by 18 kcal/mol, 18 so too is the FeHFe interaction the favored one. The observation that in clusters bridging hydrides are the rule, terminal hydrides the exceptions, is consistent with these energetics.¹⁹

It is educational to compare the cycle in Scheme I with a similar cycle for the FeCO interaction (Scheme 11). This comparison emphasizes the weakness of the FeCO interaction compared to FeHFe, the difference in the energies for CO and H necessary to create an unsaturated Fe center and a terminal bond, and the difference in the energies for CO and H in creating a terminal interaction from a bridging one.

The M-H bond strength is one factor important in determining the thermodynamics of several interconversions involving metals and hydrocarbon fragments.⁷ The numerical value of E(FeHFe) reported here has several implications in this regard. For example, $E(FeC)$ and $E(FeH)$ (terminal) suggest that β -hydrogen elimination (eq 3) on

FeCH₂CH₃ \rightarrow FeH + C₂H₄ (3)

$$
\text{FeCH}_2\text{CH}_3 \rightarrow \text{FeH} + \text{C}_2\text{H}_4 \tag{3}
$$

a mononuclear metal center is an endothermic reaction,²⁰ albeit with a favorable entropy change. In a polynuclear system, the hydride has the possibility of ending up bridging, which will favor the elimination reaction by about another 10-11 kcal/mol (Scheme I). Thus, hydride "eliminations" from carbon resulting in MHM hydrides are possible in the absence of a favorable mole change. One example is provided by an internal rearrangement in a triosmium system, 21 where MC(O) and CH bonds are converted into MHM and $C=C(O)$ bonds in a unimolecular process.

The additional stability of a bridging hydride over a **terminal** hydride suggests the possibility of a real difference between the chemistry of mono- and polynuclear metal hydride systems. Further exploration of this and related systems is in progress.

Acknowledgment. Helpful discussions with Dr. C. E. Housecroft **as** well **as** the support of the National Science Foundation under Grant No. CHE 81-09503 are gratefully acknowledged. The NMR facility used was obtained with the aid of the National Institutes of Health (Grant No. GM 25845-0251).

Registry No. I, 69440-00-2; **11,** 88610-52-0.

(18) Fehlner, T. P. In "Boron Hydride Chemistry"; Muetterties, E. L., Ed.; Academic Press: New York, **1975;** p **175. (19)** Muetterties, **E. L.;** Rhodin, T. N.; Band, E.; Brucker, C. F.;

(20) With $E(\text{FeC}) = 30 \text{ kcal/mol}$, $E(\text{FeH}) = 55 \text{ kcal/mol}$, $E(\text{CH}) = 98 \text{ kcal/mol}$, and $E(\text{C}=\text{C}) - E(\text{C}-\text{C}) = 62 \text{ kcal/mol}$, $\Delta H = 11 \text{ kcal/mol}$.
(21) Shapley, J. R.; Strickland, D. S.; St. George, G. M.; Churchill, M. R.; Bueno, C. *Organometallics* **1983,** 2, **185.**

Oxidative Carbonylatlon of Alcohols: Dlalkyl Oxalates from (Dla1koxycarbonyl)rhodlum Complexes

Patrick L. Burk,' Donna Van Engen,' and Kathryn S. Campo

Exxon Research and Engineering Company Annandale, New Jersey 0880 1

Received December **6,** *7983*

Summary: The oxidative carbonylation of alcohols to generate dialkyl oxalates has, for the first time, been accomplished with rhodium-based complexes.

The employment of synthesis gas (mixtures of CO and H_2) as a reactant for the generation of organic products

that contain new carbon-carbon bonds encompasses such diverse reactions as olefin hydroformylation,¹ Fischer-Tropsch catalysis,² alcohol and carboxylic acid homologation, $3,4$ and, of particular interest to us, ethylene glycol synthesis.⁵ The direct production of ethylene glycol from synthesis gas has required **both** high pressures and elevated temperatures. Another attractive, less vigorous route to this diol makes sequential rather than concomitant use of the gases CO and $H₂$. First, CO and an alcohol are oxidatively coupled to generate a dialkyl oxalate, which is the starting alcohol (eq 1). The oxalate-producing step

datively coupled to generate a dialkyl oxalate, which is
subsequently reduced by H₂ to produce ethylene glycol and
the starting alcohol (eq 1). The oxalate-producing step

$$
2ROH + 2CO + \frac{Pd^*}{2O_2} \xrightarrow{-H_2O} [CO_2R]_2 \xrightarrow{H_2}
$$

HOCH₂CH₂OH + 2ROH (1)

has thus far been accomplished only with palladium-based catalysts. 6.7 The key palladium carbonylation intermediate appears to be a dicarboalkoxy complex 1 which releases oxalate to the system by reductive coupling of the two alkoxycarboxylato ligands (eq 2).⁸ We now report the has thus far been accomplished only with palladium-base
catalysts.^{6,7} The key palladium carbonylation interme
diate appears to be a dicarboalkoxy complex 1 which re
leases oxalate to the system by reductive coupling of

$$
L_2PdX_2 + 2CO + 2ROH \xrightarrow{-2HX} L_2Pd(COOR)_2 \rightarrow
$$

\n[CO₂R]₂ + L₂Pd (2)
\n
$$
X = OAc; L = Ph_3P
$$

synthesis of a new class of rhodium dicarboalkoxy complexes which upon gentle prodding produce dialkyl oxalates.

Treatment of a methanol suspension of $[Me₅ChRhCl₂]$ ₂ **(2)** with bubbling CO and an excess of triethylamine at room temperature (eq 3) produced, after 3 h, a deep red plexes which upon gentle prodding produce dialkyl
lates.
Treatment of a methanol suspension of $[M_{e_5}CpRh$
(2) with bubbling CO and an excess of triethylamin
room temperature (eq 3) produced, after 3 h, a deep
 $[M_{e_5}CpRhCl$

$$
[Me5CpRhCl2]2 + Et3N + CO (1 atm) \xrightarrow{100}
$$

2
Me₅CpRh(CO)(COOR)₂ + 2Et₃N-HCl (3)
3a, R = CH₃
3b, R = CH₂CH₃

orange solution. Evaporation of the solvent in vacuo gave a solid which was extracted with diethyl ether. Addition of hexane to this ether solution followed by cooling to -40 "C overnight gave the yellow crystalline solid **3a** (40%).9 The 'H NMR (CDCl,-Me,Si) of **3a** contained two singlets at 3.6 and 1.9 ppm in a ratio of 2:5, which suggested the product contained two methoxy groups per Me₅Cp ligand. The IR spectrum (Nujol) of **3a** showed three absorption bands between 2200 and 1600 cm⁻¹: 2056, 1668, and 1645 cm^{-1} . The bands between 1700 and 1600 cm^{-1} are characteristic of carboalkoxy ligands; 12 however, bridging carbonyls and carboxylates **also** absorb in this region. The

- **(1)** Pruett, R. **L.** 'Advances in Organometallic Chemistry"; Stone, F.
- G. A., West, R., Ede.; Academic Press: New York, **1979;** Vol. **17,** pp **1-60.**
	- (2) Rofer-DePoorter, C. K. *Chem. Rev.* 1981, *81, 447–474.*
(3) Doyle, G. *J. Mol. Catal.* 1981, *13, 237–247.*
(4) Knifton, J. F. "Catalytic Activation of Carbon Monoxide"; Ford,
	-
- P. C., Ed.; American Chemical Society: Washington, **DC, 1981;** pp
- **225-242. (5)** Pruett, R. **L.** "The Place of Transition **Metals** in Organic Syntheais"; Slocum, D. W., Ed.; The American Academy of Sciences: New York, **1977;** Vol. **295,** pp **239-248.**
	- **(6)** Rivetti, F.; Romano, U. *Chim. Ind. (Milon)* **1980,** *62,* **7-12.**
- **(7)** Fenton, D. M.; Steinwand, P. J. *J. Org. Chem.* **1974,39, 701-704.** (8) (a) Rivetti, F.; Romano, U. *J. Organomet. Chem.* **1978, 154,**
- **323-326. (b)** Rivetti, **F.;** Romano, U. *Ibid.* **1979, 174, 221-226.**
- (9) The other major carbonyl-containing organometallic compounds produced were Me₆CpRh(CO)₂¹⁰ and [Me₆CpRh(CO)]₂.¹¹ (10) Kang, J. W.; Maitlis, P. M. *J. Organomet. Chem.* **1971**, *26*,
- **393-399. (11)** Nulton, A.; Maitlis, P. M., *Ibid.* **1979,** *166,* **C21-C22.**
	- **(12)** Angelici, R. **J.** *Acc. Chem. Res.* **1972, 5, 335-341.**

Pretzer, W. R. Chem. Rev. **1979, 79,91.**

Figure 1. Molecular structure of Me₅CpRh(CO)(CO₂Me)₂. Dimensions: Rh-C(1) 1.879 (9), Rh-C(2) 2.041 (5), Rh-X 1.897(X = centroid of Cp), C(1)-0(1) 1.136 (10), C(2)-O(2) 1.185 (6), C(2)-0(3) 1.349 *(7),* 0(3)-C(3) 1.418 *(7)* **A.**

 $13C$ NMR spectrum¹³ confirmed the presence of the methoxy group(s) but more importantly allowed us to discard possible structures which contained bridging carbonyls since the low-field absorptions at 188.1 and 185.2 ppm were split only into doublets by $103Rh-13C$ coupling.

Although the spectral data were consistent with a mononuclear rhodium dicarboalkoxy complex, multinuclear $Me₅Cp$ complexes of the cobalt triad containing such bridging groups as αx ,¹⁴ aryloxy,¹⁵ and carboxalato¹⁶ are not uncommon. In fact, alcohol solvents such **as** were used in the preparation of **3a** have been known to serve as precursors to carboxylate ligands;14 therefore, a structure determination of **3a** was undertaken.

Small single crystals were obtained from a pentane solution of $3a$ cooled overnight at -40 °C, and the structure of 3a was determined from X-ray diffraction data.¹⁷

(16) White, C.; Oliver, A. J.; Maitlis, P. M. J. Chem. Soc., Dalton *Trans.* 1973, 1901-1907.

(17) A yellow crystal with dimensions $0.2 \times 0.2 \times 0.3$ mm was sealed
in a glass capillary. All data with $2\theta \le 50^{\circ}$ were examined on an En-
raf-Nonius CAD4 diffractometer using graphite monochromated Mo K α radiation $(\lambda = 0.71073 \text{ Å})$ and a variable-speed ω -20 scan. Of the 1278 unique reflections measured, 843 were considered observed $[|F_o|^2 \ge 1.5\sigma(F_o^2)]^{18,19}$ Three check reflections, monitored throughout data collection, displayed no significant loss of intensity with time. $\,\psi$ scans indicated that absorption effects were negligible, so corrections were not applied $\mu(Mo\ Ka) = 10.25 \text{ cm}^{-1}$. The structure was solved by a combination of Patterson, Fourier, and least-squares refinement techniques.²⁰ Most of the hydrogens were located on a difference Fourier map calculated after the refinement of all non-hydrogen atoms. The remaining hydrogens were entered at the theoretically calculated positions. The compound crystallizes in the orthorhombic space group *Pnma (Dg, No.*) 62) with $a = 10.499$ (1) \overline{A} , $\overline{b} = 14.323$ (2) \overline{A} , $c = 11.064$ (2) \overline{A} , $\overline{V} = 1664$ (1) \overline{A}^3 , $\overline{Z} = 4$, and $\rho_{\text{caled}} = 1.53$ g/cm³. The four molecules in the unit cell (1) \hat{A}^3 , $Z = 4$, and $\rho_{\text{calcd}} = 1.53$ g/cm³. The four molecules in the unit cell
are centered on the mirror planes at $y = \pm 0.25$. The final crystallo-
graphic residual was $R = 0.037$ and the weighted residual R the non-hydrogen atoms were varied anisotropically; the hydrogen atoms were not varied. A final difference Fourier synthesis displayed a maximum intensity of $0.404 \, e/\text{\AA}^3$.

(18) $|F_{0}|^{2} = I/Lp$ and $\sigma(F_{0}^{2}) = \sigma(I)/LP$ where $I = S(C - RB)$ and $\sigma(I)$
= $[S^{2}(C + R^{2}B) + (KI)^{2}]^{1/2}$ with $S =$ scan rate; $C =$ total integrated peak count; $R = 2.0$, the ratio of scan time to background time; $B =$ background count; $K = 0.05$, a factor introduced to weight down intense reflections; $Lp =$ the Lorentz and polarization corrections.

(19) $w = \sigma(F_o)^{-2}$; $\sigma(F_o) = \sigma(F_o^2)/2|F_o|$.

Figure 2. Schematic with important bond angles of Me₅CpRh- $(C\bar{O})(CO₂Me)₂$.

perspective of the molecular structure is shown in Figure 1 with a skeletal view presented in Figure 2. The planar Me5Cp ligand is symmetrically coordinated to the rhodium atom.²¹ The most intriguing feature of the molecule is the presence of two carbomethoxy groups unidentately bound to the rhodium. The Rh-COO moieties are essentially planar,²³ with the planes of the COO groups intersecting at an angle of 79.5°. The sp² hybridized carbons are separated by 2.65 **A.** The metal-ester bond length of 2.041 (5) Å is similar to other rhodium-acyl bond dis $tances, ²⁴$ and the ester carbon-oxygen bonds of 1.185 (6) and 1.349 (7) Å are normal. Although the M-C=O angle of 126.1° deviates from an ideal sp² hybridization on the carbon, this apparent distortion is not unexpected. A recent comparison of the structures of Ir(C0)- $\rm (COOCH_3)(bpy)I_2$, $\rm Pt(COOCH_3)_2(Ph_3P)_2$, and a methoxycarbonyl derivative of a dimethano[14lannulene with respective M--C=O angles of 126.6 (16), 125.9 (5), and 126.3 (1) ^o demonstrated that the angular pattern around the carbon atom of an ester remains relatively unperturbed in quite diverse environments.²⁵

In the solid state both 3a and 3b²⁶ displayed only slight sensitivity to air or water and, if protected from light, were stable indefinitely under N_2 . To induce coupling of the alkoxycarbonyl ligands to produce a dialkyl oxalate, **3b** was dissolved in CH_2Cl_2 under $\text{N}_2{}^{27}$ and at room temperature a solution of I_2 in CH_2Cl_2 was added dropwise (final mole ratio of $Rh:I_2 = 1:1$) (eq 4). After stirring for 0.5 h, the reaction was quenched with aqueous bisulfite, and upon

(23) The metal atom is only 0.1 **A** out of the plane defined by the COO group.

(25) Bellon, P. L.; hianassero, M.; Porta, F.; Sansoni, M. *J. Oganomet. Chem.* 1974, *BO,* 139-145. (26) **3b** 'H NMR (CDCI,-Me4Si) 6 1.15(t, J ⁼7 Hz, 6 H, CH3CHz),

 $1.87(s, 15 \text{ H}, \text{C}_5(\text{C}H_3)_5)$, $4.10 \text{ (q, 4 H}, \text{C}H_{-2}\text{CH}_3)$; IR (Nujol) 2050, 1662, 1642 cm

 (27) GLPC analysis of the solution of 3b prior to the addition of I_2 showed no diethyl oxalate was present.

^{(13) &}lt;sup>13</sup>C (¹H) NMR (CDCl₃) for 3a: δ 9.3 (s, C₅(CH₃)₅, 52.6 (s, CH₃O), 104.8 (d, J(¹⁰³Rh-¹³C) = 55 Hz, RhCOO), 188.1 (d, J(¹⁰³Rh-¹³C) = 79 Hz, RhCOO).

⁽¹⁴⁾ Nutton, A.; Bailey, P. M.; Maitlis, P. M. J. *Organomet. Chem.* 1981,213, 313-332.

⁽¹⁵⁾ Nutton, A.; Maitlis, P. M. J. *Chem.* Soc.. *Dalton Trans.* 1981. 2235-2338.

⁽²⁰⁾ All crystallographic calculations were performed by using the Enraf-Nonius structure determination package on a PDP 11/60 com- puter.

⁽²¹⁾ The distance from the rhodium to the plane of the ring of pen-
tamethylcyclopentadienyl ligand is 1.89 Å, which falls considerably out-
side the range $(1.745-1.815 \text{ Å}^{22})$ of previously determined mononuclear

Rh(II1) complexes. (22) Maitlis, P. M. *Chem.* Soc. *Reu.* 1981, 10, 1-48.

^{(24) (}a) Bennett, M. **A.;** Jeffrey, J. C.; Robertson, G. B. *Inorg. Chem.* 1981,20,330-335 and references cited therein. (b) Dickson, R. S.; Evans, G. S.; Fallon, G. D. *J. Organomet. Chem.* 1982, 236, C49-C52. (c) Schaverien, C. J.; Green, M.; Orpen, **A.** G.; Williams, I. D. *J. Chem. SOC., Chem. Commun.* 1982. 912-914.

$$
3b \frac{1}{CH_2Cl_2}
$$

\n
$$
[CO_2C_2H_5]_2 + C_{10}H_{15} \cdot CO_2C_2H_5 + H_5C_2OC(=0)OC_2H_5
$$

\n
$$
30-40\% \qquad 40\%
$$

\n
$$
(4)
$$

subjecting the product mixture to GLPC/mass spectral analysis, diethyl oxalate% was observed in a **30-40%** yield. The other organic products which contained "CO" were diethyl carbonate (trace) and a compound with the formula $C_{10}H_{15}^{\circ}CO_2C_2H_5$ **(4)** $(\sim 40\%)$.²⁹ Upon changing the reaction solvent from CH2C1, to diethyl ether, only **4** was produced. The mechanism of this iodine promoted carbon-carbon bond forming reaction is under current investigation and will be reported at a later date.

The carbon-carbon bond-forming step in oxalate synthesis from CO and alcohol has now been demonstrated for the metals rhodium and palladium to involve a dicarboalkoxy mononuclear intermediate. Current studies are under way to further elucidate the chemistry of these and other cobalt triad complexes which contain two alkoxycarbonyl ligands.

Acknowledgment. We wish to thank R. L. Pruett, S. **L.** Soled, and J. S. Merola for helpful discussions. We **also** thank C. S. Hsu for assistance in obtaining the GLPC/ mass spectra and R. **V.** Kastrup for the 13C NMR spectra.

Registry No. 2, 12354-85-7; **3a,** 88825-23-4; **3b,** 88841-56-9; 4, 35211-68-8; $[CO_2C_2H_5]_2$, 95-92-1.

Supplementary Material Available: Tables of interatomic distances and angles, fractional coordinates, *F,/F,,* and thermal parameters for $Me_5CpRh(CO)(CO_2Me)$ (9 pages). Ordering information is given on any current masthead page.

(29) The base peak in the mass spectrum of 4 at 135 corresponded to $M^+ - CO_2C_2H_5$, which strongly suggests this compound is ethyl pentamethylcyclopentadiene carboxylate.

Synthesis of 2,2',5,5'-Tetramethyiblblsmoie. A Thermochromic Diblsmuthlne

Arthur J. Ashe, 111,' and Frederlck J. Drone

Department of Chemistry, The University of Michigan Ann Arbor, Michigan 48109

Received November 14, 1983

Summary: The reaction of 1,1-dibutyl-2,5-dimethylstannole with iodine gave $2(Z)$, 5(Z)-diiodohexa-2, 4-diene, **which on treatment with butyllithium followed by phenyl**bismuth' diiodide afforded 1-phenyl-2,5-dimethylbismole. **The bismole was converted to the thermochromic 2,2',5,5'-tetramethylbibismole by reaction of sodium in** liquid ammonia followed by treatment with 1,2-dichloro**ethane.**

The thermochromic distibine 2,2',5,5'-tetramethylbistibole (1) forms intensely colored blue crystals which melt to a pale yellow oil and form yellow solutions in organic solvents.¹ The crystal structure of 1 shows that the an-

timony atoms are aligned in linear chains with very short Sb-Sb..Sb-Sb separations. **A** molecular orbital treatment by Hoffmann et al. suggests that the solid-phase color is due to intermolecular interaction involving the Sb-Sb σ -bonds.²

In order to explore the generality of this effect, we have investigated a variety of dipnicogen compounds including the arsenic and antimony analogues of $1.\overline{35}$ The synthesis of the nonthermochromic **2,2',5,5'-tetramethylbiarsole (2)** was recently reported.⁶ We now wish to report a synthesis of the thermochromic **2,2',5,5'-tetramethylbibismole (3)** that involves several intermediates **of** theoretical interest.

The attempted exchange reaction between 1,l-di**butyl-2,5-dimethylstannole (4)'** and phenylbismuth diiodide gave only **an** intractable black material. This failure may be due to the known great sensitivity of vinylbismuth compounds to acidic conditions.⁸ Alternatively, treating stannole **4** with iodine in carbon disulfide afforded 2- **(Z),5(Z)-diiodohexa-2,4-diene (6):** mp 36-39 "C; 'H NMR (CDCI,) **6** 2.60 (s,6 H), 6.20 **(8,** 2 H)? Metalation **of 6** with

butyllithium gave a solution of **7,** a 1,4-dilithiobutadiene. This reagent may be used to prepare a variety of fivemembered ring heterocycles.1° Thus treating **7** with dibutyltin dichloride affords **4,** while reaction with phenylantimony dichloride gave the known l-phenyl-2,5-dimethylstibole (8) .⁷ On theoretical grounds it has been suggested that 1,4-dilithiobutadienes have bridged structures." Whether **7** has bridged structure **7'** is currently under investigation.

The reaction of **7** with a suspension of phenylbismuth diiodide in diethyl ether gave 28% of the desired 1 phenyl-2,5-dimethylbismole (5) : ¹H NMR (CD₂Cl₂) δ 2.35

- **(2)** Hughbanks, T.; Hoffman, R.; Whangbo, M.-H.; Stewart, K. R.; Eisenstein, *0.;* Canadell, E. *J. Am. Chem. Soc.* **1982, 104, 3876. (3)** Ashe, A. J., III; Ludwig, E. G.; Pommerening, H. *Organometallics*
- **1983, 2, 1573.**
- **(4)** Ashe, A. J., 111; Ludwig, E. *G. Organometallics* **1982,1,1408.** Ashe, A. J., III; Ludwig, E. **G.;** Oleksyszyn, J. *Ibid.* **1983, 2, 1859.** (5) *Also* see: Becker, G.; Freudenblum, H.; Witthauer, C. *2. Anorg.*
- *Allg. Chem.* **1982,492,37.** Becker, *G.;* Gutekunst, G.; Witthauer, C. *Ibid.* **1982,486, 90** and references contained therein.
- **(6)** Ashe, A. J., III; Butler, W. M.; Diephouse, T. R. *Organometallics* **1983, 2, 1005.**
- **(7)** Ashe, A. J., 111; Diephouse, T. R. *J. Organomet. Chem.* **1980,202,** c95.

(8) Ashe, A. J., III; Diephouse, T. R.; El-Sheikh, M. Y. *J. Am. Chem. SOC.* **1982, 104, 5693.**

(11) Kos, A. J.; Schleyer, P. **v.** *R. J. Am. Chem.* **SOC. 1980,102,7928.**

⁽²⁸⁾ The obtained diethyl oxalate spectrum was consistent with published spectra: "EPA/NIH Mass Spectral Data Base"; Heller, S. R.; Mime, **G.** W. A,, Eds.; National Bureau of Standards: Washington, DC, **1978;** Vol. **1,** p **410.**

⁽¹⁾ Ashe, A. J., 111; Butler, W.; Diephouse, T. R. *J. Am. Chem. SOC.* **1981,** *103,* **207.**

⁽⁹⁾ For a similar procedure see: Jutzi, P.; Baumgärtner, J. J. Orga-

nomet. Chem. **1978,148, 247. (10)** See: Leavitt, F. C.; Manuel, T. A.; Johnson, F. *J. Am. Chem. SOC.* **1959,81,3163.** Leavitt, F. C.; Manuel, T. A.; Johnson, F.; Matternas, L. U.; Lehman, D. S. *Ibid.* 1960, 82, 5099.