loss of an antiperiplanar hydrogen as hydride, $5,10$ path a, but hydrogen *atom* abstraction by triphenylmethyl **(3)** from the intermediate cation radical, path b, is also con ceivable.¹⁹ The latter possibility is intriguing for it may be favored when β -hydrogen and metal cannot easily be antiperiplanar.

These alternate paths cannot be distinguished kinetically.20 Each predicts that added **3** will inhibit insertion as we observe but will have little effect on the rate of elimination. Comparison of the vields of the π -complex **7b** at different reaction times (runs **13,14,17)** implies that this is true. To confirm that it is we have measured the rate of formation of triphenylmethane **(8)** from **la** with and without added **3.16** Aliquots of the reacting mixtures were quenched at known times by shaking with mixtures of diethyl ether and aqueous ceric ammonium nitrate. The amount of extracted **8** was then determined gas chromatographically by comparison with **an** internal standard. At -45 ± 5 °C the rate of formation of 8 in the presence of added 3 is similar $(k = 1.9 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}, r^2 = 0.98)$ to that in its absence $(k = 2.0 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}, r^2 = 0.99)$.

In summary then we find that in the presence of excess carbon monoxide, redox-catalyzed migratory carbonyl insertion is competitive with **triphenylcarbenium-induced** 8-elimination even in simple, conformationally mobile Fp alkyls. If carbon monoxide is supplied externally, redoxcatalyzed insertion is more competitive the lower the temperature; if it must be produced internally by thermal decomposition of some of the σ -complex, higher temperatures are required and insertion is competitive only if elimination itself is relatively slow.

Acknowledgment. We thank Professors John Huggins and Dan Reger for many helpful discussions and suggestions and the NSF for partial support under its EPSCOR program.

Registry No. la, 51177-83-4; lb, 89043-50-5; IC, 43157-76-2; 2, 341-02-6; 3, 2216-49-1; 6a, 89043-51-6; 6b, 89043-52-7; 6c, 89043-53-8; 7a, 37668-14-7; 7b, 89043-54-9; 8, 519-73-3; Fp+, 69721-23-9; CO, 630-08-0.

(19) Cf.: Kashin, A. N.; Bumagin, N. A.; Beletskaya, I. P.; Reutov, 0. A. *Dokl.* **Akad. Nauk** *SSSR* **1979,244,98-102.**

The Series of Tricarbonyiiron Hydride Anions $(OC)_3$ FeH_n⁻ $(n = 1-3)$

Rlchard N. McDonald,' A. Kasem Chowdhury, and Philip L. Schell

Department of Chemistry, Kansas State University *Manhattan, Kansas 66506*

Received December 19, 1983

Summary: The primary ion products from the gas-phase reaction of $(OC)_4$ Fe⁻ with hydrogen atoms are $(OC)_3$ Fe⁻ and (OC)₃FeH⁻. Both primary ions add H₂, giving the hydrides (OC)₃FeH₂⁻ and (OC)₃FeH₃⁻, respectively. With D₂, the primary ions form $(OC)_3FeD_2^-$ and $(OC)_3FeHD_2^-$ and **(OC),FeD,-, respectively, the trideuteride arising by H/D** exchange in (OC)₃FeH⁻ (-+(OC)₃FeD⁻).

The condensed-phase reaction of HO^- with $Fe(CO)_5$ yields the hydridoiron complex $({\rm OC})_4{\rm FeH^-}$ by the proposed mechanism in eq $1¹$ The condensed-phase reaction of HO⁻ with Fe(vields the hydridoiron complex $(OC)_4$ FeH⁻ by the prop
mechanism in eq 1.¹
HO⁻ + Fe(CO)₅ $\xrightarrow{H_2O} (OC)_4$ Fe(CO₂H)^{- HO-}
 1

The condensed-phase reaction of HO with
$$
F \in (CO)_5
$$
 fields the hydrotion complex $(OC)_4$ FeH⁻ by the proposed mechanism in eq 1.¹ H_2O H_2O

The gas-phase reaction of HO^- with $Fe(CO)_5$ produced the The gas-phase reaction of HO⁻ with $Fe(CO)_5$ produced the
M – 2CO adduct $(m/z 157)$ which is consistent with the
condensed-phase mechanism since the conversion of $1 \rightarrow$
a is not possible under these conditions. In the gas **2** is not possible under these conditions. In the gas phase, the vibrationally excited adduct **l*** apparently decarbonylates followed by rearrangement of HO from carbon to iron (deinsertion) and loss of **a** second CO ligand from the excited $[(OC)_4Fe(OH)^{-}]^*$ species (eq 2).² An alternate

$$
\text{HO}^- + \text{Fe(CO)}_5 \xrightarrow{\text{Fas}} [1]^* \xrightarrow{\text{CO},}
$$

\n
$$
[(\text{OC})_4\text{Fe(OH)}^-]^* \xrightarrow{\text{migration of HO}} (\text{OC})_3\text{Fe(OH)}^- + \text{CO} \ (2)
$$

\n
$$
m/z \ 157
$$

gas-phase route to $(OC)_4FeH^-$ could involve the reaction of $(OC)_4$ Fe⁻- with hydrogen atoms. We wish to report preliminary results of this reaction which yield $(OC)_3Fe^{-1}$. and the novel series of tricarbonyliron hydride anions $(OC)_3FeH_n^ (n = 1-3)$ via primary and secondary ionneutral reactions. $(OC)_4FeH^-$ can also be obtained as the major ion product of secondary ion-molecule reactions when CO is added to the flow before it reaches the Hatom/ H_2 inlet.

Our studies were carried out in a flowing afterglow (FA) apparatus. $(OC)_4Fe^-$ was generated from $Fe(CO)_5$ by dissociative electron attachment in a fast flow of helium buffer gas at 298 K in the upstream end of the flow tube.³ No reaction occurred between $(OC)_4Fe^-$ and H_2 . A mixture of H atoms/ H_2 was produced by passing H_2 through a glass tube in the cavity of a microwave discharge. This $H₁/H₂$ mixture was then added to the flow containing $(OC)_4$ Fe⁻ via a gas inlet located 30 cm downstream of the ion generation region. At low H \cdot /H₂ flows (<10% conversion of $(OC)_4Fe^{-1}$, four product anions, m/z 140-143, were formed, while at high flows of $H·/H₂$ only the anions m/z 142 and 143 were observed.⁴ These results established that the ions *m/z* **140** and **141** were the primary products of the ion-neutral reaction of $(OC)_4Fe^{-1}$ with H atoms. When H_2 was added to the flow containing the four ions m/z 140-143, the ions m/z 140 and 141 were con-

He(2^8 S) atoms was complete within 15 cm of the electron gun since no
signal for SF₆⁻ was observed when SF₆ was added at this point.
(4) The isotope ratios for ⁶⁴Fe for the ions m/z 140–143 clearly showed
these

⁽²⁰⁾ Espenson, J. **H. 'Chemical Kinetics and Reaction Mechanisms"; McGraw-Hill, New York, 1981, pp 78-79.**

⁽¹⁾ Pearson, R. G.; Mauermann, H. *J.* **Am.** *Chem.* **SOC. 1982, 104, 500-504.**

⁽²⁾ In the FA, the gas-phase reaction of CH₃O⁻ with Fe(CO)₅ yields the corresponding M – 2CO adduct considered to be $(OC)_3Fe(OCH_3)$ ⁻, while the reaction with CF₃O⁻ gives the net adduct, the acylate anion $(OC)_4$ -**Fe(C02CF3)-. These results agree with the suggestion of Foster and Beauchamp (Foster, M.** S.; **Beauchamp,** J. **L.** *J.* **Am.** *Chem.* **SOC. 1971,** 93, 4924-4926; 1975, 97, 4808-4814) that strongly basic nucleophiles react with $Fe(CO)_5$ in the gas phase, giving the $(M - 2CO)$ adducts. Collisional **stabiliation with the buffer gas in the FA allows us to observe the net adducts with weakly basic nucleophiles.**

^{(3) (}a) McDonald, R. N.; Schell, P. L.; McGhee, W. D. Organometallics 1984,3,182-184. (b) McDonald, R. N.; Chowdhury, A. K. *J.* **Am.** *Chem.* Soc. **1983**, 105, 2194-2203. (c) Removal of all electrons and metastable He(2³S) atoms was complete within 15 cm of the electron gun since no

verted into their product ions m/z **142** and **143**, respectively. Therefore, these latter two higher mass ions were determined to be formed by addition of molecular H_2 to the coordinatively unsaturated mononuclear species *m/z*

140 and 141. These results are summarized in eq 3-5.
\n
$$
Fe(CO)_5 + e^- \rightarrow (OC)_4Fe^- + CO
$$
\n(3)
\n
$$
m/z 168
$$

$$
\frac{-\text{co}}{m/z} \quad \text{(OC)}_3\text{FeH}^- \quad \frac{H_2}{He} \quad \text{(OC)}_3\text{FeH}_3^- \tag{4}
$$
\n
$$
m/z \quad 141 \quad m/z \quad 143
$$

(OC)₄Fe⁻ + H
\n
$$
m/z 1 + 1
$$

m/z 140 *mlz* 142

To further establish the sequence of reactions **4** and **5,** the mixture of anions m/z **140-143** was allowed to react with D_2 which was added to the flow via an inlet located **30** cm downstream of the H-/H2 inlet. A new series of anions, *m/z* **142-146,** were produced along with traces of *mlz* **140** and **141** ions concomitant with attenuation of the intensities of the signals for the ions m/z **142** (by \sim 30%) and 143 (by \sim 50%). The ion structures which we believe comprise this new series of ions are $(OC)_3FeH_2^-$ at m/z **142,** (OC)₃FeH₃⁻ at m/z **143,** $(OC)_3FeD_2^-$ and $(OC)_3FeH_2D^$ at m/z **144,** (OC)₃FeHD₂⁻ at m/z **145, and** (OC)₃FeD₃⁻ at *m/z* **146.**

Formation of $(OC)_3FeD_3^ (m/z 146)$ is most interesting. Since no reaction was observed between $(OC)_3FeH_3^-$ or $(OC)_3FeH_2$ ⁻ in their ground states and D_2 , ion m/z 146 might be formed by either **of** two pathways: (a) if *(0-* $\text{C})_3\text{FeD}_2\text{-}$ *(m/z* 144) were to fragment to $(\text{OC})_3\text{FeD}^+ + \text{-D}$, $(OC)_3FeD^-$ would then add D_2 to give $(OC)_3FeD_3^-$ or (b) C ₃FeD₂⁻ (*m*/z 144) were to fragment to (OC)₃FeD⁻ + -D,
(OC)₃FeD⁻ would then add D₂ to give (OC)₃FeD₃⁻ or (b)
if H/D exchange occurred in (OC)₃FeH⁻ + D₂ -> (OC)₃-
E₂D⁻ + HD prior to for if H/D exchange occurred in $(OC)_3FeH^- + D_2 \rightarrow (OC)_3$
FeD⁻ + HD prior to formation of the stable adduct (0- C)₃FeHD₂⁻⁶ By increasing the electron-gun emission current, we observed that $(OC)_3Fe^- (m/z 140)$ was a minor product $(\sim 30\%)$ of dissociative electron attachment with Fe(CO)₅; (OC)₄Fe⁻- remained the major product ion.⁶ Addition of D_2 to $(OC)_3$ Fe⁻ gave *only* $(OC)_3$ Fe $D_2^ (m/z)$ **144)** *without* formation of $(OC)_{3}FeD \cdot (m/z)$ **142**) over that expected for the ⁵⁴Fe isotope peak for m/z **144.** This result eliminates pathway a as a source of $(OC)_3FeD_3^-$. Therefore, we conclude that $(OC)_3FeH^-$ undergoes H/D exchange (pathway b) according to eq **6** with fragmentation of vi-

 $(OC)_3$ FeH⁻ + D_2 = $(C)_{3}$ FeHD₂⁻¹^{*} = $(C)_{3}$ FeD⁻ + HD *m/z* 141 **I**_{He} *m/z* 142 **(6) (OC**)3FeHD2 *mlz* 145

brationally excited $[m/z]$ **145**^{*} to (OC) ₃FeD⁻ competitive with collisional stabilization with the helium buffer gas. This H/D exchange is similar to related exchanges observed in the condensed phase between the neutral $\rm Cp_2TaH_3$ and $\rm Cp_2NbH_3$ complexes with D_2 .⁷ An important corollary of this conclusion is that the hydrogen and two deuteriums in *m/z* **145** are, or can readily become, chemically equivalent. Thus, it seems most reasonable that these three atoms are attached to iron in this complex as the trihydride, although the presence of a formyl ligand in the complex anion cannot be ruled out.

Assuming that $(OC)_4Fe^-$ produced in the gas phase has the C_{3v} structure of the matrix-isolated species,⁸ addition of an H atom would reasonably yield the C_{3v} iron hydride $(OC)_4FeH^ (m/z \ 169)$ (eq 7). The large exothermicity (71
 $(OC)_4Fe^- + H \rightarrow (OC)_4FeH^-$ (7)

$$
(\text{OC})_4\text{Fe}^- + \cdot \text{H} \rightarrow (\text{OC})_4\text{FeH}^- \tag{7}
$$

$$
\Delta H^{\circ} = -71 \pm 21 \text{ kcal mol}^{-1} \text{ (ref 9)}
$$

 \pm 21 kcal mol⁻¹)⁹ of this anion radical-radical combination reaction means that the chemically activated product anion $[(OC)₄FeH⁻]$ * would readily unimolecularly fragment with loss of a CO ligand producing the anion $(OC)_3FeH^-(m/z)$ **141)** or loss of HCO giving $(OC)_3Fe^{-}$. $(m/z 140)$.

Alternatively, $[(OC)_3Fe(C(=O)H)^{-1}](3)$ might be the product of addition of an H atom to $(OC)_4Fe^-$. Although ΔH° _f(3) cannot presently be estimated, decarbonylation of the formyl complex **3** would be a reasonable expectation with rearrangement of that product to $(OC)_3FeH^-$ by analogy with condensed phase results.¹⁵ Each of the above possibilities strongly suggest that the anion *m/z* **141** contains the Fe-H bond.

Investigations of the gas-phase chemistry and thermochemical properties of $(OC)_3Fe^{-}$ and $(OC)_3FeH_n^{-}$ $(n = 1-3)$ are under way, as are related studies with other transition-metal reactants $(OC)_X M^{-1}$.

Acknowledgment. We gratefully acknowledge support **of** this research by the **US.** Army Research Office and the National Science Foundation and discussions with Professors Eric Maatta and David Macomber.

Registry No. $(OC)_4Fe^-$, 51222-96-9; H, 12385-13-6; $(OC)_3FeH^-$, 89087-79-6; $(OC)_3FeH_3^-$, 89087-80-9; $(OC)_3Fe^-$, 53221-56-0; *(O-* C)₃FeH₂-., 89087-81-0; $(OC)_{3}FeD_{2}$ -., 89087-82-1; $(OC)_{3}FeH_{2}D^{-}$ 89087-83-2; $(OC)_{3}FeHD_{2}^{-}$, 89087-84-3; $(OC)_{3}FeD_{3}^{-}$, 89087-85-4.

mol⁻¹. (d) From $\Delta H_{\text{add}}^{\circ}({\rm H}_2\text{Fe}(\text{CO})_4) = 319 \pm 5$ kcal mol⁻¹,¹⁴ $\Delta H_i^{\circ}({\rm HFe}^{\circ}(\text{CO})_4) = -179.8 \pm 10.5$ kcal mol⁻¹ was calculated.
(C0) χ , 1. D.; Pilcher, G. "Thermochemistry of Organic and Organom

in a preprint of a paper submitted **to** *J.* Am. Chem. **SOC.** (with K. E. **Lewis** and D. M. Golden). (b) Smith and Laine (Smith, G. P.; Laine, R. M. J. *Phys. Chem.* **1981**, 85, 1620–1622) originally reported $D^{\circ}((OC)_4Fe-CO) = 48 \pm 4$ kcal mol⁻¹.

(12) Engelking, P. C.; Lineberger, W. C. J. Am. Chem. SOC. **1979,101, 5 5 6 9- 5 5 7 3.**

(13) Sweany, R. L. J. Am. Chem. Soc. 1981, 103, 2410-2412.

(14) We thank Professor J. L. Beauchamp for a preprint (with A. E.

Stevens) of the gas-phase acidity of $H_2Fe(CO)_4$.

(15) Collman, J. P.; Hegedus, L. S. "Princi Valley, CA, **1980;** p **440.**

⁽⁵⁾ The concentration of H atoms in the flow at the point of the D_2 inlet port must be small to zero in the presence of a large excess of $(OC)_4$ Fe⁻ under these low H-/H₂ flow conditions. Since the rate constant for H \cdot + D₂ \rightarrow HD + D is small $(k = 2.6 \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}$ this cannot be a source of D atoms that would react with $(OC)_3Fe^{-}$ or $(OC)_4Fe^{-}$ giving $(OC)_3FeD^{-}$.

^{(6) (}a) Compton, R. N.; Stockdale, J. A. D. *Int. J. Mass Spectrom. Ion Phys.* **1976**, *22*, 47–55. (b) George, P. M.; Beauchamp, J. L. *J. Chem. Phys.* **1982**, *76*, 2959–2964.

⁽⁷⁾ (a) Barefield, E. K.; Parshall, G. W.; Tebbe, F. N. J. Am. Chem. *SOC.* **1970,92,5234-5235.** (b) Tebbe, F. N.; Parshall, G. W. *Ibid.* **1971, 93, 3793-3795.**

f8) Breeze. P. A.: Burdett. J. K.: Turner, J. J. *Inorg. Chem.* **1981,20, 336'4-3378.** '

^{(9) (}a) Using $\Delta H_f^{\circ}(\text{Fe(CO)}_6) = -173.0 \pm 1.5 \text{ kcal mol}^{-1}{}^{10} \Delta H_f^{\circ}(\text{CO}) = -26.4 \pm 0.04 \text{ kcal mol}^{-1}{}^{10} \text{ and } D^{\circ}((\text{OC})_4\text{Fe}-\text{CO}) = 41 \pm 2 \text{ kcal mol}^{-1}{}^{11} \text{ we calculate } \Delta H_f^{\circ}(\text{Fe(CO)}) = -105.6 \pm 3.5 \text{ kcal mol}^{-1}$. (b) From EA(Fe- $(CO)_4$) = 55.3 \pm 6.9 kcal mol⁻¹,¹² ΔH_f° (OC)₄Fe⁻.) = -160.9 \pm 10.4 kcal mol⁻¹. (c) Sweany¹³ observed little or no activation energy for the reaction $(CO)_4$ = 55.3 \pm 6.9 kcal mol⁻¹,¹² $\Delta H_1^{\circ}(\text{OC})_4\text{Fe}^{-1}$ = -160.9 \pm 10.4 kcal
mol⁻¹. (c) Sweany³ observed little or no activation energy for the reaction
 $H_2 + \text{Fe}(CO)_4 \rightarrow H_2\text{Fe}(CO)_4$, and Pearson and Maue