT]$ to be approximately a capped trigonal prism with the methylene of the terminally bound $Me₃PCH₂$ ligand capping a $P₂(C-$ 0)Cl face. The bond length of 2.305 **A** for the ylide tungsten-carbon bond and the WCP bond angle of 126.4' for the WCH₂P functionality are indicative of a W-C single bond (or a dative interaction). Therefore, in the reaction shown in eq 10 $W(IV)$ is reduced to $W(II)$. It is interesting to note that $[W(CH_2)(PMe_3)_4Cl][OTT]$ is stable in the presence of PMe,. We believe steric factors must play an important role in determining whether a Me₃PCH₂ ligand can form in a given situation. Electronic considerations are perhaps *not* **as** important **as** commonly assumed. For example, $W(O)(CH₂)(PEt₃)₂Cl₂$, in which the methylene ligand would be thought to be more nucleophilic than electrophilic, reacts with ethylene to form $(\mathrm{CH_2PEt_3})(\mathrm{C_2H_4})(\mathrm{PEt_3})\mathrm{Cl_2}.^{24}$

Preparation of Phosphinomethylidyne Complexes. Since we had been able to prepare neopentylidyne complexes of the type $W(CCM_{e_3})Cl_3(PMe_3)$, $(x = 1-3)^{25}$ we became interested in knowing whether one or more of the analogous methylidyne complexes could be prepared by oxidizing $W(IV)$ to $W(VI)$ (eq 11). Initial experiments

$$
W(CH)L_4Cl \xrightarrow{-Cl_2} W(CH)L_3Cl_3 \tag{11}
$$

involving chlorine did not seem promising. Therefore we turned to the relatively mild chlorinating agent, hexachloroethane. Aluminum trichloride was again employed to remove the first $PMe₃$ ligand. Typically the reaction is still not clean but we could at least isolate a product in \sim 17% yield (eq 12; L = PMe₃). It was immediately \sim 17% yield (eq 12; L = PMe₃).
W(CH)L₄Cl + AlCl₃ + C₂Cl₆ \rightarrow

0.5[W2(CPMe3)2L4C141[AlC1,12 (12)

obvious from the *'3c* NMR spectrum that the methylidyne proton was missing. However, we assumed initially, on the basis of earlier results, that some type of aluminomethylidyne complex was formed, especially since the carbon atom giving rise to the low-field signal (242 ppm) was not obviously coupled to phosphorus. However, it was 27Al NMR studies that first suggested to us that this was not the case.

Although ²⁷Al is a quadrupolar nucleus $(S = \frac{5}{2})$, a relatively sharp signal can be observed when the symmetry about the metal is high $(T_d \text{ or } O_h)$.²⁶ **For example, the** signal for $\text{Al}(H_2O)_6^{3+}$, the chemical shift standard for ²⁷Al

NMR, has a line width of \sim 3 Hz. Other aluminum compounds of high or relatively high symmetry also give rise to relatively narrow peaks (e.g., $AICl_4^-$, \sim 15 Hz at 102 ppm in CH_2Cl_2 ; Table II). However, even the signal for Al_2Me_6 is fairly broad $({\sim}450 \text{ Hz})$. Very broad signals could be observed for the aluminum atom(s) in $W(CHAlMe₂Cl)$ - $(PMe₃)₃Cl$ and $W(CAl₂Me₄Cl)(PMe₃)₂(CH₃)(C₂H₄), char$ acteristic of environments of low symmetry. In contrast, the ²⁷Al NMR spectrum of $[W_2(CPMe_3)_2(PMe_3)_4Cl_4]$ - $[AlCl₄]₂$ in $CH₃CN$ showed a narrow peak (\sim 10 Hz) at a position characteristic of AlCl₄⁻ (Table II). Therefore we were puzzled **as** to what type of "carbide" complex we had prepared.

After the X-ray structural results had been obtained (see next section) we designed some hydrolysis experiments that we hoped would be consistent with what had been shown to be a phosphinomethylidyne complex. $[W_2 (CPMe_3)_2(PMe_3)_4Cl_4$ [AlCl₄]₂ can be hydrolyzed readily by aqueous HCl in 1 h at 25° C. Two water-soluble phosphorus compounds are produced in a ratio of 2:l (by 31P NMR). That giving rise to the peak of area two was shown to be $Me₃PHCl$ by addition of authentic $Me₃PHCl$ to the sample; the other product is unknown. After the solution was heated for 1 week at 80 °C, the unknown product was quantitatively converted into what by ${}^{31}P$ NMR was shown most likely to be $Me_4P^+Cl^-$ (by addition of $Me_4P^+Cl^-$ to the sample).

Needless to say, we hesitate to write any mechanism of forming this unusual species, especially also since the yield is low, the fate of the methylidyne proton is unknown, and the metal has, in fact, been oxidized to what is most accurately called W(V).

X-ray Structure of $[W_2(CPMe_3)_2(PMe_3)_4Cl_4]$ **-**[AlCl₄]₂. The X-ray results are of limited accuracy due to severe disorder of the $AICl₄$ ions (see Experimental Section). Fortunately, however, the $[W_2(CPMe_3)_2$ - $(PMe₃)₄Cl₄]²⁺$ ion is ordered and all atoms are well-behaved under anisotropic refinement. The experimental data for the X-ray study can be found in Table 111, selected distances and angles in Table IV, and final positional and isotropic thermal parameters in Table V. Two views of the cation are shown in Figures 1 and 2. Note that the cation has exact *Ci* symmetry and (excluding methyl groups) approximate C_{2h} symmetry. The cation lies on a crystallographic inversion center. Atoms in the basic asymmetric unit are labeled normally; those in the "other half" of the cation are indicated by an asterisk and are related to the basic unit by the transformation $(-x, -y, 1)$ - *2).*

The geometry about each tungsten atom is roughly octahedral. The *planar* bridging $W(\mu$ -Cl)₂W moiety has *acute* angles at the chloride ligands and *obtuse* angles at the metal atoms $(W - Cl(1) - W^* = W - Cl(1^*) - W^* = 74.1 \ (2)^\circ$ and Cl(1)-W-Cl(1*) = Cl(1)-W*-Cl(1*) = 105.9 (2)°),

⁽²³⁾ Churchill, M. R.; Wasserman, H. J. *Znorg. Chem.* **1982,21,3913. (24)** Wengrovius, J. H. Ph.D. Thesis, Massachusetts Institute *of* Technology, **1981.**

⁽²⁵⁾ Schrock, R. R.; Clark, D. N.; Sancho, J.; Wengrovius, J. H.; Rocklage, S. M.; Pedersen, S. F. *Organometallics* **1982,** *I,* **1645.**

⁽²⁶⁾ Hinton, J. F.; Briggs, R. W. In 'NMR and the Periodic Table"; Harris, R. K., Mann, B. E., **Eds.;** Academic Press: New York, **1978;** Chapter 9.

(A) Crystal Parameters at 24 "C cryst system: monoclinic space group: $P2_1/c$ [No. 14] *a* = 9.773 (4) **A** *b* = 24.797 (14) **A c** = 12.633 (7) **A** β = 92.85 (4)^o $Z = 2$ (dimeric units)

(B) Collection of X-ray Data radiation: Mo K α ($\overline{\lambda}$ = 710 730 Å) monochromator: pyrolytic graphite reflections measd: $+h, +k, \pm l$ for $2\theta = 3.7-40.0^{\circ}$ scan type: coupled θ (cryst)-2 θ (
scan speed: 2.5 deg/min (in 2 θ) scan speed: $2.5 \text{ deg/min (in } 2\theta)$
scan range: $[2.0 + \Delta(\alpha_2 - \alpha_1)]^{\circ}$ standards: three (400, 060, 006) every 97 data; no decay data collected: 2844 independent reflections coupled **e** (cryst)-20 (counter) observed.

which, along with a rather short tungsten-tungsten distance **of 2.970 (2) A** and the compound's diamagnetism, suggests some metal-metal interaction. The two tung-

Figure 1. View of the $[W_2(CPMe_3)_2(PMe_3)_4Cl_4]^{2+}$ ion $(ORTEP-II)$ diagram, 30% ellipsoids). The dication lies on a crystallographic inversion center.

sten-(bridging chloride) distances are equivalent with W-Cl(1) = **2.458 (7) A** and W-C1(1*) = **2.470** (8) **A.** An unusual feature is that the $W-(\mu$ -Cl) distances are *shorter*

Table IV. Selected Distances (A) and Angles $(\text{deg})^a$ for $[W_2(CPMe_2)_2(PMe_3)_4Cl_4][AlCl_4]_2$

a Atoms marked with an asterisk (*) are related to the basic asymmetric unit by the transformation: $-x$, $-y$, $1-z$.

Table V. Final Positional and Isotropic Thermal Parameters for $(W,(CPMe_{\text{c}}), (PMe_{\text{c}}), C)$. [[AlCl,],

			Usitional and isotropic energy ratameters for $\frac{1}{2}$ $\frac{1}{2}$ (Or $m\epsilon_3$ / ₂ (F $m\epsilon_3$ / ₄ ϵ ϵ_4) $\frac{1}{2}$		
atom	$\pmb{\mathcal{X}}$	\mathcal{Y}	\boldsymbol{z}	B, \mathbb{A}^2	
W	0.10342(10)	0.02542(5)	0.43368(18)		
Cl(1)	$-0.01197(66)$	0.06726(32)	0.58142(60)		
Cl(2)	0.30018(69)	$-0.00909(35)$	0.55472(67)		
P(1)	0.24029(74)	0.11175(36)	0.46372(77)		
P(2)	0.24145(75)	$-0.01333(37)$	0.28701(73)		
$\text{Al}(1)$	0.3809(10)	0.15267(52)	$-0.02496(88)$		
P(3)	$-0.12778(79)$	0.08256(40)	0.24016(74)		
Cl(4A)	0.4024(22)	0.2211(10)	$-0.1261(19)$	6.06(56)	
Cl(4B)	0.3829(28)	0.2035(12)	0.8502(23)	7.88(80)	
Cl(5A)	0.2490(35)	0.0878(14)	$-0.0624(27)$	11.2(10)	
Cl(5B)	0.2020(29)	0.1075(12)	0.9319(22)	8.52 (72)	
Cl(6A)	0.3755(51)	0.1896(24)	0.1286(42)	9.8(15)	
Cl(6B)	0.3065(33)	0.1965(16)	0.1054(25)	5.87(76)	
Cl(6C)	0.3381(48)	0.1757(17)	0.1317(32)	6.23(91)	
Cl(7)	0.5657(15)	0.11046(64)	$-0.0131(13)$	10.24(61)	
C(1)	$-0.0089(28)$	0.0555(13)	0.3292(24)		
C(11)	0.1531(36)	0.1708(16)	0.4114(38)		
C(12)	0.4028(32)	0.1199(19)	0.4155(37)		
C(13)	0.2819(31)	0.1285(14)	0.6034(27)		
C(21)	0.3537(57)	0.0310(18)	0.2109(41)		
C(22)	0.1394(32)	$-0.0411(18)$	0.1820(27)		
C(23)	0.3554(40)	$-0.0715(19)$	0.3285(30)		
C(31)	$-0.2353(37)$	0.0259(15)	0.1824(31)		
C(32)	$-0.0457(44)$	0.1170(19)	0.1301(32)		
C(33)	$-0.2332(40)$	0.1373(27)	0.2921(36)		
H(11A)	0.2068	0.2024	0.4232	$6.5\,$	
H(12A)	0.4415	0.1540	0.4285	6.5	
H(13A)	0.3336	0.1607	0.6107	6.5	
H(21A)	0.4012	0.0130	0.1572	6.5	
H(22A)	0.1962	-0.0558	0.1274	6.5	
H(23A)	0.4034	-0.0858	0.2721	6.5	
H(31A)	-0.3015	0.0422	0.1298	6.5	
H(32A)	-0.1077	0.1309	0.0789	6.5	
H(33A)	-0.2974	0.1517	0.2457	6.5	
H(11B)	0.1344	0.1671	0.3357	$6.5\,$	
H(11C)	0.0670	0.1756	0.4431	$6.5\,$	
H(12B)	0.4654	0.0923	0.4372	6.5	
H(12C)	0.3967	0.1166	0.3346	6.5	
H(13B)	0.2002	0.1323	0.6421	6.5	
H(13C)	0.3354	0.0997	0.6378	6.5	
H(21B)	0.3016	0.0605	0.1748	6.5	
H(21C)	0.4227	0.0496	0.2561	$6.5\,$	
H(22B)	0.0844	-0.0705	0.2055	6.5	
H(22C)	0.0803	-0.0150	0.1485	6.5	
H(23B)	0.4177	-0.0624	0.3860	6.5	
H(23C)	0.2985	-0.1015	0.3551	6.5	
H(32B)	0.0173	0.1441	0.1549	6.5	
H(32C)	0.0125	0.0902	0.0923	6.5	
H(33B)	-0.2817	0.1243	0.3561	$6.5\,$	
H(33C)	-0.1749	0.1666	0.3230	6.5	

Figure **2.** View of the cation, showing the geometry of the $W_2(\mu$ -C1)₂ core. Note the approximate C_{2h} symmetry of the W_2^2 (CPMe₃)₂(P)₄Cl₄ moiety.

than the terminal tungsten-chloride distance, $W-CI(2)$ = 2.545 (8) **A.** This can be attributed to the trans-lengthening influence of the CPMe₃ ligand, rather than to any feature of the molecule that would result in especially short $W-(\mu$ -Cl) bond lengths. The metal-metal-bonding interaction results in some overall distortions of the octahedral geometry; for example Cl(2)-W-C(1) = 167.8 (10)^o, Cl-

 $(1*)$ -W-P(1) = 168.7 (3)°, Cl(1)-W-P(2) = 174.9 (3)°, and $P(1)-W-P(2) = 97.7$ (3)^o.

The two PMe₃ groups are equivalent $(W-P(1) = 2.543)$ (9) Å and $W-P(2) = 2.535$ (9) Å), and within these ligands the P-C distances range from 1.74 **(4) A** through 1.88 (4) **A,** averaging 1.81 (5)

The most interesting feature of this molecule to **us** is the trimethylphosphonium methylidyne (CPMe₃) ligand. The W-C(1) distance of 1.83 (3) Å is comparable to other tungsten-alkylidyne distances (cf. $W=C = 1.785$ (8) Å in W(CCMe3) (CHCMe3) (CH2CMe3)(dmpe) **,28** 1.807 (6) **A** in **W(CH.A1Me2-xC1,+x)(PMe3)3(C1),11** 1.813 (5) **A** in W- $(CA1_2Me_4Cl)(PMe_3)_2(CH_3)(\eta^2-C_2H_4),$ ¹⁴ 1.82 (2) Å in W(C- $(p-t0)$) $(\eta^5-C_5H_5)(CO)_2^{29}$ and 1.89 (2) Å in W(CMe)-

$$
\quad \text{as} \quad
$$

$$
[\sigma] = \left[\sum_{i=0}^{i=N} (d_i - \bar{d})^2 / (N-1)\right]^{1/2}
$$

(28) Churchill, M. R.; Youngs, W. J. *Inorg. Chem.* 1979, 18, 2454.
(29) Huttner, G.; Frank, A.; Fischer, E. O. *Isr. J. Chem.* 1976–1977, *15,* **133.**

⁽²⁷⁾ Estimated standard deviations of average values are calculated

 $(PMe₃)₄(CH₃)¹³$). It is also interesting to note that the C(1)- $\overline{P}(3)$ distance of 1.71 (3) \AA is substantially shorter than the three $P(3)$ -C(methyl) distances $(1.88(4), 1.85(4),$ 1.84 (5) A). While some of the shortening can be ascribed to the greater s character of the C(1) orbital used to form the bond to $P(3)$ (approximately sp), one could entertain the possibility that there is some multiple-bond character to the $C(1)-P(3)$ linkage. In fact, an ylide-like valence bond description $(Me_3P=C=W^+)$ is not out of the question. However, the question as to whether this or the alternative description (Me₃P⁺—C \equiv W) is more valid is moot when it comes to rationalizing the relatively large W-C(1)-P(3) angle of 174.0 (19)^o. We believe this angle is not 180° solely as a result of steric interaction between the $PMe₃$ group bound to the methylidyne carbon atom and the two bound to the metal in positions cis to the phosphinomethylidyne ligand.

Conclusion

It is now fairly certain that the terminal methylidyne ligand in $W(CH)(PMe_3)_4Cl$ is quite reactive, once a PMe_3 ligand is removed. The methylidyne ligand appears to be nucleophilic; it binds both Lewis and Brønsted acids. The methylidyne proton can be removed under a variety of conditions to yield main-group-substituted methylidyne complexes. There should be many strange reactions of this type, the mechanisms of which may remain relatively obscure for some time. What is most needed at this point are other types of terminal methylidyne complexes to compare with $W(CH)(PMe_3)$ ₄Cl.

It is interesting to speculate that coupling reactions involving methylidyne (and methylene) ligands with carbon monoxide might be faster for steric reasons than **analogous** reactions involving substituted methylidyne and methylene complexes. Conceivably this rate difference could be large enough to allow CO to be reduced selectivity to a C_2 product via a process involving formation of methylidyne and/or methylene ligands and coupling them with CO.

Experimental Section

General Procedures. *All* experiments were performed under N_2 in a Vacuum Atmospheres drybox or with standard Schlenk techniques. Solvents were dried and purified under nitrogen by standard techniques. NMR chemical shifta are reported in parts per million and are referenced to Me4Si for 'H and **'9c** *NMR, 85* % for ³¹P NMR, $Al(H_2O)_6^{3+}$ for ²⁷Al NMR, and CCl₃F for ¹⁹F NMR. PMe₃,³⁰ dmpe,³¹ and W(CH)(PMe₃)₄Cl^{4b} were prepared by published methods. AlCl₃ was sublimed prior to use.

X-ray Structural Procedures. A small, approximately equidimensional crystal was mounted on the Syntex P2₁ automated four-circle diffractometer and diffraction data were collected as described previously.³² Details are given in Table III. All data were corrected for the effects of absorption and for Lorentz and polarization effects. It should be noted that the crystals gave a rather weak diffraction pattern (consistent with the later observed disordered structure) with virtually no data observable beyond $2\theta = 40^{\circ}$.
The positions of the symmetry-related tungsten atoms were

determined from a Patterson map; all remaining non-hydrogen atoms were located from difference Fourier maps. The $AICl_4^$ anion is severely disordered but the eight independent aluminum-(partial)chlorine **distances are** self-consistent and range from Al(1)-Cl(4B) = 2.02 (3) through Al(1)-Cl(6A) = 2.15 (6) Å.

(Attempts to refie this system anisotropically were unsuccessful.) Fortunately, the $[W_2(CPMe_3)_2(PMe_3)_4Cl_4]^{2+}$ ion is ordered, and all atoms were well-behaved under anisotropic refinement.

Convergence was reached with $R_F = 8.7\%$ by using those 2408 reflections with $|F_0| > 3\sigma(F_0)$. A final difference Fourier map was devoid of significant detail except in the vicinity of the $AICl_4^-$ ion. All hydrogen atoms were included in calculated positions

(staggered tetrahedral geometry with $d(C-H) = 0.95 \text{ Å}^{33}$). Final positional parameters are presented in Table V.

Preparation of Compounds. W(CH)(PMe₃)₄I. W(CH)- $(PMe₃)₄Cl$ (3.0 g, 5.6 mmol) was suspended in 50 mL of ether and $Me₃SiI$ (1.25 g, 6.3 mmol) was added at 25 °C. After 12 h the volatiles were removed in vacuo. The crude product contained a small amount of starting material (by ${}^{31}P$ NMR). The crude product was dissolved in 40 mL of toluene, and an additional 0.1 g of Me3SiI was added. After 12 h the solution was stripped to dryness, and the residue was dissolved in THF. Concentration of the solution yielded 3.31 g of pure W(CH)(PMe₃)₄I (94%): ¹H
NMR (C₆D₆) δ 6.45 (quin, 1, ³J_{HP} = 3.7 Hz, ²J_{HW} = 84 Hz, WCH), 1.61 (virtual t, 36, $^{2}J_{\text{HP}}$ = 3.0 Hz, PMe₃); ¹³C NMR (C₆D₆) δ 248.7 (d of quin, ${}^2J_{\rm CP} = 13.9$ Hz (q), $J_{\rm CH} = 136$ Hz (d), WCH), 26.6 (q, $J_{\rm CH} = 128$ Hz, PMe₃); ³¹P NMR (C₆D₆) δ -34.6 (s, $J_{\rm PW} = 281$ Hz, \overline{PMe}_3). The analogous chloride complex W(CH)(\overline{PMe}_3)₄Cl has been analyzed^{4b} and its X-ray structure determined.⁶

 $W(CH)(PMe₃)₄(CF₃SO₃)$, $W(CH)(PMe₃)₄Cl$ (3.0 g, 5.6 mmol) and 1.1 equiv of $\widehat{M}e_3Si(OTf)$ (1.35 g, 6.1 mmol) were combined in 30 mL of toluene at 25 "C. After 16 h, the yellow solution was filtered and concentrated to **5** mL to give 3.5 g of pure W- $(CH)(PMe₃)₄(CF₃SO₃)$ (96%): ¹H NMR ($C₆D₆$) δ 6.54 (quin, 1, ${}^{3}J_{\text{HP}}$ = 2.6 Hz, ${}^{2}J_{\text{HW}}$ = 84 Hz, WCH), 1.47 (virtual t, 36, ${}^{2}J_{\text{HP}}$ = 2.8 Hz, PMe₃); ¹³C NMR (C₆D₆) δ 264.9 (d, J_{CH} = 150 Hz, WCH), 120.5 (q, $J_{CF} = 319$ Hz, CF_3SO_3), 24.6 (q, $J_{CH} = 125$ Hz, PMe₃); ³¹P NMR (toluene) δ -16.2 (s, $J_{PW} = 288$ Hz, PMe₃). Anal. Calcd for $WC_{14}H_{37}F_3O_3P_4S$: C, 25.85; H, 5.69. Found: C, 26.04; H, 5.81.

 $[{\bf W}({\bf CH}_2)({\bf PMe}_3)_{4}]$ [${\bf CF}_3{\bf SO}_3$]. To ${\bf W}({\bf CH})({\bf PMe}_3)_{4}$ I (1.0 g, 1.6 mmol) dissolved in 40 mL of ether was added 1.0 equiv of CF_3 - $SO₃H$ (0.24 g) in several milliliters of ether. A precipitate formed immediately. After 1 h, the precipitate was fiitered off and washed with 2 **X** 15 mL of toluene. It was dissolved in dichloromethane, and the solution was filtered and concentrated to 3 mL. Chlorobenzene (15 **mL)** was added, and the solution was cooled to -30 "C. **After** 1 day, 0.92 g of red-brown crystals was collected (74%): ¹H NMR (CD₂Cl₂) δ -0.80 (quin, 2, J_{HP} = 0.9 Hz, J_{HW} = 53 Hz, WCH_2), 1.88 (virtual t, 36, $J_{HP} = 3.4$ Hz, PMe₃); ¹H NMR (CD₂Cl₂, 190 K) δ -1.0 (br s, WCH₂), 1.85 (br s, PMe₃); ¹H NMR (CD₂Cl₂, 153 K) δ -9.0 (br s, WCH^TH^B), 1.85 (br s, PMe₃); ¹³C NMR (CD₂Cl₂) δ 218.9 (t of quin, $J_{\text{CH}} = 121 \text{ Hz}$ (t), $J_{\text{CP}} = 14.5 \text{ Hz}$, WCH_2 , 121.3 (q, $J_{CF} = 322 \text{ Hz}$, CF_3SO_3), 24.6 (virtual t of q, J_{CH} $= 13 \text{ Hz (q)}$, $J_{\text{CP}} = 14.6 \text{ Hz}$, PMe₃); ³¹P NMR (CH₂Cl₂) δ -46.9 $(s, J_{PW} = 246 \text{ Hz}, \text{ PMe}_3)$. The analogous chloride complex has been analyzed^{4b} and the X-ray structure of $[W(CH_2)$ - $(PMe_3)_4I$] $[CF_3SO_3]$ determined.⁹

 $(CF₃SO₃)$ (3.0 g, 4.6 mmol) was suspended in 50 mL of ether at 25 °C, and 1.0 equiv of CF_3SO_3H (0.69 g) in 5 mL of ether was added over a period of several minutes. A precipitate formed immediately. After 20 min the precipitate was filtered off washed with 2 **X** 10 mL of toluene. The product was dissolved in cold dichloromethane $(-30 °C)$. The solution was filtered and concentrated to 3 mL, and 20 mL of cold chlorobenzene was added. After the solution was left standing for 1 day at -30 °C, 3.65 g of orange, crystalline $[W(CH_2)(PM\bar{e}_3)_4(CF_3SO_3)][CF_3SO_3]$ was collected (98%): ¹H NMR (CD₂Cl₂, 280 K) δ 0.06 (quin, 2, ³J_{HP} $=$ 2 Hz, ²J_{HW} = 57 Hz, WCH₂), 1.85 (br s, 36, PMe₃);¹³C NMR $(CD_2Cl_2, 265 \text{ K})$ δ 245.3 (br s, WCH₂), 120.9 (q, J_{CF} = 320 Hz, CF_3SO_3 , 22.3 (br s, PMe₃); ³¹P NMR (CH₂Cl₂, 300 K) δ -25.7 (s, J_{PW} = 247 Hz, PMe₃). This methylene complex decomposes rapidly in dichloromethane at 25 °C to produce a white solid and a colorless solution. The molecular was characterized by NMR methods only, in view of its relationship to similar compounds. $[\mathbf{W}(\mathbf{CH}_2)(\mathbf{PMe}_3)_4(\mathbf{CF}_3\mathbf{SO}_3)][\mathbf{CF}_3\mathbf{SO}_3]$. $\mathbf{W}(\mathbf{CH})(\mathbf{PMe}_3)_4$ -

 $W(CH)(PMe₃)₄(BH₄)$. $W(CH)(PMe₃)₄(CF₃SO₃)$ (1.0 g, 1.5) mmol) was dissolved in 20 mL of THF at 25 °C, and NaBH₄ (0.23 g, 6.2 mmol) was added rapidly as a solid. After the mixture was

⁽³⁰⁾ Wolfaberger, **W.;** Schmidbaur, H. *Synth. React. Inorg. Met.-Org. Chem.* **1974.4. 149.**

⁽³¹⁾ Bart; B. J.; Chatt, J.; **Hussain,** W.; Leigh, G. J. *J. Organomet. Chem.* **1979,182, 203.**

⁽³²⁾ Churchill, **M.** R.; Lashewycz, R. **A,;** Rotella, F. J. *Znorg. Chem.* **1977,** *16,* **265.**

stirred for 16 h, the volatiles were removed in vacuo and the residue was extracted with chlorobenzene. The solution was concentrated to 2 mL, *4* mL of pentane was added, and the solution was cooled to -30 °C. After 1 day 0.44 g of red-orange crystals was collected (56%): ¹H NMR (C_eD₆) δ 7.39 (br s, 1, ²J_{HW}) $= 80$ Hz, WCH), 1.53 (br s, 36, PMe₃), -1.70 (br q, $J_{HB} = 82$ Hz, J_{CH} = 128 Hz, PMe₃); ³¹P NMR (PhCl) δ -23.2 (s, J_{PW} = 282 Hz, PMe₃); IR (Nujol) 2320 (br, m, ν_{BH}), 2050 cm⁻¹ (br, w, ν_{BH}). Anal. Calcd for WC13H41BP4: C, 30.26; H, 7.95. Found: C, 29.75; H, 7.83. BH₄); ¹³C NMR (C₆D₆) δ 259.5 (d, J_{CH} = 139 Hz, WCH), 23.4 (q,

Observation of $W(CH)(C_2H_4)(PMe_3)_3(CF_3SO_3)$ **.** [W-**(CH2)(PMeJ4(CF3S03)][CF3S03]** (3.0 g, 3.8 mmol) was suspended in **40** mL of THF at 25 "C, and the solution was placed under 30 psi of ethylene. After 1 day, the yellow-brown solution was concentrated to dryness and the residue was extracted with **50** mL of chlorobenzene. Upon filtration of the extracts, **0.55** g of $[PMe_3H][CF_3SO_3]$ (2.3 mmol, 63%) was collected. The filtrate was concentrated to **5** mL, and the mother liquor was decanted from **0.5** g of solid. The solid was crystallized from a 1:2 mixture of dichloromethane and THF at -30 "C to give 0.33 g **(0.55** mmol, 14%) of **W(CH)(C2H4)(PMe3),(CF3SO3):** 'H **NMR** (CDCl,) 6 5.89 WCH), 1.77 (virtual t, 18, ²J_{HP} = 3.5 Hz, PMe₃), 1.69 (d, 9, ²J_{HP} = 7.8 Hz, PMe₃), 2.1 (m, 2, CHH'CHH'), 1.3 (m, 2, CHH'CHH'); (d of t, 1, ${}^{3}J_{HP} = 2.0$ Hz (d), ${}^{3}J_{HP} = 3.9$ Hz (t), ${}^{2}J_{HW} = 83$ Hz, ¹³C NMR (CD₂Cl₂) δ 268.3 (d of t of d, ²J_{CP} = 8.3 Hz (d), ²J_{CP} = 16.6 Hz, *J_{CH}* = 142 Hz (d), WCH), 119.6 (q, J_{CF} = 319.6 Hz, CF₃SO₃), 36.2 (t, $J_{CH} = 154$ Hz, C₂H₄), 22.2 (virtual t of q, J_{CP}
= 13.9 Hz (t), $J_{CH} = 127.9$ Hz (q), PMe₃), 20.3 (d of q, $J_{PC} = 25$ Hz (d), $J_{\text{CH}} = 131 \text{ Hz}$ (q), PMe₃); ³¹P NMR (CH₂Cl₂) δ -11.0 (d, ${}^2J_{\text{PP}} = 34.2 \text{ Hz}$, $J_{\text{PW}} = 215 \text{ Hz}$, PMe₃), -17.5 (t, ${}^2J_{\text{PP}} = 34.2 \text{ Hz}$, $J_{PW} = 230$ Hz, PMe₃). The presence of small amounts of impurities prevented reproducible elemental analyses.

The chlorobenzene mother liquor was concentrated to dryness, and the residue was extracted with ether to yield a yellow solution and a brown oily solid. The ether solution was filtered and concentrated to dryness to yield 0.7 g of $W(CH)(PMe₃)₄(CF₃SO₃)$ $(1.3 \; \text{mmol}, \; 34\; \%)$

 $W(CHAIMe₃)(PMe₃)₃Cl. W(CHMe₃)₄Cl (1.0 g, 1.9 mmol)$
was suspended in 10 mL of pentane, and AlMe₃ (0.27 g, 3.8 mmol) was added at 25 °C. The pale yellow solution became red and after 8 h was filtered and concentrated to dryness. The AlMe₃.PMe₃ byproduct was removed by sublimation at 40 °C. The residue was washed with 30 **mL** of pentane at -30 "C to yield 0.85 g of crude W(CHAlMe₃)(PMe₃)₃Cl (85%). The product could be recrystallized from a mixture of toluene and pentane: ¹H NMR $(C_6D_6) \delta 6.55$ (d of t, 1, ${}^3J_{HP} = 8.8$ Hz (d), ${}^3J_{HP} = 1.8$ Hz (t), ${}^2J_{HW} = 84$ Hz, CHAlMe₃), 1.2 (m, 27, PMe₃), -0.20 (s, 6, AlMe₂Me'), -0.28 (s, 3, AlMe₂Me'); ¹³C NMR (C₆D₆) δ 229.6 (m, of d, -0.28 (s,3, A1Me2Me'); 13C NMR (C&) 6 229.6 (m, of d, *JCH* = 139 Hz, CHAlMe,), 27.1 (d of q, *JcH* 128 Hz, *Jcp* 28 Hz, PMe₃), -2.9 (br q, $J_{CH} = 102$ Hz, AlMe₂Me'), -15.2 (q, $J_{CH} = 112$ Hz, $\text{AlMe}_2\text{Me}'$; 31 P NMR (C₆D₆) δ -23.0 (s, 2, $J_{\text{PW}} = 298$ Hz, PMe₃), -22.8 (s, 1, $J_{PW} = 300$ Hz, PMe₃). The molecule was characterized by **NMR** methods only in view of its great sensitivity to air and its similarity to the AlMe₂Cl analogue below.

W(CHAIMe₂Cl)(PMe₃)₃Cl. W(CH)(PMe₃)₄Cl (3.0 g, 5.6 mmol) was dissolved in 60 mL of toluene, and 2 equiv of AlMe₂Cl (1.02 g, 11.0 mmol) was added. After 24 h the red solution was filtered and concentrated to **5** mL to yield 1.88 g of W- (CHAlMe₂Cl)(PMe₃)₃Cl (61%): ¹H NMR (C₆D₆) δ 6.64 (d of t, 1, ³J_{HP} = 9.9 Hz (d), ³J_{HP} = 2.2 Hz (t), ²J_{HW} = 82 Hz, CHAlMe₂Cl), 1.3 (m, 27, PMe₃), 0.021 (s, AlMe₂Cl), -0.10 (s, AlMe₂Cl); ¹³C NMR (C_6D_6) δ 229.9 (two d of t, $J_{CH} = 144$ Hz, $^2J_{CP} = 22$ Hz (d), $^2J_{CP}$
= 7.3 Hz (t), CHAlMe₂Cl), 26.6 (d of q, $J_{CH} = 127$ Hz, $J_{CP} = 29$ Hz, PMe,), 19.3 (two d of q, *JcH* = 132 Hz, *'Jcp* = 4.9 HZ (d), *Jcp* = 20 Hz (d), PMe,), 18.7 (two d of *q, 2Jcp* = 4.9 Hz, *Jcp* = 22 Hz, *J_{CH}* = 122 Hz, PMe₃); ³¹P NMR (C₆D₆) δ -25.5 (d, ²J_{PP} = 5.5 Hz, J_{PW} = 292 Hz, $\mathcal{P}_{\mathbf{p}}$ = 232 Hz, FMe₃), -25.5 (d, $\mathcal{P}_{\mathbf{p}}$ = 5.5 Hz, $J_{\mathbf{p}}$ = 232 Hz,
PMe₃), -22.5 (d of d, ${}^{2}J_{\mathbf{p}}$ = 5.5 Hz, ${}^{2}J_{\mathbf{p}}$ = 5.5 Hz, $J_{\mathbf{p}}$ = 338 Hz,
PMe₃); ²⁷Al NMR (PhCH₃, 23.3 M CHAlMe₂Cl). Anal. Calcd for $WC_{12}H_{34}A1Cl_{2}P_{3}$: C, 26.05; H, 6.15. Found: C, 26.39; H, 6.20.

W($CA1_2Me_4Cl$)(PMe_3)₂(CH_3)(C_2H_4). W(CH)(PMe_3)₄Cl (2.0) g, 3.7 mmol) and 3 equiv of A1Me3 (0.81 g, 11.2 mmol) were combined in 10 **mL** of toluene. The reaction vessel was pressurized with ethylene (30 psi), and after 1 day the red solution had become pale yellow-brown and a tan precipitate had formed. All volatile components were removed in vacuo, and the residue was dissolved in chlorobenzene. The solution was concentrated to 7 mL, 7 **mL** of pentane was added, and, after 1 day at -30 °C, 1.3 g of tan crystals was collected. A second crop of **0.5** g was obtained from the mother liquor in the same manner **(total** 1.8 g, **90%):** 'H NMR (C_6D_6) δ 1.91 (br m, 2, C_2H_4), 1.18 (virtual t, 18, $^2J_{HP} = 3.5$ Hz, PMe₃), 0.19 (t, 3, ² J_{HP} = 17 Hz, WMe), 0.09 (m, 2, C₂H₄), -0.21 (br s, 12, AlMe); ¹³C NMR (C₆D₆) δ 308.3 (s, WCAl₂Me₄Cl), 30.9 10.6 \overrightarrow{Hz} (t), WCH₃), 15.7 (virtual t of **q**, $J_{CH} = 127.4 \overrightarrow{Hz}$ (q), $J_{CP} = 13.3 \text{ Hz}$ (t), PMe₃), -5 (br s, AlMe); ³¹P NMR (C₂H₄Cl₂) δ 4.1 = 13.3 Hz (t), PMe₃), -5 (br s, AlMe); ³¹P NMR (C₂H₄Cl₂) δ 4.1 (s, *J*_{pw} = 200 Hz, PMe₃); ²⁷Al NMR (CH₂Cl₂, 23.3 MHz) $\delta \sim 150$ $(-2.5$ KHz wide, W(CAl₂Me₄Cl)). The crystal for the X-ray study14 was selected from a homogeneous, crystalline sample. $(t, J_{\text{CH}} = 151 \text{ Hz}, \text{C}_2\text{H}_4)$, 25.4 (q of t, $J_{\text{CH}} = 119 \text{ Hz}$ (q), $^2J_{\text{CP}} =$

 $W(CHCOA1Cl₃)(PMe₃)₃(CO)Cl.$ $W(CH)(Cl)(PMe₃)₄(2.0 g,$ 3.7 mmol) was dissolved in *10* mL of chlorobenzene, and AlC13 (1.0 g, 7.5 mmol) was added rapidly as a solid. The mixture was then stirred under 30 psi of carbon monoxide at 25 °C for 1 day. The resulting dark brown solution contained a precipitate which was filtered off and washed with 10 mL of acetonitrile at -10 °C. The orange-red precipitate was dissolved in dichloromethane, and the solution was filtered. The dichloromethane solution was concentrated to 3 mL and to give 1.2 g of orange solid *(50%):* 'H (d, 9, J_{HP} = 7.5 Hz, PMe₃), 1.4 (t, 18, J_{HP} = 4.4 Hz, PMe₃); ¹³C NMR (CD2C12) 6 230.8 **(br** s, WCO), 213.5 (d, *Jcp* = 39 Hz, WCO), 194.4 (d of d, J_{CH} = 203 Hz, J_{CP} = 22.2 Hz, W(CHCOAlCl₃)), 18.7 (br q, $J_{\text{CH}} = 130$ Hz, PMe₃), 18.4 (q of d, $J_{\text{CH}} = 130$ Hz, $J_{\text{CP}} = 16.7$ Hz, PMe₃); ³¹P NMR (CH₂Cl₂) δ -25.7 (d, $J_{\text{PP}} = 19.5$ Hz, $J_{\text{PW}} = 264$ Hz, PMe₃), -30.5 (t, $J_{\text{PP}} = 19.5$ Hz, J_{PW} $= 264$ Hz, PMe₃), -30.5 (t, $J_{PP} = 19.5$ Hz, $J_{PW} = 144$ Hz, PMe₃);
IR (Nujol) 1970, 1605 cm⁻¹ Λ (1.6 \times 10⁻³ M, CH₂Cl₂) = 1.95 Ω^{-1} $cm^{-1} M^{-1}$ NMR (CD₂Cl₂) δ 12.1 (d, 1, $J_{HP} = 12.5$ Hz, WCHCOAlCl₃), 1.8

W(**CHCOAlMe**₃)(**PMe**₃)₃(**CO**)**Cl.** W(**CH**)(**Cl**)(**PMe**₃)₄ (1.0 g, 1.9 mmol) was dissolved in toluene, and AlMe_3 (0.13 g, 1.9 mmol) was added at 25 °C. The mixture was stirred under 30 psi of CO at 25 "C for 2 days, and the solvent was removed in vacuo. The residue was dissolved in dichloromethane, and the solution was filtered and concentrated to 4 mL. Pentane (3 mL) was added, and after the solution was left standing at -10 °C for 1 day, 0.54 g of orange-red crystals was collected. A second crop of 0.21 g was obtained from the mother liquor by the same procedure: total yield 0.75 g (83%); ¹H NMR (CD₂Cl₂) δ 12.75 (br d, 1, $J_{HP} = 19$ Hz , CHCOAlMe₃), 1.70 (d, 9, $J_{HP} = 6.7$ Hz, PMe₃), 1.36 (t, 18, J_{HP} = 3.7 Hz, PMe₃), -1.0 (br s, 9, AlMe₃); ¹³C NMR (CD₂Cl₂) 226.3 (s, WCO), 215.2 (d, $J_{\rm CP}$ = 35 Hz, WCO), 196.2 (br d, $J_{\rm CH}$ = 200 Hz, CHCOAlMe₃), 18.3 (br m, $J_{\rm CP}$ = 5.8 Hz, PMe₃), 18.6 (d, $J_{\text{CP}} = 17.4 \text{ Hz}$, PMe₃), -7.8 (br q, $J_{\text{CH}} = 110 \text{ Hz}$, AlMe₃); ³¹P NMR (CH_2Cl_2) δ -25.4 (d, J_{PP} = 19.5 Hz, PMe₃), -31.3 (t, J_{PP} = 20.1 Hz, PMe₃); IR (Nujol) 1960, 1615 cm⁻¹. Anal. Calcd for $WC_{16}H_{37}AICIO_2P_3$: C, 30.58; H, 6.29. Found: C, 30.12; H, 6.18. The molecule was positively identified by X-ray structural studies.²¹

W(CH¹³COAlMe₃)(PMe₃)₃(¹³CO)Cl. W(CH)(PMe₃)₄Cl (0.3) g, 0.6 mmol) and AlMe_3 (0.04 g, 0.6 mmol) were combined in 10 mL of toluene, and the solution was degassed by three freezepump-thaw cycles. Five equivalents of ${}^{13}CO$ (100 mL, 480 torr) were transferred to the reaction vessel through the use of a Toepler pump. The reaction mixture was stirred for **2** days. The solution was concentrated to dryness, and the residue was extracted with dichloromethane. The extract was filtered and concentrated to 1 mL, and 1 mL of pentane was added. After 1 day at -30 "C, 0.2 g of red-orange crystals was collected (60%): ¹H NMR (CDCl₃) δ 12.34 (d of d, 1, ²J_{HC} = 3.8 Hz, ³J_{HP} = 15 Hz, CH¹³COAIMe₃); WCO); all other ¹H and ¹³C NMR signals were unaffected by ¹³CO enrichment; IR (Nujol) 1915 (s, sh, W¹³CO), 1575 cm⁻¹ (s, sh, $HC^{13}COAlMe₃$. ¹³C NMR (CD₂Cl₂) δ 226.1 (s, WCO), 215.0 (d, ²J_{CP} = 35 Hz,

W(CH₂PMe₃)(PMe₃)₂(CO)₂Cl₂. W(CH)(H)(PMe₃)₃Cl₂ (0.93 g, 1.9 mmol) was dissolved in **5** mL of chlorobenzene, the solution was cooled to 0 °C in a pressure bottle, and 40 psi of CO was added. After 1.5 h at $0 °C$ the red solution had become yellow and a yellow soild had precipitated. The mixture was concentrated to dryness and the residue extracted with dichloromethane. The extract was filtered through Celite and concentrated to 2 mL, and 4 mL of ether **was** added. After 1 day at -30 "C, 0.55 g of yellow

crystalline $W(CH_2PMe_3)(PMe_3)_2(CO)_2Cl_2$ was collected (53%): ¹H NMR (CDCl₃) δ 1.83 (d, 9, ²J_{HP} = 13.2 Hz, CH₂PMe₃), 1.46 (br virtual t, 18, PMe₃), 0.80 (m, 2, CH_2PMe_3); ¹³C NMR (CDCl₃) 131 Hz (q) , $J_{CP} = 55 \text{ Hz (d)}$, CH_2PMe_3), 14.5 (d, $J_{CP} = 32 \text{ Hz}$, PMe₃), 13.2 (d, $J_{\rm CP}$ = 23 Hz, PMe₃), 3.5 (t of t, $J_{\rm CP}$ = 29 Hz, $J_{\rm CP}$ ≈ 125 Hz, $CH_2P\text{Me}_3$); ³¹P NMR (CH₂Cl₂) δ -10.0 (d, $^2J_{PP} = 24$ Hz , $J_{\text{PW}} = 168 \text{ Hz}$, PMe_3), 35.2 (t, $^2 J_{\text{PP}} = 23 \text{ Hz}$, CH_2PMe_3); IR (Nujol) 1895 (s, sh) 1772 cm⁻¹ (s, sh); conductivity (CH₂Cl₂, 273 K) $\Lambda = 0.49 \Omega^{-1}$ cm⁻¹ M⁻¹ at 1.02×10^{-3} M. δ 273.5 (t, ²J_{CP} = 39 Hz, CO), 237.5 (s, CO), 15.3 (d of q, J_{CH} =

This product is unstable in the solid state; the yellow crystals become brown after 12 at 25 "C. A yellow solution of the pure compound in chloroform becomes brown after several hours at 25 °C . It could be characterized only by comparison of its NMR spectra with those of ita stable relative below.

 $(PMe_3)_4Cl$ [CF_3SO_3] (0.42 g, 0.61 mmol) was dissolved in 5 mL of 1,2-dichloroethane, and the solution was placed under 30 psi of CO. After 24 h the red solution had become yellow. Upon concentration of the solution to 2 mL, addition of 10 mL of toluene, and cooling to -30 °C for 1 day, 0.30 g of yellow crystals was obtained. A second crop of 0.05 g was collected from the mother liquor in a similar manner (total 0.35 g, 78%): 'H NMR $(CDCl_3)$ δ 1.79 (d, 9, ² J_{HP} = 13.2 Hz, PMe₃), 1.38 (d, 9, ² J_{HP} = 8.3 Hz, PMe₃), 1.73 (d, 9, PMe₃), 1.66 (d, 9, PMe₃), 0.95 (m, 2, CH_2PMe_3); ¹³C *NMR* (CDCl₃) δ 250.8 (m, CO), 228 (m, CO), 120.9 $(q, J_{CF} = 319 \text{ Hz}, \text{CF}_3\text{SO}_3), 18.6 \text{ (d, } J_{CP} = 34.5 \text{ Hz}, \text{PMe}_3), 16.7,$ 16.0, and 13.2 (each a d, $J_{CP} = 24$ Hz, PMe₃), 2.3 (br t, $J_{CH} = 122$ Hz, CH_2PMe_3); ³¹P NMR (CDCl₃) δ 33 (m, PMe₃), -5 (m, PMe₃), -11 (m, PMe₃), -33 (m, PMe₃); IR (Nujol) 1895 (s, sh), 1790 cm⁻¹ (s, sh); conductivity $(C_2H_4Cl_2)$ $\Lambda = 17.3 \Omega^{-1}$ cm⁻¹ M⁻¹ at 0.72 \times 10^{-3} M. Anal. Calcd for $WC_{16}H_{38}CIF_3O_5P_4S$: C, 25.90; H, 5.12. Found: C, 26.10; H, 5.28. The structure was positively identified by X-ray methods. 23 $[{\bf W}({\bf CH}_2{\bf PMe}_3)({\bf PMe}_3)_3({\bf CO})_2{\bf C}1][{\bf CF}_3{\bf SO}_3].$ [W(CH₂)-

 $[W_2(CPMe_3)_2(PMe_3)_4Cl_4][AICl_4]_2$. $W(CH)(PMe_3)_4Cl$ (2.5 g, 4.7 mmol) was dissolved in 20 mL of chlorobenzene, and AlCl₃ (1.24 g, 9.3 mmol) was added rapidly **as** a solid. The mixture was stirred for 5 min at 25 "C. Hexachloroethane (2 equiv) was then added slowly, **as** a solid, over a period of 5 min. A white powder and a brown oily solid formed immediately. The mixture was stirred for 12 h, and the solvent was decanted away from the solid. The solid was dissolved in acetonitrile. The solution was concentrated, toluene was added, and the mixture was cooled to -30 "C. After 1 day some yellow crystals were collected. After a second crystallization by the same procedure, 0.53 g of product was collected (17%): 'H NMR (CD3CN) 6 2.03 **(m,** 18, PMe,), 1.47

(d, 9, ²J_{HP} = 14 Hz, WCPMe₃); ¹³C NMR (CD₃CN, 270 K) δ 241.9 (br s, WCPMe₃), 20.8 (virtual t of q, J_{CH} = 120 Hz, J_{CP} = 16 Hz, PMe₃), 13.1 (d of q, $J_{CH} = 130$ Hz, $J_{CP} = 61$ Hz, WCPMe₃); ³¹P NMR (CH₃CN) δ 6.8 **(s,** $J_{\text{PW}} = 166$ Hz, WCPMe₃), -18.7 **(s,** J_{PW}) = 300 Hz, PMe₃); ²⁷Al NMR (CH₃CN) δ 102.5 (sharp s, AlCl₄⁻⁾. The crystal for the X-ray study was selected from a homogeneous, crystalline sample.

Hydrolysis of $\text{[W}_2(\text{CPMe}_3)_2(\text{PMe}_3)_4\text{Cl}_4\text{][AlCl}_4\text{]}_2$. A 1-mL sample of aqueous 1 N HC1 was shaken for a few minutes with approximately 0.05 g of $[W_2(CPMe_3)_2(PMe_3)_4Cl_4][AlCl_4]_2$. After being left standing at 25° C for 1 h, the solution was filtered. A ³¹P NMR spectrum of the filtrate showed a 2.2:1 ratio of Me₃PHCl to another phosphorus-containing species. After the NMR sample was heated at 80 °C for 1 week, the Me₃PHCl remained, but the other compound had been quantitatively converted into Me4PCl: ³¹P NMR (H₂O) δ 22.8 (s, 1, Me₄PCl), -2.9 (d, 2, $J_{HP} = 505$ Hz, $Me₃PHCl$.

Acknowledgment. This **work** was supported by the National Science Foundation (Grant CHE 80-23448 to M.R.C. and 81-21282 to R.R.S.) and, in part, by the Director, Office of Basic Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract DE-ACO2-78ER049490A002 to R.R.S.

Registry No. W(CH)(PMe₃)₄Cl, 76642-46-1; W(CH)(PMe₃)₄I, 87862-02-0; W(CH)(PMe₃)₄(CF₃SO₃), 87862-03-1; Me₃SiI, 16029-98-4; Me₃Si(OTf), 27607-77-8; [W(CH₂)(PMe₃)₄I]CF₃SO₃], 87862-05-3; $[\dot{W}(CH_2)(PMe_3)_4(CF_3SO_3)][C\dot{F}_3SO_3]$, 87869-37-2; $W(CH)(PMe₃)₄(BH₄), 87862-06-4; W(CH)(C₂H₄)(PMe₃)₃(CF₃SO₃),$ 87862-07-5; \check{C}_2H_4 , 74-85-1; W(CHAlMe₃)(PMe₃)₃Cl, 76657-21-1; AlMe₃, 75-24-1; W(CHAlMe₂Cl)(PMe₃)₃Cl, 76642-47-2; AlMe₂Cl, 1184-58-3; **W(CA12Me4C1)(PMe3)2(CH3)(C2H,),** 79255-12-2; W- (CHCOAlCl₃)(PMe₃)₃(CO)Cl, 81391-10-8; AlCl₃, 7446-70-0; W-**(CHCOAlMe3)(PMe3)3(CO)C1,** 81371-73-5; CO, 630-08-0; W- $(CH^{13}COAlM_{e_3})(PM_{e_3})_3(^{13}CO)Cl$, 87862-08-6; W(CH₂PMe₃)- $(PMe₃)₂(CO)₂CI₂$, 87869-38-3; W(CH)(H)(PMe₃)₃Cl₂, 79197-72-1; $[W(CH_2PM_{23}(\text{PMe}_3)(COR_2Cl)[CF_3SO_3], 82880-78-2; [W (CH_2)(PMe_3)_4Cl$ [CF₃SO₃], 79197-71-0; [W₂(CPMe₃)- $(PMe₃)₄Cl₄][AICl₄]₂$, 87862-10-0.

Supplementary Material Available: Tables of anisotropic thermal parameters and observed and calculated factors (18 pages). Ordering information is given on any current masthead page.

Theoretical Studies of Polyvinyl-Substituted Carbenium and Silylenium Ions

Thanh Truong, Mark S. Gordon," and Philip Boudjouk

Department of Chemistry, North Dakota State University, Fargo, North Dakota 58 105

Received September 22, 1983

Ab initio (STO-2G and 3-21G) calculations have been performed to analyze the ability of one, two, and three vinyl groups to stabilize the **CH3+ and** SiH,+ ions. Vinyl groups appear to be quite effective at stabilizing the positive charge on. the silylenium ion, and successive vinylization preferentially stabilizes the silicon relative to the carbon ion.

Introduction

Carbenium ions, R_3C^+ , are readily accessible species in all three phases and possess a well-developed chemistry. In contrast, the silicon analogues, silylenium ions, $R_3S_i^+$, are far more elusive.' They are easily produced only as a gas, typically in the mass spectrometer, and only very recently was the first silylenium ion detected in a condensed phase.² The difficulty in obtaining stable R_3Si^+ species in solution is probably because silicon has energetically very favorable reaction paths involving pentavalent or hexavalent intermediates that ensure a short life-

(2) Lambert, J. **B.; Schulz, W. J., Jr.** *J. Am. Chem.* **SOC. 1983,** *105,*

1672.

⁽¹⁾ Olah, G. A.; Field, L. D. Organometallics 1982, 1, 1485. For reviews of the silylenium question see: Corriu, R. J. P.; Henner, M. J. J. Orga*nomet. Chem.* **1974,** *74,* **1. Boe, B.** *Ibid.* **1976,** *107,* **139.**

^{0276-7333/84/2303-0484\$01.50/0 © 1984} American Chemical Society