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By comparison, 1 reacts with LiR to give appropriate an- 
ionic iron-acyl complexes; however, corresponding carbene 
derivatives have been made only when the second equiv- 
alent of the alkylating agent was provided interna1ly.l 

The present work points to the generality of the re- 
duction of bimetallic, phosphido-bridged metal carbonyl 
and nitrosyl complexes with M'BR3H to afford binuclear 
anions of the type represented by 3. It also provides new 
chemistry of the bridging phosphido ligand, which sur- 
prisingly exhibits considerable lability in reactions with 
BR,H- and H+. 
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Summary: Irradiation of the carbonyl(q5:q5-fulvalene)di- 
metal complexes of molybdenum, tungsten, and rutheni- 
um 1, 3, and 4 in the presence of alkynes gives not only 
complexes of different respective composition and 
structure within the series but also in comparison with the 
corresponding (q5cyclopentadienyl)metal carbonyl dimers. 
(q5:q5-C,oH,)(CO)5MoR~ (5) furnishes a novel reactive di- 
nuclear (a1kyne)metal oxo complex. 

We have recently described a facile synthesis of car- 
b~nyl(~~:~~-fulvalene)dimetal complexes 1-5.' We report 

oc<M 9 --Mcc0 CO 
oc 

7 

here the first substitution chemistry of these systems with 
alkynes which has led to the discovery of unusual modes 
of ligand bonding2 and the isolation of the f i t  structurally 
characterized dinuclear (alkyne)molybdenum oxo complex 
11.3 

(1) Vollhardt, K. P. C.; Weidman, T. W. J. Am. Chem. SOC. 1983,105, 
1676; Organometallics 1984, 3, 82. 
(2) Bowden, F. L.; Lever, A. B. P. Organomet. Chem. Reu. 1968,3,227. 

Yur'eva, L. P. Russ. Chem. Reu. (EngE. Transl.) 1974,43,48. Holton, J.; 
Lappert, M. F.; Pearce, R.; Yarrow, P. I. W. Chem. Reu. 1983, 83, 135. 
Sappa, E.; Tiripicchio, A.,; Braunstein, P. Ibid. 1983, 83, 203. 
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Figure 1. ORTEP drawing showing the geometry, labeling, and 
important bond lengths (A) for all non-hydrogen atoms in 6. 
Ellipsoids are scaled t o  represent t he  50% probability surface. 

Figure 2. ORTEP drawing of 8. 

Figure 3. ORTEP drawing of 11. 

Irradiation of 1 in the presence of ethyne (purged THF, 
300 nm, room temperature, 4 h) resulted in the di- 
ruthenacyclobutene 6 in which the alkyne is bound as 
expected4 in the relatively rare "parallel" p q z  mode5 as 

(3) For mononuclear alkyne molybdenum oxides see: Bokiy, N. G.; 
Gatilov, Yu. V.; Struchkov, Yu. T.; Ustynyuk, N. A. J. Organomet. Chem. 
1973,54,213. Schneider, P. W.; Bravard, D. C.; McDonald, J. W.; New- 
ton, W. E. J. Am. Chem. SOC. 1972,94,8640. Braterman, P. s.; Davidson, 
J. L.; Sharp, D. W. A. J. Chem. Soc., Dalton Trans. 1976,241. Howard, 
J. A. K.; Stansfield, R. F. D.; Woodward, P. Ibid. 1976, 246. Maatta, E. 
A.; Wentworth, R. A. D.; Newton, W. E.; McDonald, J. W.; Watt, G. D. 
J.  Am. Chem. SOC. 1978,100,1320. Maatta, E. A.; Wentworth, R. A. D. 
Inorg. Chem. 1979, 18, 524. Newton, W. E.; McDonald, J. W.; Corbin, 
J. L.; Ricard, L.; Weiss, R. Ibid. 1980,19, 1997. Templeton, J. L.; Win- 
ston, P. B.; Ward, B. C. J. Am. Chem. SOC. 1981,103,7713. For analogous 
tungsten systems: Templeton, J. L.; Ward, B. C.; Chen, G. J.-J.; 
McDonald, J. W.; Newton, W. E. Inorg. Chem. 1981,20, 1248. 

(4) Hoffman, D.M.; Hoffmann, R.; Fisel, C. R. J.  Am. Chem. SOC. 1982, 
104, 3858. 
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shown by an X-ray structural investigation (Figure 1). 
Similar complexes are obtained5 with diphenylethyne 
(6390, mp 220 "C dec) and dimethyl ethynedicarboxylate 
(76%, mp 200 "C dec). Attempts to induce further alkyne 
uptake in these systems have been unsuccessful. Thus, 
their structure and chemical behavior are in sharp contrast 
to their relatives derived from [RU(CO)~( .~~-C ,H~) ]~ .~  

Similar divergence is exhibited by the group 6B ana- 
logues 2-4. Whereas 2 furnishes only decomposition 
products on irradiation in the presence of diphenylethyne, 
3 results in both mono(alkyne) (8.8%, mp 162 "C dec) as 
well as bis(a1kyne) (2370, mp 179 "C dec) substitution 
 product^.^ Similar complexes 7 and 8 are obtained from 
dimethyl ethynedicarb~xylate.~ The narrow multiplets for 
the fulvalene protons are particularly indicative of the 
symmetry of the compounds generated. Thus, 7 exhibits 
four signals whereas in 8 all protons are distinct. An X-ray 
analysis of 8 (Figure 2) reveals that the two alkynes are 
uncoupled (vide infra)lZ even though close, one functioning 
as a two-electron and the other as a four-electron [as in 
(q5-C5H5)zMoz(C0)4(CzRz)]7 ligand. The molecule has a 
Mo-Mo bond length of 2.906 (1) A, considerably shorter 
(by 0.33 A) than (q5-C5H5)zMoz(C0)6,8 somewhat shorter 
even than those in alkyne complexes of the latter (by 
0.05-0.08 A).g It is interesting to compare these distances 
with the unusually long W-W bond (3.347 A) in hexa- 
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carbonyl(~5:s5-fulvalene)ditungsten10 and the correspond- 
ing distance in (s5-C5H5)2Wz(C0)4(CzHZ) (2.987 A).11 

The mono(alkyne) adducts of the type 7 show fluxional 
behavior in the lH NMR experiment. For example, 7 
reveals equilibration of the methyl ester protons and 
coalescence (at 35 "C) of the fulvalene signals to two sets 
(AG* = 15.0 f 0.5 kcal mol-'). These and the spectral data 
are consistent with (but do not prove) an alkyne ligand 
which is bound to the dinuclear framework in an unsym- 
metrically bridging manner, as the p ligand in 8 and as 
shown in the picture for 7. Fluxionality would then arise 
by rotating the alkyne around the Mo-Mo bond from one 
side of the fulvalene ligand to the other. Whereas 7 can 
be converted to 8 with added alkyne, further alkyne in- 
corporation could not be effected. On the other hand the 
corresponding .r15-C5H5Mo dimers are well-known to lead 
to multiple alkyne coupling.12 Indeed, the nonoccurrence 
of such couplings is very raree3J3 

The ditungsten system 4 also undergoes5 single and 
double alkyne photosubstitution (di-p-tolylethyne, 1670, 
mp 140 "C dec; 18%, mp 200 "C dec; diphenylethyne, 9 
and 10). In contrast to 3, however, monosubstitution gives 

(5) All new compounds gave satisfactory spectral and analytical data. 
For example, 6 56%, orange crystale, mp 205 "C dec; 'H NMR (200 MHz 
for all spectra, acetone-d,) 6 4.80 (m, 2 H), 5.15 (m, 2 H), 5.72 (m, 2 H), 
6.03 (m, 2 H), 6.86 (s, 2 H); CIMS, m/e (relative intensity) 442 (M+, 
highest mass peak in isotope envelope, 78%), 414 (100); IR (KBr) 1980, 
1944, 1755 cm-l; X-ray, crystal size 0.14 X 0.27 X 0.36 mm, orthorhombic 
h u e  symmetry, space group Pbca (No. 611, a = 8.0515 (10) A, b = 15.0105 
(19) A, c = 21.8239 (32) A, V = 2637.6 (10) A3, 2 = 8, puled = 22.50 cm-', 
d d  = 2.22 g ~ m - ~ ,  radiation Mo Ka (A = 0.71073 A), scan range 3O 5 
28 5 45O, reflections collected 2016, unique 1609 with P > 3u (F), R = 
0.0171, R, = 0.0291. 7: 14%, red crystals, mp 164-165 OC dec; 'H NMR 
(acetone-d6) 6 3.36 (be, 3 H), 3.85 (bs, 3 H), 4.27 (m, 2 H), 4.54 (m, 2 H), 
5.58 (m, 2 H), 6.00 (m, 2 H); MS, m/e (relative intensity) 574 (M', 27%), 
344 (100); IR (KBr) 2010 (ah), 1970,1945,1920 (sh), 1735,1705,1675 cm-'. 
8 67%, orange crystals, mp 161-162 "C dec; 'H NMR (acetone-d,) 6 3.50 
(8 ,  3 H), 3.57 (8 ,  3 H), 3.68 (s, 3 H), 3.82 (8 ,  3 H), 4.72 (m, 1 H), 4.79 (m, 
1 H), 5.08 (m, 1 H), 5.51 (m, 2 H), 5.57 (m, 1 H), 5.87 (m, 1 H), 6.04 (m, 
1 H); MS, m/e (relative intensity) 688 (M', 0.06%), 57 (100); IR (KBr) 
2042,2002,1944,1706,1691,1678 cm-'; X-ray, crystal size 0.05 X 0.17 X 
0.40 mm; monoclinic Laue symmetry, s ace group P21/c, a = 9.6984 (6) 
A, b = 15.4379 (21) A, c = 16.4863 (?7), 1, B = 95.880 (7)O, V = 2455.4 (8) 
A3. 2 = 4. daetd = 1.86 e ~ m - ~ .  radiation Mo Ka IA = 0.71073 AI. scan 
r k g e  3O k 2 7 2  45O; resections collected 3494,3210 unique, 2692 with 
P > 3u(P),  R = 0.022, R, = 0.029. 9 yellow crystals, 26%, mp -150 
OC dec; 'H NMR (CDCl,) 6 3.23 (m, 1 H), 5.22 (m, 1 H), 5.31 (m, 1 H), 
5.67 (m, 2 H), 5.90 (m, l-H), 6.10 (m, 1 HI, 6.96 (m, 1 H), 7.3-7.6 (m, 6 
H), 7.68 (dd, J = 7.4, 1 , 2  H), 7.89 (dd, J = 8.0, 1, 2 H); MS, m/e (relative 
intensity) 786 (M+ - CO, 37.9%), 179 (100%); IR (KBr) 1977,1971,1909, 
1896,1870 cm-'. 1 0  red-brown crystale, 22%, mp -200 "C dec; 'H NMR 
(CDC13) 6 4.44 (m, 1 H),4.67 (m, 1 H),4.94 (m, 1 H), 5.22 (m, 1 H), 5.40 
(m, 1 H), 5.58 (m, 1 H), 5.64 (m, 1 HI, 6.16 (m, 1 HI, 6.8-7.4 (m, 20 H); 
MS, m/e (relative intensity) 936 (M+, 4.9%), 786 (100%); IR (KBr) 1982, 
1942, 1877 cm-'. 11: 43%, orange crystals, mp 180 "C dec; 'H NMR 
(acetone-d.I 6 3.18 (m. 1 HI. 4.61 Im. 1 HI. 5.30 Im. 1 HI. 5.59 (m. 1 HI. 
5.87 (m, 1 H), 5.96 (mi 1 H); 6.10 (mi 1 H); 7.20-7.60 (m,'8 H), 7.89 (dd; 
J = 8.2, 0.6, 2 H); MS m / e  574 (M', 1.4%), 178 (100); IR (KBr) 1982, 
1924,952 cm-'; X-ray, size 0.09 X 0.17 X 0.34 mm, monoclinic h u e  
symmetry, space group P2'/c, a = 10.1614 (9) A, b = 16.7761 (19) A, V 
= 2214.2 (7) A3, 2 = 4, pcaod = 12.46 cm-', d d  = 1.726 g ~ m - ~ ,  radiation 
Mo Ka (A = 0.71073 A), scan range 3O 5 20 5 45O, reflections collected 
3143, 2539 unique with F > 3u(p) ,  R = 0.0162, R, = 0.0232. 

(6) Dyke, A. F.; Knox, S. A. R.; Naish, P. J.; Taylor, G. E. J. Chem. 
SOC., Dalton Trans. 1982,1297. Colborn, R. E.; Dyke, A. F.; Knox, S. A. 
R.; MacPherson, K. A.; Orpen, A. G. J. Organomet. Chem. 1982,239, C15. 
Davies, D. L.; Dyke, A. F.; Endesfelder, A.; Knox, S. A. R.; Naish, P. J.; 
Orpen, A. G.; P l m ,  D.; Taylor, G. E. Ibid. 1980,198, C43. Davidson, J. 
L.; Green, M.; Stone, F. G. A.; Welch, A. J. J. Chem. SOC., Dalton Trans. 
1976, 2044. 

(7) Gerlach, R. F.; Duffy, D. N.; Curtis, M. D. Organometallics 1983, 
2, 1172 and the references therein. 

(8) Adams, R. D.; Collins, D. M.; Cotton, F. A. Inorg. Chem. 1974,13, 
1086. 

(9) Bailey, W. I., Jr.; Chisholm, M. H.; Cotton, F. A.; Rankel, L. A. J. 
Am. Chem. SOC 1978,100, 5764. 

9 10 

a different product involving a terminal, unsymmetrically 
bound alkyne, as indicated by the nonequivalency of all 
fulvalene protons as well as the two sides of the alkyne.5 
No change was observable in the NMR spectrum of 9 up 
to 70 "C. This chemistry again differs from that of the 
analogous (q5-cyclopentadieny1)tungsten carbonyl dimer.14 

Perhaps most remarkable is the behavior of the mix- 
ed-metal system 5 which has potential catalytic applica- 
t i o n ~ . ~ ~  On irradiation with diphenylethyne the novel and 
very reactive oxo complex 11 is f ~ r m e d , ~  the structural 
features of which were confirmed by X-ray analysis (Figure 
3h5 The source of the oxygen in 11 appears to be traces 
of moisture and not air,3 since the yields drop off drasti- 
cally when flame-dried glassware is used. (q5-Cyclo- 
pentadieny1)met.d oxo complexes are relatively rare,3J6 and 
alkyne complexes of the type 11 could well be active cat- 
alysts." Preliminary tests show 11 to actively polymerize 

(10) Abrahamson, H. B.; Heeg, M. J. Inorg. Chem., in press. 
(11) Ginley, D. S.; Bock, C. R.; Wrighton, M. S.; Fischer, B.; Tipton, 

D. L.; Bau, R. J. Organomet. Chem. 1978,157, 41. 
(12) Beck, J. A.; Knox, S. A. R.; Stansfield, R. F. D.; Stone, F. G. A.; 

Winter, M. J.; Woodward, P. J. Chem. SOC., Dalton Trans. 1982, 195. 
Green, M.; Norman, N. C.; Orpen, A. G. J. Am. Chem. SOC. 1981,103, 
1269. Knox, S. A. R.; Stansfield, R. F. D.; Stone, F. G. A.; Winter, M. 
J.; Woodward, P. J. Chem. SOC., Chem. Commun. 1978, 221. 

(13) For such rare examples, see: Cotton, F. A.; Schwotzer, W.; 
Shamshoum, E. S. Organometallics 1983, 2, 1167. Davidson, J. L. J .  
Chem. SOC., Dalton Trans. 1983,1667. Boag, N. M.; Green, M.; Howard, 
J. A. K.; Spencer, J. L.; Stansfield, R. F. D.; Thomas, M. D. 0.; Stone, 
F. G. A.; Woodward, P. Ibid. 1980,2182. Boag, N. M.; Green, M.; Grove, 
D. M.; Howard, J. A. K.; Spencer, J. L.; Stone, F. G. A. Ibid. 1980, 2170. 

(14) See: Fmnimore, S. R.; Knox, S. A. R.; Taylor, G. E. J. Chem. SOC., 
Chem. Commun. 1980, 411. 

(15) Bruce, M. I. J. Organomet. Chem. 1983,242, 147. See also: Ca- 
sey, C. p.; Bullock, R. M.; Fultz, w. C.; Reingold, A. L. Organometallics 
1982, 1, 1591 and the references therein. 

(16) See: Middleton, A. R.; Wilkinson, G. J. Chem. SOC., Dalton 
Trans. 1980,1888. Wood, C. D.; Schrock, R. R. J.  Am. Chem. SOC. 1979, 
101, 5421. Cousins, M.; Green, M. L. J. Chem. SOC. A 1969, 16. 

(17) Alkene metal oxo complexes appear to be implicated in alkene 
metathesis and possibly epoxidation: Kress, J.; Wesolek, M.; LeNy, J.-P.; 
Osborn, J. A. J. Chem. SOC., Chem. Commun. 1981,1039. Rapp6, A. K.; 
Goddard 111, W. A. Nature (London) 1980, 285, 311. Schrock, R. R.; 
Rocklage, S.; Wengrovius, J.; Rupprecht, G.; Fellmann, J. J. Mol. Catal.  
1980, 8, 73. 
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alkynes. Hydrogenation in the presence of CO regenerates 
5 quantitatively. 
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Summary: The reaction of the heterobinuclear phosphi- 
do-bridged compound RuCo(CO),(p-PPh,) (1) with di- 
phenylacetylene leads, via acetylene and CO insertion into 
the phosphido bridge, to the novel complex RuCo(CO),- 
[Ph,PCOC(Ph)C(Ph)] (2). X-ray analysis (space group PI ,  
a = 9.820 (1) A, b = 12.419 (2) A, c = 14.966 (2) A, a 
= 99.58 (l)", /3 = 99.55 (l)", y = 90.10 (l)', Z =  2; R 
= 0.028, R ,  = 0.031 based on 4191 reflections) has 
revealed the presence of a p-Ph,PCOC(Ph)C(Ph) ligand 
coordinated to ruthenium via phosphorus and one carbon 
atom of the original alkyne and to cobalt via an v2-inter- 
action. 2 undergoes facile decarbonylation to RuCo- 
(CO),[Ph,PC(Ph)C(Ph)] (3). The conversion of 1 to 2 and 
3 may have wide implications for the reactivity of p- 
PPh,-bridged polynuclear compounds toward unsaturated 
substrates. 

The phosphido (PR,) group has recently attracted 
particular attention as a strongly bound yet flexible ligand 
capable of maintaining the integrity of a polynuclear 
framework during chemical transformations.* A sub- 

RuCO(CO)&CO)[~-~~-PP~~C(O)C( Ph)C( Ph)] 

(1) For recent references see: (a) Carty, A. J. Adu. Chem. Ser. 1982, 
No. 196,163. (b) Kreter, P. E.; Meek, D. W. Inorg. Chem. 1983,22,319. 
(c) Foley, H. C.; Finch, W. C.; Pierpont, C. G.; Geoffroy, G. L. Organo- 
metallics 1982,1,1379. (d) Fischer, K.; Vahrenkamp, H. 2. Anorg. Allg. 
Chem. 1981, 475, 109. (e) Mays, M. J.; Raithby. P. R. J. Organomet. 
Chem. 1982,224, C45. (0 Harley, A. D.; Guskey, G. J.; Geoffroy, G. L. 
Organometallics 1983,2, 53. (9) Carty, A. J.; Hartatock, F.; Taylor, N. 
J. Inorg. Chem. 1982,21, 1349. (h) Yu, Y.-F.; Galluci, J.; Wojcicki, A. J .  
Am. Chem. SOC. 1983, 105, 4826. 

Figure 1. A perspective view of t he  molecular structure of 
RuCO(CO)~[P~~PCOC(P~)C(P~)] drawn to illustrate the inter- 
action of the new ligand with the  metal atoms. 

Scheme I 

1 . 'h 

stantial number of polymetallic phosphido-bridged com- 
pounds have now been synthesized? and several examples 
of potentially significant, reversible metal-metal bond 
cleavage have been r e p ~ r t e d . ~  With p-PPh2 compounds 
a possible complicating factor that has not however re- 
ceived much attention is reactivity associated with the 
bridge, a problem which might be accentuated in hetero- 
bimetallic systems. To date few instances of bridge 
cleavage have been  reported.'^^ 

While investigating the behavior of the heteronuclear 
phosphido-bridged dimer RuCo(CO),(p-PPh,) ( towqd 
alkynes for comparison with homodinuclear compounds 
such as CO~(CO)~,  we discovered that the dominant reac- 
tion pathway involves CO and acetylene insertion into the 
p-PPh2(RuCo) bridge leading to the novel derivative 
RuCo(CO),(p-CO) [p-PPh,COC(Ph)C(Ph)] (2) which sub- 
sequently decarbonylates to RuCo(CO),(p-CO) [p-PPh,C- 
(Ph)C(Ph)] 3. These reactions that may have wider im- 
plications for the reactivity of p-PPh, systems and for the 
use of heterobimetallics in organic synthesis are reported 
herein. 

(2) See for example: (a) Carty, A. J.; MacLaughlin, S. A.; Van Wagner, 
J.; Taylor, N. J. Organometallics 1982,1,1013. (b) Young, D. A. Inorg. 
Chem. 1981,20,2049. (c) Haines, R. J.; Steen, N. D. C. T.; English, R. 
B. J. Chem. Soc., Chem. Commun. 1981,407. (d) Haines, R. J.; Steen, 
N. D. C. T.; English, R. B. Ibid. 1981, 587. (e) Jones, D. F.; Dixneuf, P. 
H.; Benoit, A.; Le Marouille, J. Y. Ibid. 1982, 1217. (f) Breen, M. J.; 
Duttera, M. R.; Geoffroy, G. L.; Novotnak, G. C.; Roberts, D. A.; Shul- 
man, P. M.; Steinmetz, G. R. Organometallics 1982, 1, 1008. 

(3) (a) Jones, R. A,; Wright, T. C.; Atwood, J. L.; Hunter, W. E. Or- 
ganometallics, 1983,2,470. (b) MacLaughlin, S. A.; Taylor, N. J.; Carty, 
A. J. Ibid. 1983,2,1194. (c) MacLaughlin, S. A.; Taylor, N. J.; Carty, A. 
J. J. Organomet. Chem. 1981,204, C27. 

(4) (a) The only examples of insertion of an unsaturated ligand into 
a diphenylphoephido bridge, of which we are aware, are given in: Smith, 
W. F.; Taylor, N. J.; Carty, A. J. J. Chem. SOC., Chem. Commun. 1976, 
896. (b) Examples of hydrogenation of a p-PPhz bridge to a terminal 
phosphine have recently been observed: see ref lb, If, and Ih. (c) 
Hydrogen abstraction from the more reactive p-PPhH ligands has been 
used to generate face capping p3-PPh groups, but the nucleating prop- 
erties of the phosphorus ligand are not destroyed in this conversion. See, 
e.g.: Iwasaki, F.; Mays, M. J.; Raithby, G. R.; Taylor, P. L.; Wheatley, 
P. J. J.  Organomet. Chem. 1981,213, 185. 

(5) Regragui, R.; Dixneuf, P. H. J. Organomet. Chen. 1982,239, Cl2. 
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