By comparison, 1 reacts with LiR to give appropriate anionic iron-acyl complexes; however, corresponding carbene derivatives have been made only when the second equivalent of the alkylating agent was provided internally.<sup>1</sup>

The present work points to the generality of the reduction of bimetallic, phosphido-bridged metal carbonyl and nitrosyl complexes with M'BR<sub>3</sub>H to afford binuclear anions of the type represented by 3. It also provides new chemistry of the bridging phosphido ligand, which surprisingly exhibits considerable lability in reactions with BR<sub>3</sub>H<sup>-</sup> and H<sup>+</sup>.

Acknowledgment. We gratefully acknowledge the financial support of the National Science Foundation through Grant CHE-7911882.

First Photosubstitution Chemistry of Fulvalene-Bridged Metal-Metal Bonded Carbonyis. Synthesis and Structural Determination of Novel Homo- and Heterobimetallic Alkyne Complexes

James S. Drage, Mats Tilset, Peter C. Vollhardt,\* and Timothy W. Weldman

Department of Chemistry, University of California, Berkeley and the Materials and Molecular Research Division Lawrence Berkeley Laboratory Berkeley, California 94720

Received November 28, 1983

Summary: Irradiation of the carbonyl( $\eta^5$ : $\eta^5$ -fulvalene)dimetal complexes of molybdenum, tungsten, and ruthenium **1**, **3**, and **4** in the presence of alkynes gives not only complexes of different respective composition and structure within the series but also in comparison with the corresponding ( $\eta^5$ -cyclopentadienyl)metal carbonyl dimers. ( $\eta^5$ : $\eta^5$ -C<sub>10</sub>H<sub>8</sub>)(CO)<sub>5</sub>MoRu (**5**) furnishes a novel reactive dinuclear (alkyne)metal oxo complex.

We have recently described a facile synthesis of carbonyl( $\eta^5$ : $\eta^5$ -fulvalene)dimetal complexes 1-5.<sup>1</sup> We report



here the first substitution chemistry of these systems with alkynes which has led to the discovery of unusual modes of ligand bonding<sup>2</sup> and the isolation of the first structurally characterized dinuclear (alkyne)molybdenum oxo complex  $11.^3$ 



Figure 1. ORTEP drawing showing the geometry, labeling, and important bond lengths (Å) for all non-hydrogen atoms in 6. Ellipsoids are scaled to represent the 50% probability surface.



Figure 2. ORTEP drawing of 8.



Figure 3. ORTEP drawing of 11.

Irradiation of 1 in the presence of ethyne (purged THF, 300 nm, room temperature, 4 h) resulted in the diruthenacyclobutene 6 in which the alkyne is bound as expected<sup>4</sup> in the relatively rare "parallel"  $\mu$ - $\eta^2$  mode<sup>5</sup> as

<sup>(1)</sup> Vollhardt, K. P. C.; Weidman, T. W. J. Am. Chem. Soc. 1983, 105, 1676; Organometallics 1984, 3, 82.

<sup>(2)</sup> Bowden, F. L.; Lever, A. B. P. Organomet. Chem. Rev. 1968, 3, 227.
Yur'eva, L. P. Russ. Chem. Rev. (Engl. Transl.) 1974, 43, 48. Holton, J.;
Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Rev. 1983, 83, 135.
Sappa, E.; Tiripicchio, A.,; Braunstein, P. Ibid. 1983, 83, 203.

<sup>(3)</sup> For mononuclear alkyne molybdenum oxides see: Bokiy, N. G.; Gatilov, Yu. V.; Struchkov, Yu. T.; Ustynyuk, N. A. J. Organomet. Chem. 1973, 54, 213. Schneider, P. W.; Bravard, D. C.; McDonald, J. W.; Newton, W. E. J. Am. Chem. Soc. 1972, 94, 8640. Braterman, P. S.; Davidson, J. L.; Sharp, D. W. A. J. Chem. Soc., Dalton Trans. 1976, 241. Howard, J. A. K.; Stansfield, R. F. D.; Woodward, P. Ibid. 1976, 246. Maatta, E. A.; Wentworth, R. A. D.; Newton, W. E.; McDonald, J. W.; Watt, G. D. J. Am. Chem. Soc. 1978, 100, 1320. Maatta, E. A.; Wentworth, R. A. D. Inorg. Chem. 1979, 18, 524. Newton, W. E.; McDonald, J. W.; Corbin, J. L.; Ricard, L.; Weiss, R. Ibid. 1980, 19, 1997. Templeton, J. L.; Winston, P. B.; Ward, B. C. J. Am. Chem. Soc. 1981, 103, 7713. For analogous tungsten systems: Templeton, J. L.; Ward, B. C.; Chen, G. J.-J.; McDonald, J. W.; Newton, W. E. Inorg. Chem. 1981, 20, 1248.

<sup>(4)</sup> Hoffman, D.M.; Hoffmann, R.; Fisel, C. R. J. Am. Chem. Soc. 1982, 104, 3858.

shown by an X-ray structural investigation (Figure 1). Similar complexes are obtained<sup>5</sup> with diphenylethyne (63%, mp 220 °C dec) and dimethyl ethynedicarboxylate (76%, mp 200 °C dec). Attempts to induce further alkyne uptake in these systems have been unsuccessful. Thus, their structure and chemical behavior are in sharp contrast to their relatives derived from  $[Ru(CO)_2(\eta-C_5H_5)]_2.^6$ 

Similar divergence is exhibited by the group 6B analogues 2-4. Whereas 2 furnishes only decomposition products on irradiation in the presence of diphenylethyne, 3 results in both mono(alkyne) (8.8%, mp 162 °C dec) as well as bis(alkyne) (23%, mp 179 °C dec) substitution products.<sup>5</sup> Similar complexes 7 and 8 are obtained from dimethyl ethynedicarboxylate.<sup>5</sup> The narrow multiplets for the fulvalene protons are particularly indicative of the symmetry of the compounds generated. Thus, 7 exhibits four signals whereas in 8 all protons are distinct. An X-ray analysis of 8 (Figure 2) reveals that the two alkynes are uncoupled (vide infra)<sup>12</sup> even though close, one functioning as a two-electron and the other as a four-electron [as in  $(\eta^5 - C_5 H_5)_2 Mo_2(CO)_4(C_2 R_2)]^7$  ligand. The molecule has a Mo–Mo bond length of 2.906 (1) Å, considerably shorter (by 0.33 Å) than  $(\eta^5-C_5H_5)_2Mo_2(CO)_6$ ,<sup>8</sup> somewhat shorter even than those in alkyne complexes of the latter (by 0.05-0.08 Å).<sup>9</sup> It is interesting to compare these distances with the unusually long W-W bond (3.347 Å) in hexa-

(6) Dyke, A. F.; Knox, S. A. R.; Naish, P. J.; Taylor, G. E. J. Chem. Soc., Dalton Trans. 1982, 1297. Colborn, R. E.; Dyke, A. F.; Knox, S. A. R.; MacPherson, K. A.; Orpen, A. G. J. Organomet. Chem. 1982, 239, C15. Davies, D. L.; Dyke, A. F.; Endesfelder, A.; Knox, S. A. R.; Naish, P. J.; Orpen, A. G.; Plaas, D.; Taylor, G. E. Ibid. 1980, 198, C43. Davidson, J. L.; Green, M.; Stone, F. G. A.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1976, 2044.

(7) Gerlach, R. F.; Duffy, D. N.; Curtis, M. D. Organometallics 1983, 2, 1172 and the references therein.

(8) Adams, R. D.; Collins, D. M.; Cotton, F. A. Inorg. Chem. 1974, 13, 1086.

(9) Bailey, W. I., Jr.; Chisholm, M. H.; Cotton, F. A.; Rankel, L. A. J. Am. Chem. Soc 1978, 100, 5764. carbonyl( $\eta^5:\eta^5$ -fulvalene)ditungsten<sup>10</sup> and the corresponding distance in  $(\eta^5-C_5H_5)_2W_2(CO)_4(C_2H_2)$  (2.987 Å).<sup>11</sup>

The mono(alkyne) adducts of the type 7 show fluxional behavior in the <sup>1</sup>H NMR experiment. For example, 7 reveals equilibration of the methyl ester protons and coalescence (at 35 °C) of the fulvalene signals to two sets  $(\Delta G^* = 15.0 \pm 0.5 \text{ kcal mol}^{-1})$ . These and the spectral data are consistent with (but do not prove) an alkyne ligand which is bound to the dinuclear framework in an unsymmetrically bridging manner, as the  $\mu$  ligand in 8 and as shown in the picture for 7. Fluxionality would then arise by rotating the alkyne around the Mo-Mo bond from one side of the fulvalene ligand to the other. Whereas 7 can be converted to 8 with added alkyne, further alkyne incorporation could not be effected. On the other hand the corresponding  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>Mo dimers are well-known to lead to multiple alkyne coupling.<sup>12</sup> Indeed, the nonoccurrence of such couplings is very rare.<sup>3,13</sup>

The ditungsten system 4 also undergoes<sup>5</sup> single and double alkyne photosubstitution (di-p-tolylethyne, 16%, mp 140 °C dec; 18%, mp 200 °C dec; diphenylethyne, 9 and 10). In contrast to 3, however, monosubstitution gives



a different product involving a terminal, unsymmetrically bound alkyne, as indicated by the nonequivalency of all fulvalene protons as well as the two sides of the alkyne.<sup>5</sup> No change was observable in the NMR spectrum of 9 up to 70 °C. This chemistry again differs from that of the analogous ( $\eta^5$ -cyclopentadienyl)tungsten carbonyl dimer.<sup>14</sup>

Perhaps most remarkable is the behavior of the mixed-metal system 5 which has potential catalytic applications.<sup>15</sup> On irradiation with diphenylethyne the novel and very reactive oxo complex 11 is formed,<sup>5</sup> the structural features of which were confirmed by X-ray analysis (Figure 3).<sup>5</sup> The source of the oxygen in 11 appears to be traces of moisture and not air,<sup>3</sup> since the yields drop off drastically when flame-dried glassware is used. ( $\eta^5$ -Cyclopentadienyl)metal oxo complexes are relatively rare,<sup>3,16</sup> and alkyne complexes of the type 11 could well be active catalysts.<sup>17</sup> Preliminary tests show 11 to actively polymerize

(13) For such rare examples, see: Cotton, F. A.; Schwotzer, W.;
Shamshoum, E. S. Organometallics 1983, 2, 1167. Davidson, J. L. J. Chem. Soc., Dalton Trans. 1983, 1667. Boag, N. M.; Green, M.; Howard, J. A. K.; Spencer, J. L.; Stansfield, R. F. D.; Thomas, M. D. O.; Stone, F. G. A.; Woodward, P. Ibid. 1980, 2182. Boag, N. M.; Green, M.; Grove, D. M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A. Ibid. 1980, 2170. (14) See: Finnimore, S. R.; Knox, S. A. R.; Taylor, G. E. J. Chem. Soc., Chem. Commun. 1980, 411.

(15) Bruce, M. I. J. Organomet. Chem. 1983, 242, 147. See also: Casey, C. P.; Bullock, R. M.; Fultz, W. C.; Reingold, A. L. Organometallics
1982, 1, 1591 and the references therein.

(16) See: Middleton, A. R.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1980, 1888. Wood, C. D.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 5421. Cousins, M.; Green, M. L. J. Chem. Soc. A 1969, 16.

(17) Alkene metal oxo complexes appear to be implicated in alkene metathesis and possibly epoxidation: Kress, J.; Wesolek, M.; LeNy, J.-P.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1981, 1039. Rappé, A. K.; Goddard III, W. A. Nature (London) 1980, 285, 311. Schrock, R. R.; Rocklage, S.; Wengrovius, J.; Rupprecht, G.; Fellmann, J. J. Mol. Catal. 1980, 8, 73.

<sup>(5)</sup> All new compounds gave satisfactory spectral and analytical data. For example, 6: 56%, orange crystals, mp 205 °C dec; <sup>1</sup>H NMR (200 MHz for all spectra, acetone- $d_0$   $\delta$  4.80 (m, 2 H), 5.15 (m, 2 H), 5.72 (m, 2 H), 6.03 (m, 2 H), 6.86 (s, 2 H); CIMS, m/e (relative intensity) 442 (M<sup>+</sup>, highest mass peak in isotope envelope, 78%), 414 (100); IR (KBr) 1980, 1944, 1755 cm<sup>-1</sup>; X-ray, crystal size 0.14 × 0.27 × 0.36 mm, orthorhombic Laue symmetry, space group *Pbca* (No. 61), a = 8.0515 (10) A, b = 15.0105 (19) Å, c = 21.8239 (32) Å, V = 2637.6 (10) Å<sup>3</sup>, Z = 8,  $\mu_{calcd} = 22.25$  g cm<sup>-3</sup>, radiation Mo K $\alpha$  ( $\lambda = 0.71073$  Å), scan range 3°  $\leq 2\theta \leq 45^\circ$ , reflections collected 2016, unique 1609 with  $F^2 > 3\sigma$  ( $F^2$ ), R = 0.0171,  $R_w = 0.0291$ . 7: 14%, red crystals, mp 164–165 °C dec; <sup>1</sup>H NMR (acetone- $d_0$ )  $\delta$  3.36 (bs, 3 H), 3.85 (bs, 3 H), 4.27 (m, 2 H), 4.54 (m, 2 H), 5.58 (m, 2 H), 6.00 (m, 2 H); MS, m/e (relative intensity) 574 (M<sup>+</sup>, 27%), 344 (100); IR (KBr) 2010 (sh), 1970, 1945, 1920 (sh), 1735, 1705, 1675 cm<sup>-1</sup> 8: 67%, orange crystals, mp 161–162 °C dec; <sup>1</sup>H NMR (acetone- $d_0$ )  $\delta$  3.50 (s, 3 H), 3.57 (s, 3 H), 3.68 (s, 3 H), 3.82 (s, 3 H), 4.72 (m, 1 H), 6.04 (m, 1 H); MS, m/e (relative intensity) 688 (M<sup>+</sup>, 0.06%), 57 (100); IR (KBr) 2042, 2002, 1944, 1706, 1691, 1678 cm<sup>-1</sup>; X-ray, crystal size 0.05 × 0.17 × 0.40 mm; monoclinic Laue symmetry, space group P2<sub>1</sub>/c, a = 9.6984 (BÅ, b = 15.4379 (21) Å, c = 16.4863 (17) Å,  $\beta = 96.880$  (7)°, V = 2455.4 (8) Å<sup>3</sup>, Z = 4,  $d_{calcd} = 1.86$  g cm<sup>-3</sup>, radiation Mo K $\alpha$  ( $\lambda = 0.71073$  Å), scan range  $3^\circ \leq 2\theta \leq 45^\circ$ ; reflections collected 3494, 3210 unique, 2692 with  $F^2 > 3\sigma(F^2)$ , R = 0.022,  $R_* = 0.029$ . 9; vellow crystals, 26%, mp  $-500^\circ$  C dec; <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  3.23 (m, 1 H), 5.92 (m, 1 H), 5.31 (m, 1 H), 5.57 (m, 2 H), 5.59 (m, 1 H), 6.10 (m, 1 H), 6.96 (m, 1 H), 7.3-7.6 (m, 6 H), 7.68 (dd, J = 7.4, 1, 2 H), 7.89 (dd, J = 8.0, 1, 2 H); MS, m/e (relative intensity) 936 (M<sup>+</sup>, 4.9%), 786 (100%); IR

<sup>(10)</sup> Abrahamson, H. B.; Heeg, M. J. Inorg. Chem., in press.

<sup>(11)</sup> Ginley, D. S.; Bock, C. R.; Wrighton, M. S.; Fischer, B.; Tipton, D. L.; Bau, R. J. Organomet. Chem. 1978, 157, 41.

<sup>(12)</sup> Beck, J. A.; Knox, S. A. R.; Stansfield, R. F. D.; Stone, F. G. A.;
Winter, M. J.; Woodward, P. J. Chem. Soc., Dalton Trans. 1982, 195.
Green, M.; Norman, N. C.; Orpen, A. G. J. Am. Chem. Soc. 1981, 103,
1269. Knox, S. A. R.; Stansfield, R. F. D.; Stone, F. G. A.; Winter, M. J.; Woodward, P. J. Chem. Soc., Chem. Commun. 1978, 221.

alkynes. Hydrogenation in the presence of CO regenerates 5 quantitatively.

Acknowledgment. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy, under Contract DE-AC03-76SF00098. The crystal structure analyses of 6 and 11 were performed by Dr. F. J. Hollander, U.C. Berkeley X-ray Crystallographic Facility, and that of 8 by Dr. W. Tötsch and J. Bularzik, K. Kourtakis, and J. Nitschke, at the same location. We thank Professor H. B. Abrahamson, University of Oklahoma for a preprint. M.T. is the recipient of a Royal Fellowship of Norway. K.P.C.V. was a Camille and Henry Dreyfus Teacher-Scholar (1978-1983).

Supplementary Material Available: A listing of positional and thermal parameters and tables of bond lengths and angles of 6, 8, and 11 (17 pages). Ordering information is given on any current masthead page.

**Reactivity of Phosphido-Bridged Heteronuclear Compounds: Insertion of CO and Diphenylacetylene** into the Phosphido Bridge of  $RuCo(CO)_7(\mu-PPh_2)$ . X-ray Structure of  $RuCo(CO)_{5}(\mu-CO)[\mu-\eta^{2}-PPh_{2}C(O)C(Ph)C(Ph)]$ 

## Rachid Regragui and Pierre H. Dixneuf\*

Laboratoire de Chimie de Coordination Organique Université de Rennes, Campus de Beaulieu 35042 Rennes Cedex, France

## Nicholas J. Taylor and Arthur J. Carty\*

Guelph-Waterloo Centre, Waterloo Campus Department of Chemistry, University of Waterloo Waterloo, Ontario, N2L 3G1 Canada

Received September 20, 1983

Summary: The reaction of the heterobinuclear phosphido-bridged compound  $RuCo(CO)_{6}(\mu-PPh_{2})$  (1) with diphenylacetylene leads, via acetylene and CO insertion into the phosphido bridge, to the novel complex RuCo(CO)6-[Ph\_PCOC(Ph)C(Ph)] (2). X-ray analysis (space group P1, a = 9.820 (1) Å, b = 12.419 (2) Å, c = 14.966 (2) Å,  $\alpha$ = 99.58 (1)°,  $\beta$  = 99.55 (1)°,  $\gamma$  = 90.10 (1)°, Z = 2; R = 0.028,  $R_w$  = 0.031 based on 4191 reflections) has revealed the presence of a  $\mu$ -Ph<sub>2</sub>PCOC(Ph)C(Ph) ligand coordinated to ruthenium via phosphorus and one carbon atom of the original alkyne and to cobalt via an  $\eta^2$ -interaction. 2 undergoes facile decarbonylation to RuCo- $(CO)_{6}[Ph_{2}PC(Ph)C(Ph)]$  (3). The conversion of 1 to 2 and 3 may have wide implications for the reactivity of  $\mu$ -PPh2-bridged polynuclear compounds toward unsaturated substrates.

The phosphido (PR<sub>2</sub>) group has recently attracted particular attention as a strongly bound yet flexible ligand capable of maintaining the integrity of a polynuclear framework during chemical transformations.<sup>1</sup> A sub-



Figure 1. A perspective view of the molecular structure of RuCo(CO)<sub>6</sub>[Ph<sub>2</sub>PCOC(Ph)C(Ph)] drawn to illustrate the interaction of the new ligand with the metal atoms.

Scheme I



stantial number of polymetallic phosphido-bridged compounds have now been synthesized,<sup>2</sup> and several examples of potentially significant, reversible metal-metal bond cleavage have been reported.<sup>3</sup> With  $\mu$ -PPh<sub>2</sub> compounds a possible complicating factor that has not however received much attention is reactivity associated with the bridge, a problem which might be accentuated in heterobimetallic systems. To date few instances of bridge cleavage have been reported.<sup>1,4</sup>

While investigating the behavior of the heteronuclear phosphido-bridged dimer  $RuCo(CO)_7(\mu$ -PPh<sub>2</sub>) (1)<sup>5</sup> toward alkynes for comparison with homodinuclear compounds such as  $Co_2(CO)_8$ , we discovered that the dominant reaction pathway involves CO and acetylene insertion into the  $\mu$ -PPh<sub>2</sub>(RuCo) bridge leading to the novel derivative  $RuCo(CO)_5(\mu-CO)[\mu-PPh_2COC(Ph)C(Ph)]$  (2) which subsequently decarbonylates to RuCo(CO)<sub>5</sub>(µ-CO)[µ-PPh<sub>2</sub>C-(Ph)C(Ph)] 3. These reactions that may have wider implications for the reactivity of  $\mu$ -PPh<sub>2</sub> systems and for the use of heterobimetallics in organic synthesis are reported herein.

<sup>(1)</sup> For recent references see: (a) Carty, A. J. Adv. Chem. Ser. 1982, No. 196, 163. (b) Kreter, P. E.; Meek, D. W. Inorg. Chem. 1983, 22, 319. (c) Foley, H. C.; Finch, W. C.; Pierpont, C. G.; Geoffroy, G. L. Organo-metallics 1982, 1, 1379. (d) Fischer, K.; Vahrenkamp, H. Z. Anorg. Allg. Chem. 1981, 475, 109. (e) Mays, M. J.; Raithby. P. R. J. Organomet. Chem. 1982, 224, C45. (f) Harley, A. D.; Guskey, G. J.; Geoffroy, G. L. Organometallics 1983, 2, 53. (g) Carty, A. J.; Hartstock, F.; Taylor, N. J. Inorg. Chem. 1982, 21, 1349. (h) Yu, Y.-F.; Galluci, J.; Wojcicki, A. J. Am. Chem. Soc. 1983, 15, 4896. Am. Chem. Soc. 1983, 105, 4826.

<sup>(2)</sup> See for example: (a) Carty, A. J.; MacLaughlin, S. A.; Van Wagner, Taylor, N. J. Organometallics 1982, 1, 1013. (b) Young, D. A. Inorg. Chem. 1981, 20, 2049. (c) Haines, R. J.; Steen, N. D. C. T.; English, R. B. J. Chem. Soc., Chem. Commun. 1981, 407. (d) Haines, R. J.; Steen, N. D. C. T.; English, R. B. *Ibid.* 1981, 587. (e) Jones, D. F.; Dixneuf, P. H.; Benoit, A.; Le Marouille, J. Y. *Ibid.* 1982, 1217. (f) Breen, M. J.;

<sup>H.; Benoit, A.; Le Marouille, J. Y. 1013. 1982, 1217. (f) Breen, M. J.;
Duttera, M. R.; Geoffroy, G. L.; Novotnak, G. C.; Roberts, D. A.; Shulman, P. M.; Steinmetz, G. R. Organometallics 1982, 1, 1008.
(3) (a) Jones, R. A.; Wright, T. C.; Atwood, J. L.; Hunter, W. E. Organometallics, 1983, 2, 470. (b) MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J. Ibid. 1983, 2, 1194. (c) MacLaughlin, S. A.; Taylor, N. J.; Carty, A. J. Organomet. Chem. 1981, 204, C27.
(A) The annuel commute of an uncertainty of an uncertainty disconduction.</sup> 

<sup>(4) (</sup>a) The only examples of insertion of an unsaturated ligand into a diphenylphosphido bridge, of which we are aware, are given in: Smith, W. F.; Taylor, N. J.; Carty, A. J. J. Chem. Soc., Chem. Commun. 1976, 896. (b) Examples of hydrogenation of a  $\mu$ -PPh<sub>2</sub> bridge to a terminal phosphine have recently been observed: see ref 1b, 1f, and 1h. (c) Hydrogen abstraction from the more reactive  $\mu$ -PPhH ligands has been used to generate face capping μ<sub>3</sub>-PPh groups, but the nucleating properties of the phosphorus ligand are not destroyed in this conversion. See, e.g.: Iwasaki, F.; Mays, M. J.; Raithby, G. R.; Taylor, P. L.; Wheatley, P. J. J. Organomet. Chem. 1981, 213, 185.
(5) Regragui, R.; Dixneuf, P. H. J. Organomet. Chem. 1982, 239, C12.